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Abstract—Most of the tweets that users exchange on Twitter
make implicit mentions of named-entities, which in turn can be
mapped to corresponding Wikipedia articles using proper Entity
Linking (EL) techniques. Furthermore, some of those become
trending entities on Twitter due to a long-lasting or a sudden
effect on the volume of tweets where they are mentioned. We
argue that the set of trending entities discovered from Twitter
may help predict the volume of requests for relating Wikipedia
articles. The rationale of our intuition is that the nearly real-time
nature of Twitter could select in advance the set of articles that
users will later look up on Wikipedia. To validate this claim, in
this work we provide the following contributions. First, we apply
an EL technique to extract trending entities from a real-world
dataset of public tweets. Then, we analyze the time series derived
from the hourly trending score (i.e., an index of popularity) of
each entity as measured by Twitter and Wikipedia, respectively.
Our results reveals that...

I. INTRODUCTION

Twitter1 is a popular online social media and microblogging
platform where people share information nearly real-time by
posting so-called tweets. Each user tweet is a text message
limited to 140 characters that may contain opinions or feelings
on something related to either personal or public interests.

Tweets make often mentions of named-entities, such as
person names, places, etc. Some of these entities may become
“extraordinary popular” on Twitter, due to a long-lasting or
a sudden effect on the volume of tweets where they are
mentioned. This may be a signal that something relating to
those entities has taken or is taking place, and in this work we
investigate deeply this intuition by contrasting these Twitter
signals with those coming from other sources.

However, we first need an effective method to detect such
trending entities in Twitter. A possible way is to exploit the
list of so-called trending topics, which Twitter extracts by
its own once every five minutes. This is a set of keyword
strings which refer to presumably popular or standing-out facts.
Unfortunately, no details about the algorithm used to label
a keyword as “trending” were publicly disclosed by Twitter.
Moreover, trending topics as fired by Twitter not necessarily
link to a well-known knowledge base of entities.

Due to the above reasons, in this work we focus on
a simple Entity Linking (EL) technique to detect trending
entities from Twitter. This solution aims to identify entities
from their mentions (i.e., small fragments of text referring to
any named entity in a knowledge base) occurring in a large
corpus of tweets. More precisely, it uses Wikipedia2 as the

1http://www.twitter.com
2http://en.wikipedia.org

referring knowledge base of entities and associated mentions.
EL is generally a challenging task, and it is even harder
when mentions appear in very short texts with not enough
surrounding context, such as tweets. In the end, we consider
trending entities on Twitter those that are the most frequently
mentioned, and which in turn correspond to Wikipedia articles.

The final goal of this research is to investigate whether
any relationship exists between trending entities as extracted
from Twitter and the trending requests for the corresponding
Wikipedia articles. Intuitively, we claim that if an entity
appears as trending on Twitter, then a growth of requests for
its corresponding Wikipedia article could later occur. Further-
more, we also expect the temporal behavior of a trending entity
on Twitter might influence, and thus help predict, the access
volume to the entity’s Wikipedia article. The rationale of this
intuition is that information spreading nearly real-time over
the Twitter social network could anticipate the set of topics
that users will be interested in – and thereby will look up on
Wikipedia – in the next future.

Though we do not discuss how our results could be
exploited here, we argue that they may lead to several opti-
mization strategies, e.g., the preemptive caching of Wikipedia
articles related to entities that started to be trending, or the
automatic resolution of ambiguous queries to Wikipedia, which
usually lead to multiple articles, since an article related to a
trending entity is the most likely result to be returned.

The rest of this paper is organized as follows. Firstly,
Section II shows the motivation of our work through a pre-
liminary study of some real-world examples. In Section III,
we give an overview of the most valuable work on entity
linking using Wikipedia, social network analysis, especially
focused on Twitter, and time series regression from Web data.
In Section IV we discuss some useful concepts of time series
analysis that will be used all along the paper. Section V
describes the research steps we pursue to explore whether
and what relationships occur between trending entities on
Twitter and Wikipedia. Section VI presents the experiments
we conducted, and discusses the results we obtained. Finally,
in Section VII we summarize our work and point out possible
future research directions.

II. TIME RELATION BETWEEN TWITTER AND WIKIPEDIA

To motivate our work, we present some real-world exam-
ples of trending entities. We start our discussion from Fig. II
where each plot shows a pair of time series. Each pair presents
the hourly scores of a trending entity, as measured by Twitter
and Wikipedia during the first two weeks of November 2012.

At this stage, we only aim to motivate informally why our
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Fig. 1. Time series plots of trending entity scores as measured by Twitter and Wikipedia.

research idea is worthwhile to explore, and the concepts of
trending entity time series and trending entity score will be
clarified in the upcoming sections. For now, simply consider
each plot as representing the time behavior of two popular
entities. Moreover, let the observed values of the series be the
(normalized) hourly measures of “popularity” of those entities.

The plot on the left shows a pair of time series about
the entity Adam Levine3, who is a famous American singer
and the front man of the “Maroon 5” music band. The other
plot shows a pair of time series concerning the entity Solar
Eclipse4, which occurred on last November 13th.

First, it is evident that Twitter and Wikipedia exhibit similar
trending scores in both pairs of time series, a part from an
almost-constant scaling factor.

Second, if we check what happened to Adam Levine just
in correspondence of the three main peaks of Twitter trending
scores, we discover that some key events occurred to him,
as he was one of the judges of the American reality talent
show “The Voice”. More precisely, those key events are: live
playoffs, the interview at the “Ellen TV Show”, and the top-
12 live performances. Similarly, the second entity reaches the
maximum value of popularity on Twitter just when the actual
event was happening (i.e., during the solar eclipse). Therefore,
in both pair of time series Twitter truly reveals nearly real-time
what hot event is happening.

Third, and even more remarkable, Twitter seems to always
anticipates Wikipedia, and this is more evident especially for
the highest values of trending entity scores. However, this
is shown differently by the two trending entities. Indeed, in
the first example Twitter is able to forecast the behavior of
Wikipedia one or two hours in advance, even for smaller
trending scores5. Conversely, for the second entity, Twitter
predicts the maximum trending score of Wikipedia largely in
advance (i.e., about 12 hours).

We argue that the rationale of these two different fore-
casting behaviors of Twitter could be the following. When an
entity refers to a famous personality, such as Adam Levine,
it is reasonable that people start mentioning him on Twitter
as something about him is happening (e.g., his performance
on a TV show), thus increasing his trending on the social
network. Thereby, we can imagine that this popularity pushes
people to request for the Wikipedia article of Adam Levine,
in order to get information about him as soon as possible (i.e.,
within a couple of hours that something occurred). Besides,

3http://en.wikipedia.org/wiki/Adam_Levine
4http://en.wikipedia.org/wiki/Solar_eclipse_of_November_13,_2012
5This value is not easily visible from the plot due to the 1-hour scale on the x-axis.

when an entity represents an extraordinary event, still it starts
becoming popular on Twitter as the event is running, but this
raises people’s need for information on Wikipedia less quickly.

Due to all the motivations above, we are strongly convinced
that our claim is worth to investigate further.

III. RELATED WORK

Three lines of research are actually covered and addressed
in this work: (i) Entity Linking using Wikipedia, (ii) Analysis
of Social Network Data, and (iii) Time Series Regression from
Web Data. In the following, we discuss all of them separately.

Entity Linking using Wikipedia. The first system to use
Wikipedia for entity linking is Wikify! [1], which works in
two separates stages. The first one, i.e., detection, aims at
identifying the mentions of an entity (Wikipedia article),
and the next phase, i.e., disambiguation, ensures that the
detected mention links to the appropriate article. Milne and
Witten [2] largely improves this solution, by exploiting the
interdependence between different name mentions as the sum
of their pair-wise dependencies. They disambiguate and finally
determine the referent entity of a name mention by comparing
each of its candidate referents with other name mentions
referent entities. In [3] the authors overcome some deficiencies
of the previous methods, and propose a graph-based collective
entity linking method, which models and exploits the global
(rather than the pair-wise) interdependence between different
entity linking decisions.
Unfortunately, all the methods above work well on large text
documents, where a relatedness measure between candidate
entities can be exploited to disambiguate the linking task [2].
Entity linking in Twitter is in fact much harder, since tweets
are usually short and informal in nature, and often contain
grammatical errors and misspellings. To this end, Li et al. [4]
propose a novel technique tailored for Twitter that aggregates
information gathered from the Web to build both local and
global contexts for tweets.
In this paper, we use a pretty simple Wikipedia-based entity
linker for Twitter. As a matter of fact, the focus of the paper
is not on entity linking, but on the analysis of the time series
extracted on the basis of the most trending detected entities.
However, we plan to test specialized entity recognizers like
the one discussed in [4] as a future work.

Analysis of Social Network Data. In the recent years, we
have seen the sudden rising and exponential growth of many
online social network applications, such as Flickr, MySpace,



Facebook, Google+, just to name a few. Besides all the above,
Twitter has emerged as one of the most influential online social
media service. Thereby, several studies have started analyzing
data from Twitter.
Many work aim at categorizing different types of users,
their behaviors, and the relationships occurring among them
according to the following/follower pattern [5]–[8].
Other studies focus on analyzing the content of the tweets
(e.g., to get insights about opinions and/or sentiments [9]),
and the way these are related to trending topics. In this last
regard, one of the most representative and exhaustive study
is proposed by Kwak et al. [10]. Among other things, there
authors describe the relationship between tweets and trending
topics as extracted from Twitter, and trends derived from other
media, i.e., query volume on Google and CNN headlines.
Osborne et al. [11] discuss how Wikipedia can be exploited to
filter out spurious real-time events detected on Twitter. Among
other results, the authors find that there is a delay of one or
two hours between events breaking on Twitter and the time
when people start to search Wikipedia for information about
it. However, differently from our work, they do not use this
outcome to perform any prediction analysis of time series.
Ruiz et al. [12] study the problem of correlating microblogging
activity from Twitter with stock market events. To achieve this
goal, they use a graph representation of tweets, whose nodes
are different objects (e.g., tweets, users, hashtags, and URLs)
and edges model relationships between these objects.

Time Series Regression from Web Data. Using Web data
for predicting the behavior of a real time series is a well-
investigated topic. However, to the best of our knowledge, this
work is the first attempt trying to relate time series derived both
from Web (i.e., Wikipedia) and social network (i.e., Twitter).
Recent work has proven that Web search volume can predict
the present values of some economic indicators. For instance,
Ettredge et al. [13] use search logs to predict the job market
while Choi and Varian [14] show how Google trends may be
used to forecast unemployment levels, car and home sales, and
disease prevalence in near real-time [14].
Finally, Ginsberg et al. [15] propose to approximate the flu
cases in the U.S. by using a search engine query log whereas
Corely et al. [16] address a similar problem yet exploiting Web
blog content.

IV. TIME SERIES ANALYSIS

In this section, we introduce some basic concepts and no-
tations about time series. Then, we discuss a set of techniques
used in this paper for extracting knowledge from the time
series concerning Twitter and Wikipedia trending entities.

A. Basic Concepts and Notations

Let T = {t1, t2, . . . , tT } be a parameter space representing
time and containing T discrete, equally-lasting, and equally-
spaced slots.

A time series is a time-ordered sequence of random vari-
ables defined on the same probability space and indexed by
time slots:

X = {Xt, t ∈ T } = {Xt}tTt=t1 . (1)

A time series can be usefully described through the first
and second-order moments (i.e., the mean and the variance)

of its composing random variables. To this end, let E[·] be
the expectation operator. Thus, we define µt = E[Xt] and
σ2
t = Var(Xt) = E[Xt − µt]2 the mean and variance of each
Xt (t ∈ T ) as functions of time.

A crucial issue when dealing with time series concerns
stationarity. We define a time series strictly stationary if its
statistical properties do not change over time. Formally, X =
{Xt, t ∈ T } is strictly stationary if, for any {t1, . . . , tq} ⊆ T
and any τ , the joint distribution of Xt1 , . . . , Xtq is the same
as the joint distribution of Xt1+τ , . . . , Xtq+τ .

Since this is an extremely strong property, which means
that all moments of all degrees of the series are the same
anywhere, independent of time, the second order or weak
stationarity is instead often used.

A time series X = {Xt, t ∈ T } is weakly stationary if
the means and variances of its random variables are constant
over time, and for any ti, tj ∈ T the covariance between Xti
and Xtj is finite and only depends on the time lag δ = j − i.
Eventually, any time series that is not stationary, either strictly
or weakly, is called non-stationary.

Let X and Y be two (weakly) stationary time series.
By definition, the means and variances of all their random
variables are constant, and we denote them by µX , µY and
σ2
X , σ

2
Y , respectively. Given t ∈ T and a lag δ, such that

t+ δ ∈ T , we define the cross-covariance as:

cXY (δ) = E[(Xt+δ − µX )(Yt − µY)]. (2)

Furthermore, we compute the cross-correlation as the cross-
covariance normalized in the range [−1, 1], as follows:

rXY (δ) =
cXY (δ)√
σ2
X · σ2

Y

=
cXY (δ)

σX · σY
, (3)

where σX and σY are the standard deviations of X and Y .
Intuitively, the cross-correlation gives hints about the pres-

ence of correlation between two time series when time-shifted
by the lag δ (i.e., lagged relationship).

In particular, when one or more Xt+δ are predictors of Yt
and δ < 0, we say that X leads Y . Conversely, when one or
more Xt+δ are predictors of Yt and δ > 0, we say that X lags
Y (or, equivalently, Y leads X).

Many problems related to time series analysis deal with
identifying which variable is leading and which is lagging.
Some others assume a certain variable (X) to be leading of
another one (Y ), namely they aim to use the values of X to
predict future values of Y .

However, it is worth remarking that cross-correlation is
designed for stationary time series (at least in a weak sense).
Indeed, estimating the cross-correlation between two non-
stationary time series may lead to a misleading evaluation of
their actual lagged relationship.

B. Time Series Regression

Regression analysis is one of the most powerful statistical
tools for modeling relationships among variables. In its most
general form, a regression model aims at relating a dependent
variable Y to a parametric function of a set of independent
variables (or inputs) X1, . . . , Xr.

The widest used is the linear regression model, which
assumes that Y can be written as the sum of two terms.
The first one is a deterministic component depending on



X1, . . . , Xr and linear in the parameters. The second term
represents a random error component including all the influent
factors on Y that are not considered in the deterministic
component. Using matrix notation, it can be written as follows:

Y = Xβ + ε,

where Y = (Y1, . . . , Yk)
T is a random vector, X = (xi,j) is

a full rank k × r matrix of observed values for X1, . . . , Xr,
β = (β1, . . . , βr)

T is an unknown r-dimensional parameter
and ε = (ε1, . . . , εk)

T is the error component that is assumed
to have a multivariate normal distribution with zero mean and
uncorrelated (thus independent) components, ε ∼ Nk(0, σ2Ik),
with Ik the identity matrix of order k.

The most common technique for estimating the coeffi-
cients β is Ordinary Least Squares (OLS), where values
β̂ = (β̂1, . . . , β̂r)

T are chosen so as to minimize the residual
sum of squared [17], [18]:

β̂ = argminβ{(Y −Xβ)T (Y −Xβ)}.

The resulting OLS estimator is thus computed as follows:

β̂ = (XTX)−1XTY.

The linear regression model can be fruitfully used for modeling
relationships among time series. However, in this context new
issues arise. In particular, one variable can influence another
with a specific time lag. Furthermore, special care should
be taken when dealing with non-stationary time series, since
spurious regression may occur [19], [20].

In this work, we focus on two different classes of time
series regression models that are briefly described below.

Autoregressive Models (AR). The simplest regression model
for time series is the one relating a variable (Yt) only to a linear
combination of p of its lags (Yt−1, Yt−2, . . . , Yt−p). We call
it autoregressive model, which is typically denoted by AR(p)
and where p is the lag order of the model:

Yt = α+ φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + εt. (4)

Autoregressive Distributed Lag Models (ADL). Some anal-
yses require using a regression model that has both lags of
dependent and explanatory variables, or what we call autore-
gressive distributed lag model, denoted by ADL(p, q):

Yt = α+ φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p+

+ ψ1Xt + ψ2Xt−1 + . . .+ ψq+1Xt−q + δt+ εt. (5)

A right estimation and interpretation of an ADL(p, q) model
depends on whether the time series variables Yt and Xt are
stationary or not. Indeed, if the variables are stationary the
model parameters can be safely estimated by using OLS.
Conversely, if Yt and Xt are non-stationary OLS can lead to
wrong parameters estimation, or what we have referred to as
spurious regression problem.
Anyway, spurious regression vanishes if Yt and Xt are cointe-
grated [21], and the OLS estimation still works fine even for
non-stationary time series.

V. TWITTER VS. WIKIPEDIA TRENDING ENTITIES

In this section, we discuss how we extract, analyze,
and contrast trending entities, as observed in Twitter and
Wikipedia.

A common way to automatically cross-reference text doc-
uments (like tweets) and Wikipedia is to use the latter as a
resource for automatic keyword extraction and word sense
disambiguation. More specifically, the whole set of Wikipedia
articles can be seen as a set of unique and distinct entities
E = {e1, . . . , eW }, where |E| = W is the total number of
Wikipedia articles. We aim to use E as a common vocabulary
not only in Wikipedia but also in Twitter, in order to identify
time series associated with each entity in the two contexts.

Entity Linking in Twitter using Wikipedia. To identify the
correct entities occurring in a tweet, we need to link mentions
of those entities in the text with their referent entities in the
knowledge base, i.e., Wikipedia in our case. To this end, we
define a controlled vocabulary of mentions Me, for each e ∈ E
of Wikipedia. We build Me by using the title of the Wikipedia
article about entity e, along with the set of anchor texts of
internal Wikipedia hyperlinks pointing to such article. We
denote with M be the vocabulary of all the possible mentions
of Wikipedia entities.
In general, given any two entities e and e′, it holds that
Me ∩Me′ 6= ∅, and thus the same mention can be used as an
anchor text to hyperlink distinct Wikipedia articles. Therefore,
given a mention m ∈M detected in a document/tweet D, we
may have a set of candidate entities Cm = {e |m ∈Me} ⊆ E .
The Entity Linking Problem aims to disambiguate such entity
references: for each mention m discovered in D, we have to
identify the correct entity ê ∈ Cm.
In Section VI we discuss the disambiguation technique we
actually use for entity linking. Since we need to identify
trending entities in a large corpus of tweets, a simple method
suffices for our purposes. In addition, it is worth remarking
that more sophisticated technique [2], [3] are not adequate for
Twitter, since texts of tweets is too short.

Trending Entity Score. We refer to T = 〈t1, t2, . . . , tT 〉
as the sequence of T discrete, equally-lasting, and equally-
spaced slots already defined in Section IV. We introduce two
functions, sX and sY , which assign scores to each entity in
the vocabulary (e ∈ E), as observed at each time slot in T :

sX : E × T 7−→ N, sY : E × T 7−→ N.

For each entity, sX and sY indicate the “strength” of its trend-
ing in a given time slot, as measured by Twitter and Wikipedia,
respectively. We define the two following normalized integer
scores, ranging from 0 to 100.

1) Twitter Trending Entity Score. Let ek ∈ E be a trending
entity, and let count(ek, t) be the number of occurrences of
ek in a sample of public tweets as observed during t. Then,
we denote by tes(ek, t), t ∈ T the twitter entity score, which
is computed as follows:

tes(ek, t) =

⌈
count(ek, t)

argmaxt∈T count(ek, t)

⌉
∗ 100, (6)

where argmaxt∈T count(ek, t) is a normalization factor that
evaluates to the maximum count of ek over all the observations



in T . Finally, we use the twitter entity score to evaluate the
function sX , i.e., sX(ek, t) = tes(ek, t), where t = t1, . . . , tT .

2) Wikipedia Trending Entity Score. Let ek ∈ E be a trend-
ing entity, and let n_reqs(ek, t) be the number of requests for
the Wikipedia article of ek as measured during t. We compute
the wikipedia entity score, denoted by wes(ek, t), t ∈ T , as
follows:

wes(ek, t) =

⌈
n_reqs(ek, t)

argmaxt∈T n_reqs(ek, t)

⌉
∗ 100. (7)

Again, argmaxt∈T n_reqs(ek, t) is a normalization factor
that evaluates to the maximum number of requests for the
Wikipedia article of ek over all the observations in T . Finally,
we use the wikipedia entity score to evaluate the function sY ,
i.e., sY (ek, t) = wes(ek, t), where t = t1, . . . , tT .

Trending Entity Time Series. Now that we have clarified
what we meant for trending entity score, we are ready to
discuss how each trending entity is modeled by a time series.
Indeed, we may think of each ek ∈ E as a pair of time
series, namely Xk = {Xt}tTt=t1 derived from Twitter, and
Yk = {Yt}tTt=t1 derived from Wikipedia. Both Xk and Yk
are composed of tT random variables, and each random
variable evaluates to the Twitter and Wikipedia entity scores,
respectively.
More formally, let sX(ek, t) and sY (ek, t) be the Twitter and
Wikipedia trending scores of ek ∈ E , as measured at time
t ∈ T . The pair of observed time series for ek ∈ E correspond
to the sequences of values assumed by each Xt and Yt:

Xk = {Xt = sX(ek, t)}tTt=t1 , Yk = {Yt = sY (ek, t)}tTt=t1 .

Finally, among all the possible pairs of time series, in this paper
we are only interested in comparing those who are actually
referring to the same trending entities. In other words, we
hereinafter consider a set of pairs D = {(Xi,Yj) | ei = ej}.
Trending Entity Forecasting and Causality. Our final goal
is to check whether the temporal evolution of a trending entity
from Twitter is significant to explain and predict the temporal
progress of the requests made for accessing to the correspond-
ing Wikipedia article. In order to validate our hypothesis, we
perform the following tests for each (Xk,Yk) ∈ D.
Firstly, we evaluate the capability of the time series Xk (Twit-
ter) in forecasting the time series Yk (Wikipedia). Moreover,
we measure the causality between Xk and Yk by testing for
the Granger causality [22].
To achieve both tasks, we compare the two classes of regres-
sion models discussed in Section IV-B. Eventually, we aim to
show which model best fits our data, on average.

VI. EXPERIMENTS AND RESULTS

In this section, we describe the experiments we conducted
on a real-world dataset of trending entities from Twitter
and Wikipedia. The experimental phase is divided into four
separate tasks:

(i) Raw Data Crawling: to collect both Twitter and Wikipedia
data to derive the actual time series of trending entities.

(ii) Wikipedia Entity Linking: to link named-entity mentions
occurring on Twitter with the corresponding set of Wikipedia
articles.

(ii) Time Series Building: to create the actual time series
from the “raw” Twitter and Wikipedia data which have been
previously crawled.

(iv) Time Series Regression Analysis: to conduct time series
regression analysis for exploring relation between Twitter and
Wikipedia trending entities.

A. Raw Data Crawling

In the very first step, we crawled all the data both from
Twitter and Wikipedia, which were necessary for deriving
the final dataset of time series. We collected data for fifteen
consecutive days, namely from 2012-11-01 at 00:00AM UTC
to 2012-11-15 at 11:59PM UTC.

We deliberately chose this time range because we knew in
advance that, at least a standing out event would have occurred,
namely the U.S. 2012 Presidential Elections. However, since
Twitter and Wikipedia have their own services and access
policies for retrieving data, we describe this task separately.

Twitter Public Tweets. Twitter allows developers to interact
with its platform by exposing a useful REST Application Pro-
gramming Interface (API).6 Roughly, two main functionalities
are available throughout this API: Search and Streaming, each
one having its own policies to limit the rate of requests that a
client is allowed to perform.
We used the Streaming API in order to retrieve a sample of
the public tweets nearly real-time. In addition, we upgraded the
default access policy of Streaming API to gardenhose level to
avoid the standard limit of API calls. In this way, the sample
of Twitter timelines we crawled was randomly-selected from
a large collection of about 10% of the whole public tweets
(instead of 1%).
We thus focused only on tweets coming from the U.S., which
hopefully were almost all written in English. As a result, we
obtained a total corpus of about 260 million tweets.

B. Wikipedia Entity Linking

In order to extract the set of trending entities from this
huge Twitter dataset, we exploited the Wikipedia 04/03/2013
dump7 and applied the following multi-step technique:

1) For each hourly time slot, we considered all the tweets
posted in the meanwhile. For each tweet, we extracted all the
possible n-grams, n = 1, . . . , 6, and we looked-up for them in
the controlled vocabulary of mentions M . For each detected
mention m, we identified the set of candidate entities Cm ⊆ E .

2) We limited the set of detected mentions (and associated
candidate entities) to the most meaningful ones. To this end,
we exploited the link probability of a mention m, denoted
by LP (m), which is defined as the number of times m
occurs as an anchor text in Wikipedia divided by its total
number of occurrences in all the Wikipedia pages [1]. This
property permits to discriminate mentions that refers with a
high probability to some entity from those which may refer
to an entity only in particular contexts. For instance, the
mention “the” occurs a huge number of times in Wikipedia,
but only in a few cases it is used as an anchor text to the

6https://dev.twitter.com/docs/api
7http://dumps.wikimedia.org/enwiki/20130403/enwiki-20130403-pages-articles.xml.
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English articles entity. Thereby, we added m to the
detected mentions only if LP (m) > 0.4.

3) At this stage, we had to link a single entity to each
detected mention m. To this end, we sorted Cm using the
commonness (i.e., prior probability) of each candidate e ∈ Cm.
The commonness of e, denoted by CP (e), is defined as the
ratio between the number of times m is used as an anchor text
to actually refer to e, and the total number of times m is used
as an anchor in Wikipedia [2].

4) Once detected the set of all the entities appearing in
our collection of tweets, we counted the number of times each
entity was mentioned in the corpus on each hourly time slot.
Finally, we considered the top-50 most frequent entities on
each hour, and we obtained our running vocabulary of trending
entities Ê ⊆ E , namely 1, 280 unique entities.

Wikipedia Page Statistics. Wikipedia provides a lot of
statistical tools both via its official Wikimedia Foundation
analytics team and through third-party volunteers. For the
sake of our purpose, we used the standard page view statistics
for Wikimedia projects8, which contained raw page access
data for all Wikipedia projects. We chose this option because,
to the best of our knowledge, it was the only that allowed
us to get hourly page access data. In fact, other available
statistics concern only daily-aggregated data9.
We downloaded the set of 360 page statistics files, one for
each hour within the fifteen days of observations. Each hourly
file contained one line for each page request statistics of that
hour, and each line looks like the following real, four-column,
white-spaced record:

en Barack_Obama 2599 248007182

The record above traces data about the requests for the
English Wikipedia article (1st column) of Barack Obama
(2nd column), which was accessed 2599 times during that
hour (3rd column), and required the total transferring of about
250MB of contents (4th column).

C. Time Series Building

In this section, we discuss how actual time series of
trending entities were built from the raw datasets collected
from Twitter and Wikipedia, as detailed above.

To this end, we computed the trending entity scores as
measured by Twitter (sX ) and Wikipedia (sY ). In a nutshell,
for each entry ek in our vocabulary of trending entities Ê ,
we computed both its Twitter and Wikipedia entity scores, as
discussed in Eq. 6 and Eq. 7. More precisely, to generate the
Twitter time series associated with ek we used the normalized
hourly count of mentions of ek occurring in the corpus of
crawled tweets. In order to built the Wikipedia time series
for ek we instead retrieve the normalized hourly number of
requests for the Wikipedia article of ek, as provided by the
Wikipedia page statistics.

Since our analysis spanned fifteen days, the total number of
hourly observations turned out to be 24∗15 = 360, namely the
sequence of time slots T had exactly 360 intervals. Therefore,
we came up with the following pair of time series for each

8http://dumps.wikimedia.org/other/pagecounts-raw/
9http://toolserver.org/~emw/wikistats/

ek ∈ Ê :

Xk = {Xt = sX(ek, t)}t360t=t1 , Yk = {Yt = sY (ek, t)}t360t=t1 .

Finally, we focused on the set of pairs of time series D =
{(Xi,Yj) | ei = ej}, as specified in Section V. The following
section is completely devoted to test and assess any relation
between Twitter and Wikipedia time series of trending entities.

D. Time Series Regression Analysis

Our experiments comprised the following steps: (i) Test for
weak stationarity, (ii) Cross-correlation, and (iii) Forecasting
and Causality.

Test for Weak Stationarity. First, we tested if time series on
our dataset were stationary or not. To this end, we inspected
the autocorrelation of each individual time series Xi and
Yj , separately. Indeed, the autocorrelation of a non-stationary
variable appears strongly positive and non-noisy out to a high
number of lags (often 10 or more) meaning it is slow to
decay. Conversely, the autocorrelation of a stationary variable
usually decays into “noise” (e.g., fluctuating behavior) and/or
hits negative values within a few lags.
According to this, all the time series in D turned out to be
stationary. This is reasonable considering that our time series
have both lower and upper bounds set to 0 and 100, respec-
tively, thereby no trending10 (either increasing or decreasing)
nor seasonality could occur.
Fig. 2 shows the autocorrelation plots for the two time series
of the trending entity Adam Levine, which were derived from
Twitter (a) and Wikipedia (b), using up to 24-hour lags.

Cross-correlation. An immediate way to discover the rela-
tionship between two time series is to measure their cross-
correlation (see Section IV-A). Intuitively, the cross-correlation
provides hints about the presence of correlation between the
random variables associated with two time series at a given
time lag (i.e., lagged relationship).
In addition, the test for stationarity we conducted above
revealed that all the time series in our dataset were at least
weak stationary. Thereby, this guaranteed that cross-correlation
could be safely computed to estimate the lagged relationships
between our time series.

We indeed computed the cross-correlation of each pair of
time series (Xk,Yk) ∈ D, according to the Eq. 3. We
used several lags δ (i.e., δ = ±3,±6,±12, . . .) in order to
capture lagged relationships from few hours up to many days.
However, the most interesting results were obtained when we
searched for cross-correlation within 12 hours. After that lag,
the cross-correlation became generally not significant. In fact,
the maximum values of cross-correlation were mostly obtained
at lag δ = −1, and just within two or three lags they suddenly
dropped below the level of significance. To give a better idea
of this result, Fig. 2 (c) presents the cross-correlation plot for
the two time series from Twitter and Wikipedia associated with
the trending entity Adam Levine.
Fig. 3 shows how maximum cross-correlation values computed
for all the time series in D were distributed over the hourly
lags. From this last plot, more than 40% of the total pairs of

10Here the term “trending” refers to a characteristic of time series, and not to our
trends.
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Fig. 2. Autocorrelation (a), and Cross-correlation plots (b) of the time series for the trending entity Adam Levine

time series in D have their maximum correlation at lag δ = −1.
In addition, about two out of three maximum correlation
values occurred at non-positive lags. This means that trending
entities derived from Twitter actually anticipated the volumes
of requests that users made for the corresponding Wikipedia
articles, namely Twitter leads Wikipedia.
Finally, it is worth noting that considerations above are com-
pliant with our preliminary findings described in Section II.
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Fig. 3. Maximum cross-correlation distributed over hourly lags.

Forecasting and Causality. From the discussion on cross-
correlation in the previous paragraph, we realized that a strong
lagged relationship exists between the time series of trending
entities as derived from Twitter and Wikipedia. More precisely,
we found that Twitter leads Wikipedia.
In this last experimental stage, we aimed to evaluate other two
phenomena arising from the result above: (i) forecasting and
(ii) causality. The former refers to the power of Twitter in
predicting access to Wikipedia articles whereas the latter goes
a step further and tries to determine causality between Twitter
and Wikipedia by performing a Granger-causality test [22].
Both issues required dealing with the time series regression
models described in Section IV-B.
To assess the first aspect, we examined each pair of time series
(Xk,Yk) in our running dataset D. We started fitting each
series to autoregressive models, i.e., AR(p), which we con-
sidered as our baseline models. Intuitively, this means that we
were explaining the hourly volume of requests for a Wikipedia
article Yk,t, by only considering the values of the same series
as measured up to p hours before (i.e., Yk,t−1, . . . , Yk,t−p).
Thereby, these models assumed Wikipedia trending entities
were dependent only on themselves, and Twitter having no
influence at all.
In fact, to assess how lagged values of Twitter time series

actually help forecast Wikipedia time series, we exploited the
third class of regression models introduced in Section IV-B,
namely autoregressive distributed lag ADL(p, q). As opposed
to AR(p), ADL(p, q) tries to fit a Wikipedia time series
Yk,t using up to p past values of the same series (i.e.,
Yk,t−1, . . . , Yk,t−p) and up to q past values of the paired time
series from Twitter (i.e., Xk,t, . . . Xk,t−q).
In order to evaluate how Twitter is able to forecast Wikipedia,
we computed how many ADL(p, q) models retained as sig-
nificant their q-lagged component. For instance, if we focus
on ADL(1, 1) we found that the lag-1 component of Twitter
turned out to be significant 55.9% of times. As expected, this
percentage decreased as the number of considered q lags was
growing. This measure gave evidence that, in the more than
half of the cases, lagged values of Twitter are actually useful
to model our time series.
Significance was determined by computing the p-value,11

which is the probability of observing a test statistic at least
as large as the one calculated assuming the null hypothesis is
true. To choose whether the null hypothesis is in fact true or
false, a trade-off on the the p-value is needed. Typically, the
null hypothesis is rejected if p-value is below a significance
level α, which, for our experiments, was set to 0.05. In our
case, the null hypothesis was that the q-lagged component was
not significant. Thereby, rejecting the null hypothesis meant to
consider such coefficients useful for the model to fit the data.
In addition, we compared the ability of AR(p) and ADL(p, q)
models in fitting our data. In fact, we compared their adjusted
coefficient of determination, denoted by R2 ∈ [0, 1] and
averaged by all the pairs of time series. This index is generally
used to describe how well a regression line fits a dataset, and
provides a measure of how well future outcomes are likely
to be predicted by the model. The greater R2 for a model
the better it fits the data. Actually, R2 considers the number
of explanatory terms in the model, so that it increases only
if the newly introduced term improves the model more than
would be expected by chance. From the results shown in Tab. I,
ADL(p, q) models always outperformed AR(p).
As the last contribution, we checked if there was any causality
between Twitter and Wikipedia trending entities. This was
achieved by running a test for Granger-causality [22], which
roughly states the following: given two time series X and Y ,
if lagged values of X help (i.e., are significant to) predict
current values of Y in a forecast built from lagged values
of both X and Y (i.e., an ADL(p, q) model), then X is said
to “granger cause” Y . Since causality can be bi-directional,

11Here the p of p-value is totally unrelated to the lag order p of autoregressive models.



TABLE I. TIME SERIES REGRESSION: AR(p) VS. ADL(p, q).

AR(p) ADL(p, q)
p R2 p, q R2

1 0.39 1, 1 0.50

2 0.41 2, 2 0.52

3 0.41 3, 3 0.53

4 0.42 4, 4 0.53

5 0.42 5, 5 0.53

6 0.42 6, 6 0.53

namely both X can cause Y and vice versa, we must check for
unidirectional causality to conclude that one of the two actually
“came first” [?]. In other words, given that we wanted to test
if only Twitter (Xk) “granger-causes” Wikipedia (Yk), we had
to reject the non-causality of Xk to Yk, and accept the non-
causality for the opposite direction. To this end, we computed
the number of times Twitter caused Wikipedia among all those
ADL(p, q) models having their q-lagged component significant.
The outcomes of this is presented in Tab. ??, which shows
that up to 61.9% of the ADL(p, q) models with significant
q-lagged component identifies also time series where Twitter
cause Wikipedia.

VII. CONCLUSION AND FUTURE WORK

In this work we provided the following contributions. First,
we presented an entity linking technique to recognize mentions
of named-entities as of Wikipedia articles appearing on a huge
corpus of real-world user tweets from Twitter.

Then, we focused on the top-most frequent hourly entities,
which we called trending entities. Therefore, we claimed that
the “popularity” of a trending entity on Twitter may help
predict the number of requests for the corresponding Wikipedia
article. The rationale of this intuition is that information
spreading nearly real-time over the Twitter social network
could anticipate the set of topics that users will be interested in
– and thereby will look up on Wikipedia – in the next future.

To validate our claim, we conducted an extensive time
series regression analysis, where time series were derived from
the real-world set of trending entities, as observed during
fifteen consecutive days.

Thus, we assessed the forecasting power of Twitter by
finding that the models that use Wikipedia as the dependent
variable and Twitter as the explanatory variable retain as
significant the past values of Twitter 60% of times. Moreover,
we discovered that a trending entity on Twitter causes a similar
Google trend to later occur about 43% of times. Eventually,
we showed that the best-performing models are those using
past values of both Twitter and Wikipedia.

As future work, we plan to extend this study by considering
trending signals coming from other social media.

REFERENCES

[1] R. Mihalcea and A. Csomai, “Wikify!: linking documents to encyclo-
pedic knowledge,” in CIKM’07. New York, NY, USA: ACM, 2007,
pp. 233–242.

[2] D. Milne and I. H. Witten, “Learning to link with wikipedia,” in CIKM
’08. New York, NY, USA: ACM, 2008, pp. 509–518.

[3] X. Han, L. Sun, and J. Zhao, “Collective entity linking in web text:
a graph-based method,” in SIGIR ’11. New York, NY, USA: ACM,
2011, pp. 765–774.

[4] C. Li, J. Weng, Q. He, Y. Yao, A. Datta, A. Sun, and B.-S. Lee, “Twiner:
named entity recognition in targeted twitter stream,” in SIGIR ’12. New
York, NY, USA: ACM, 2012, pp. 721–730.

[5] A. Java, X. Song, T. Finin, and B. Tseng, “Why we twitter: understand-
ing microblogging usage and communities,” in WebKDD/SNA-KDD ’07.
New York, NY, USA: ACM, 2007, pp. 56–65.

[6] B. Krishnamurthy, P. Gill, and M. Arlitt, “A few chirps about twitter,”
in WOSN ’08. New York, NY, USA: ACM, 2008, pp. 19–24.

[7] D. Zhao and M. B. Rosson, “How and why people twitter: the role that
micro-blogging plays in informal communication at work,” in GROUP
’09. New York, NY, USA: ACM, 2009, pp. 243–252.

[8] B. A. Huberman, D. M. Romero, and F. Wu, “Social networks that
matter: Twitter under the microscope,” First Monday, vol. 14, no. 1,
2009.

[9] B. J. Jansen, M. Zhang, K. Sobel, and A. Chowdury, “Twitter power:
Tweets as electronic word of mouth,” JASIST, vol. 60, no. 11, pp. 2169–
2188, November 2009.

[10] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in WWW ’10. New York, NY, USA:
ACM, 2010, pp. 591–600.

[11] M. Osborne, S. Petrovic, R. McCreadie, C. Macdonald, and I. Ounis,
“Bieber no more: First Story Detection using Twitter and Wikipedia,”
SIGIR 2012 Workshop on Time-aware Information Access (#TAIA2012),
2012.

[12] E. J. Ruiz, V. Hristidis, C. Castillo, A. Gionis, and A. Jaimes, “Cor-
relating financial time series with micro-blogging activity,” in WSDM
’12. New York, NY, USA: ACM, 2012, pp. 513–522.

[13] M. Ettredge, J. Gerdes, and G. Karuga, “Using web-based search data to
predict macroeconomic statistics,” Communications of the ACM, vol. 48,
no. 11, pp. 87–92, November 2005.

[14] H. Choi and H. Varian, “Predicting the present with google trends,”
Economic Record, vol. 88, pp. 2–9, 2012.

[15] J. Ginsberg, M. Mohebbi, R. Patel, L. Brammer, M. Smolinski, and
L. Brilliant, “Detecting influenza epidemics using search engine query
data,” Nature, vol. 457, pp. 1012–1014, 2009.

[16] C. Corley, A. R. Mikler, K. P. Singh, and D. J. Cook, “Monitoring
influenza trends through mining social media,” in BIOCOMP, 2009,
pp. 340–346.

[17] M. H. Kutner, C. J. Nachtsheim, and J. Neter, Applied Linear Regression
Models, Fourth International ed. McGraw-Hill/Irwin, September 2004.

[18] N. Ravishanker and D. Dey, A First Course in Linear Model Theory,
ser. Chapman & Hall/CRC Texts in Statistical Science. CRC PressINC,
2013.

[19] G. U. Yule, “Why do we Sometimes get Nonsense-Correlations between
Time-Series?–A Study in Sampling and the Nature of Time-Series,”
Journal of the Royal Statistical Society, vol. 89, no. 1, pp. 1–63, January
1926.

[20] C. W. J. Granger, “Some properties of time series data and their use
in econometric model specification,” Journal of Econometrics, vol. 16,
no. 1, pp. 121–130, May 1981.

[21] R. F. Engle and C. W. J. Granger, “Co-integration and error correction:
Representation, estimation, and testing,” Econometrica, vol. 55, no. 2,
pp. 251–76, March 1987.

[22] C. W. J. Granger, “Investigating causal relations by econometric models
and cross-spectral methods,” Econometrica, vol. 37, no. 3, pp. 424–438,
July 1969.


