
Typing OpenDLib Repository Service:
Strengths of an Information Object Type Language

Leonardo Candela, Donatella Castelli, Paolo Manghi, and Pasquale Pagano

Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo” – CNR
Via G. Moruzzi, 1 - 56124 PISA - Italy

{leonardo.candela, donatella.castelli, paolo.manghi, pasquale.pagano}@isti.cnr.it

End-users perceive a Digital Library (DL) as a set of Functionality (FDL) operating over the digital
objects of an Information Space (IDL). At this level of abstraction, objects represent entities of the end-users
application domain; for example, conference proceedings, i.e. collections of article objects. The structure
of an IDL is typically given in terms of high-level modeling primitives, e.g. a combination of classes of
objects, each class describing domain-specific structure, namely properties, constraints, and behavior, of
the objects it contains.

DL designers main task is the definition of an appropriate structure for the IDL. For example, assume
the scientists of the European Space Agency (ESA) work on an Earth observation project, aimed at observ-
ing and measuring environmental modifications of some planet sites. To this aim, scientists need to store
a chronological history of site observations, each consisting of a satellite avi movie and sensor-gathered
data in txt format. Given a site, the time of its next observation is established by elaborating the sensor-
data of the last site observation. Scientists need to organize observations into site investigations and must be
able to access the history of the observations relative to a site. The structure of an IDL for a DL supporting
such investigation may include a class of investigation objects, each representing the history of observa-
tions relative to a planet site, and a class of observation objects, each representing satellite observations,
i.e. pairs of an avi file and txt file. The association between an investigation object and one of its ob-
servation objects is characterized by a version number, which establishes the position of the former in the
history of site observations. A minimal FDL would feature an ingest interface, to handle investigation and
observation objects, and a search interface, to retrieve observations by site or by version number through
an investigation. Inserting an observation object requires uploading the two files and specifying both the
associated investigation object and its version number.

DL’s IDL and FDL are usually realized as software components extending and/or customizing the
functionality supported by a DL Repository Service (RS). An RS maintains a Repository Information Space
(IR), i.e. a storage unit for digital objects, and provides the primitives for storing, accessing, and searching
digital objects into the IR [8] [5] [3]. Intuitively, DL developers would implement their FDL in terms of
RS primitives and represent objects in IDL with persistent objects in IR. Unfortunately, unlike IDL’s, IR’s
are generally not organized into sets of objects with the same user-defined structure. Typically, an IR is a
flat space of digital objects, all structured according to the Digital Object Model (DOM) of the RS. DOMs
describe objects as general purpose storage units, whose structure and relationships with other objects can
be flexibly tailored to describe “any” possible DL high-level entity.

Due to this modeling “misalignment”, IDL’s and FDL can hardly be directly “interpreted”, thus im-
plemented, in terms of IR’s objects and primitives. As a consequence, DL developers “emulate” IDL ab-
stractions outside of IR boundaries, by “embedding” high-level modeling primitives into the engineering
of components, and rely on IR only for storage issues. Specifically, components will allocate and manage a
number of local data structures in order to emulate the notion of classes, objects conforming to a class, and
relationships between objects. For example, the ESA DL user interface (UI) component would present the



scientists an IDL-based information space. To this aim, the UI would rely on an RS to store digital objects,
and then (i) implement investigations and observations classes as independent containers of objects; (ii)
support the notion of objects conforming to such classes (e.g. by implementing versioning of observation
objects w.r.t. investigation objects), by performing structural controls at object insertion/retrieval time (e.g.
uploading should be allowed only for avi and txt files) and implementing class methods in terms of IR

primitives; and (iii) implement the relationship between investigation and observation objects.

The problem of such scenario is that the IR alone is “unaware” of its “real” content. IDL structure is
not stored along with the corresponding digital objects, but is instead encoded into the components together
with its relationship with the underlying IR. Accordingly, components are hard to develop, maintain, and
integrate with others as their implementation is inspired by a logical IDL, and only IR primitives are
visible to them. Indeed, no automatic tool prevents IDL structural programming errors, thereby leaving
data consistency up to developers skills and precision. For example, consistency of multiple views with
respect to an IDL cannot be automatically checked: components handling objects of the same class may
mistakingly provide diverse interpretation of the IDL structure; the same holds for components handling
objects of the same class according to different interpretations (subclasses).

We believe DLs should move one step forward, toward the realization of RS supporting the creation of
domain-specific IR’s, directly matching IDL designers intuition. Based on the experience of developing
DLs serving different application areas, the OpenDLib project [4] is experimenting the realization of a new
RS based on T-DoMDL [1][2][6], a rich and flexible DOM. T-DoMDL defines a type language whose con-
structs can be combined to define typed-sets of objects, i.e. collections of digital objects with homogeneous
user-defined structure. Each typed-set of objects defines a different IR, storing objects with type-specific
and user-specified properties and behavior.

T-DoMDL type language offers an exhaustive list of type abstractions, identified as common IDL

classes in the field of DL design: raw, aggregation, relation, version, and others. For example, all objects
of an IR T of type version have the property list of versions, where each version in the list is identified by a
version number and features a user-defined label and an object reference. Objects in T have primitives for
inserting/deleting versions into/from the list, getting the last version, and others; and share the behaviors,
if any, declared in T by the DL designer. DL designers first devise their IDL directly in terms of one or
more types of T-DoMDL, then issue a request to the repository for the instantiation of the corresponding
IR’s, i.e. a list of domain specific typed-sets. For the ESA DL, the designer may consider the following IR

typed-sets: MovieMaps and Measurements, both of type raw with format avi and txt respectively, Obser-
vations of type aggregation referring to two objects in MovieMaps and Measurements, and Investigations
of type version referring to objects in Observations.

In OpenDLib, the new RS can thus store sets of typed objects and enable their management only through
type-specific primitives. As a consequence, the RS guarantees data consistency and facilitates component
development. In a further investigation, we are exploring how typed IR’s can be used for the automatic
generation of components and for the optimization of storage facilities: for example, from the IR Investiga-
tions of type version, the RS may be able to automatically generate a user interface for the management of
the relative objects, including observations versioning management; from the IR MovieMaps of type raw,
which defines precise avi format constraints, the RS could configure a storage unit that optimizes disk
space, by adopting avi compression techniques, and access performance, by providing streaming server
primitives.

To our knowledge, only Saidis et Al.[7] addressed typing for DLs. In their approach they introduced the
notion of prototypes. Informally, prototypes are user-configurable components which virtualize the notion



of class of objects. They reside on top of an IR and extend it in order to provide high-level class primitives
to DL components developers.

References

1. L. Candela, D. Castelli, P. Manghi, and P. Pagano. A Typed Repository for OpenDLib. ISTI - CNR Technical Report
2006-TR-08, 2006.

2. L. Candela, D. Castelli, P. Pagano, and M. Simi. From Heterogeneous Information Spaces to Virtual Documents.
In E. A. Fox, E. J. Neuhold, P. Premsmit, and V. Wuwongse, editors, Digital Libraries: Implementing Strategies
and Sharing Experiences, 8th International Conference on Asian Digital Libraries, ICADL 2005, Lecture Notes in
Computer Science, pages 11–22, Bangkok, Thailand, December 2005. Springer.

3. D. Castelli and P. Pagano. OpenDLib: A Digital Library Service System. In M. Agosti and C. Thanos, editors, 6th
European Conference on Research and Advanced Technology for Digital Libraries, ECDL 2002, Lecture Notes in
Computer Science, pages 292–308, Rome, Italy, September 2002. Springer-Verlag.

4. D. Castelli and P. Pagano. A System for Building Expandable Digital Libraries. In ACM/IEEE 2003 Joint Conference
on Digital Libraries (JCDL 2003), pages 335–345. Springer-Verlag, 2003.

5. C. Lagoze, S. Payette, E. Shin, and C. Wilper. Fedora: An Architecture for Complex Objects and their Relationships.
Journal of Digital Libraries, Special Issue on Complex Objects, 2005.

6. OpenDLib. A Digital Library Service System. http://www.opendlib.com/.
7. K. Saidis, G. Pyrounakis, and M. Nikolaidou. On the Effective Manipulation of Digital Objects: A Prototype-Based

Instantiation Approach. In Research and Advanced Technology for Digital Libraries: 9th European Conference,
ECDL 2005, Vienna, Austria, September 18-23, 2005. Proceedings, 2005.

8. R. Tansley, M. Bass, and M. Smith. DSpace as an Open Archival Information System: Current Status and Future
Directions. In T. Koch and I. Sølvberg, editors, Research and Advanced Technology for Digital Libraries, 7th Euro-
pean Conference, ECDL 2003, Trondheim, Norway, August 17-22, 2003, Proceedings, Lecture Notes in Computer
Science, pages 446–460. Springer-Verlag, 2003.


