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Abstract
The Pearson’s X2 statistic and the likelihood ratio statistic G2 are most frequently used for
testing independence or homogeneity, in two-way contingency table. These indexes aremem-
bers of a continuous family of Power Divergence (PD) statistics, but they perform badly in
studying the association between ordinal categorical variables. Taguchi’s and Nair’s statistics
have been introduced in the literature as simple alternatives to Pearson’s index for contin-
gency tables with ordered categorical variables. It’s possible to show, using a parameter,
how to link Taguchi’s and Nair’s statistics obtaining a new class calledWeighted Cumulative
Chi-Squared (WCCS-type tests). Therefore, the main aim of this paper is to introduce a new
divergence family basedon cumulative frequencies calledWeightedCumulativePowerDiver-
gence. Moreover, an extension of Cumulative Correspondence Analysis based onWCCS and
further properties are shown.

Keywords Power divergence family · Cumulative index · Contingency table · Generalized
singular value decomposition · Correspondence analysis

1 Introduction

The Pearson’s X2 statistic and the likelihood ratio statistic G2 are most frequently used for
testing independence or homogeneity, in two-way contingency table, in many research areas
(Cressie and Read 1989). These indexes are members of a continuous family of Power Diver-
gence (PD) statistics defined by Cressie and Read (1984). It’s important to note that the PD
family does not perform well when the rows/columns of the table are ordered, as reported in
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Agresti (2007) and Barlow et al. (1972). This is partially due to the low power for ordered
alternatives to the null hypothesis. In Barlow et al. (1972) authors discuss several exact and
approximate likelihood ratio procedures for testing in these situations. Unfortunately, the
distribution theory underlying these procedures can be complex. To address this problem,
the class of tests called Cumulative Chi-Squared-type (CCS-type; Taguchi 1966, 1974; Nair
1987) may be considered. These CCS-type tests take into account the presence of an ordi-
nal categorical variable considering the cumulative frequency of the cells in the contingency
table. Moreover, CCS-type statistic is more suitable for studying situations where the number
of categories within a variable is greater than or equal to 5 (Hirotsu 1990) (such as clinical
trials). Further properties of this index are investigated in detail in Takeuchi and Hirotsu
(1982), Nair (1986) and Hirotsu (1986); these CCS-type test can be obtained, in particular
case, as sum (or weighted sum) of PD. Concerning to the Correspondence Analysis (CA)
(Horst 1935; Fisher 1940), many authors (Beh 2001; D’Ambra et al. 2005; Sarnacchiaro
and D’Ambra 2007; Lombardo et al. 2011) have proposed methods for analyzing a two-
way contingency table preserving the information present in an ordinal variable using the
orthogonal polynomials by means of the recurrence formula of Emerson (Emerson 1968)
obtaining a Hybrid Decomposition (HD) or Bivariate Moment Decomposition (BMD), or by
means of cumulative analysis: Cumulative Correspondence Analysis (CCS) (Beh et al. 2007,
2011; Sarnacchiaro 2011; D’Ambra et al. 2011; D’Ambra and Amenta 2011) and Doubly
Cumulative Correspondence Analysis (DCCA)(D’Ambra et al. 2014; Camminatiello et al.
2021). The purpose of this work is to relate CCS type tests using a β parameter in order to
obtain a new class called Weighted Cumulative Chi-Squared (WCCS) and to further extend
this class to the PD family by obtaining a new index called Weighted Cumulative Power
Divergence (WCPD). Moreover, for one particular family and after choosing particular β

values, a variant of weighted CA based on cumulative frequencies called Weighted Cumula-
tive Correspondence Analysis (hereafterWCCA) and its properties, bymeans of Generalized
Singular Value Decomposition (GSVD), are shown. The subsequent contents of this article
are organized as shown in the following. The used notation is defined in Sect. 2, whilst the
WCPD-type index is introduced in Sect. 3. In Sect. 4 the extension of CA using the WCCS-
type statistic is shown. Moreover, an additional property of this extension is introduced in
Sect. 5. In Sect. 6 the confidence circle of the CA extension described in Sect. 4, is shown.
In Sect. 7 our approach is illustrated by means of two empirical studies about the satisfac-
tion with university curriculum counselor service and the CO2 light-duty vehicle evaluation
relating to different type approval. Some final remarks on this approach are highlights in the
final section.

2 Notation

Assume that X and Y be categorical variables with i = 1, . . . , I and j = 1, . . . , J categories,
respectively, anddenote (X1, Y1), . . . , (Xn, Yn) a randomsample of the randomvector (X , Y )

where n is the fixed and known total number of observations. Also pose that Ni j be the
random variable which counts the number of observations that fall into the cross-category
i × j , while Ni• and N• j represent the counts for the categories i and j , respectively. Under
a multinomial model with an ordinal variable, let N = (ni j ) of size I × J . The column
variable could be assumed to be ordinal with increasing scores, without loosing generality.
Moreover, we can indicate pi j the proportion of observations that fall in the i-th row and
j-th column ( j = 1, . . . , J ) of the table and the generic element of matrix P. Consequently,
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we denote DI and DJ as the diagonal matrices of the row and column marginal proportions
pi• and p• j , respectively, where pi• = ∑J

j=1 pi j and p• j = ∑I
i=1 pi j . Fs represents the

cumulative total of Y evaluated in s, that is FY (s) = Pr(Y ≤ s) = ∑s
j=1 p• j = ps . Finally,

letCis = ∑s
j=1 Ni j andCs = ∑s

j=1 N• j be the cumulative count and the cumulative column
total up to the s-th column category, respectively, where s = 1, . . . , J − 1.

3 Weighted cumulative power divergence family

Taguchi’s statistic (Taguchi 1966, 1974) is a simple alternative to Pearson’s test to measure
the association between categorical variables in the case of one of them possesses ordered
categories. However, the Pearson’s statistic does not take into account the structure of ordered
categorical variables (Agresti 2007). To deal with this issue, Taguchi (1966, 1974) developed
a statistic that takes into consideration the structure of an ordered categorical variable. To
assess the association between the nominal and ordered column variables, Taguchi (1966,
1974) proposed the following statistic

TE =
J−1∑

s=1

1

ds(1 − ds)

I∑

i=1

Ni•
(
Cis

Ni•
− ds

)2

with 0 ≤ TE ≤ n(J − 1) and ds = Cs/n is the cumulative column proportion up to s-th
column. Moreover, in Takeuchi and Hirotsu (1982) and Nair (1986) the authors explain that
the TE statistic is linked to the Pearson chi-squared statistic TE = ∑J−1

s=1 X2
s where X2

s is
Pearson’s chi-squared for the I × 2 contingency tables obtained by aggregating the first s
column categories and the remaining categories (s + 1) to J , respectively. For this reason,
the Taguchi’s statistic TE is called the Cumulative Chi-Squared (CCS) statistic. It’s possible
to define the class of WCCS-type tests (Weighted Cumulative Chi-Squared) considering a
given set of weights ws > 0

TWCCS =
J−1∑

s=1

ws

I∑

i=1

Ni•
(
Cis

Ni•
− ds

)2

In Nair (1986) this class is called CCS-type tests. The choice of different weighting
schemes defines the members of this class. Possible choices forws could be obtained assign-
ing constant weights to each term (i.e. ws = 1/J ) or assume it proportional to the inverse of
the conditional expectation of the s-th term under the null hypothesis of independence (i.e.
ws = [ds(1−ds)]−1). It is evident that TCCS subsumes TE as special case. Moreover, author
in Nair (1986) illustrates that TCCS with ws = 1/J defined as

TN =
J−1∑

s=1

1

J

I∑

i=1

Ni•
(
Cis

Ni•
− ds

)2

has good power against ordered alternatives with 0 ≤ TN ≤ n
J

∑J−1
s=1 ds(1− ds). Moreover,

it’s possibile to generalize the TWCCS using the parameter β ∈ �, in the following manner

T (β)
WCCS =

J−1∑

s=1

wβ
s

I∑

i=1

Ni•
(
Cis

Ni•
− ds

)2
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Here w
β
s = [ 1

ds (1−ds )
]β and −∞ < β < +∞, with reasonable values of β ∈ [−3; 3].

In particular we have T (−3)
WCCS ≤ T (0)

WCCS = JTN ≤ T (1)
WCCS ≡ TCCS = TE ≤ T (3)

WCCS .

It’s possible to explain the link between T (β)
WCCS and Pearson’s chi-squared for the I × 2

contingency tables obtained by aggregating the first s column categories and the remaining
categories (s + 1) to J as in the following formula

T (β)
WCCS =

J−1∑

s=1

wβ
s ds(1 − ds)X

2
s =

J−1∑

s=1

h(β)
s X2

s (1)

where h(β)
s = w

β
s ds(1− ds) = [ds(1− ds)](1−β). The authors have been shown in D’Ambra

et al. (2018) that TE is like Leti’s unlikability coefficient (Leti 1983) D̃ = 2n
∑J−1

s=1 ws Fs(1−
Fs). In the previous equation, the cumulative total of Y (Fs) is written as a weighted sum of
the cumulative distributions of the conditional variable (Y |X = i) evaluated in s

Fs|i = Pr(Y ≤ s|X = i) =
s∑

j=1

pi j
pi•

= pis
pi•

where

Fs = ps =
I∑

i=1

pis =
I∑

i=1

pi•Fs|i

is the weighted mean of the Fs|i . Indeed, D̃/2 can be partitioned in a sum of two orthogonal
components according to the well-known principle of between and within group variance
(D’Ambra et al. 2018). This result can be extended also to our case, in particular:

D̃(β)

2
= n

J−1∑

s=1

wβ
s Fs(1 − Fs)

= n
I∑

i=1

pi•
J−1∑

s=1

wβ
s Fs|i (1 − Fs|i )

︸ ︷︷ ︸

D(β)
W

+ n
I∑

i=1

pi•
J−1∑

s=1

wβ
s (Fs|i − Fs)

2

︸ ︷︷ ︸

D(β)
B

= D(β)
W + n

J−1∑

s=1

wβ
s

I∑

i=1

pi•
(
pis
pi•

− Fs

)2

= D(β)
W + T (β)

WCCS

Thus, we can defined the following relative index

R2
(β) = T (β)

WCCS

D̃(β)/2

It’s easy to show that when β = 0 we have

R2
(0) = JTN

n
∑J−1

s=1 ds(1 − ds)
= TN

n
J

∑J−1
s=1 ds(1 − ds)
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while if β = 1 we have

R2
(1) = TE

n(J − 1)

It’s possible to note that the R2
(β) can be seen as a weighted mean of φ2

s = X2
s /n. Indeed

R2
(β) = T (β)

WCCS

D̃(β)/2
=

∑J−1
s=1 h(β)

s φ2
s

∑J−1
s=1 h(β)

s

=
J−1∑

s=1

ω(β)
s φ2

s

with ω
(β)
s = h(β)

s
∑J−1

s=1 h(β)
s

and
∑J−1

s=1 ω
(β)
s = 1. For this reason min[φ2

s ] ≤ R2
(β) ≤ max[φ2

s ]
where equalities hold in case of non-association or perfect dependence. Following the Power
Divergence Family (PD) approach proposed by Cressie and Read (1989), the formula (1)
could be extended by introducing the parameter λ, with λ ∈ �. In this way we could
define a new family of cumulative indices called Weighted Cumulative Divergence of Power
(WCPD):

T (λ;β)
WCPD = 2n

λ(λ + 1)

{[ J−1∑

s=1

h(β)
s

I∑

i=1

p(1+λ)
is (1 − ds)λ + (pi• − pis)(1+λ)dλ

s

pλ
i•dλ

s (1 − ds)λ

]

− 1

}

=
J−1∑

s=1

h(β)
s �(λ)

s

where �(λ)
s is the PD family for s sub-table with T (1;β)

WCPD and T (0;β)
WCPD defined by continuity.

It’s easy to demonstrate that when λ = 1

T (1;β)
WCPD ≡ T (β)

WCCS

This new family includes for λ = 1 the weighted sum of Pearson’s X2
s (T

(β)
WCCS), for λ =

−2 theweighted sum ofNeyman’s calledWeighted Cumulative Neyman’s statistic (T (β)
WCN =

∑J−1
s=1 w

(β)
s X̃2

s ), for λ = −1 the weighted sum of Likelihood RatioModified calledWeighted

Cumulative Likelihood Ratio Modified statistic (T (β)
WCLRm = ∑J−1

s=1 w
(β)
s G̃2

s ), for λ = −1/2
theweighted sumofFreeman-Tukey’s statistic calledWeightedCumulativeFreeman-Tukey’s
statistic (T (β)

WCFT = ∑J−1
s=1 w

(β)
s T 2

s ), for λ = 0 the weighted sum of Likelihood Ratio called

Weighted Cumulative Likelihood Ratio statistic (T (β)
WCLR = ∑J−1

s=1 w
(β)
s G2

s ). Finally for
λ = 2/3 the weighted sum of Cressie and Read solution calledWeighted Cumulative Cressie
and Read statistic (T (β)

WCCR = ∑J−1
s=1 w

(β)
s C R2

s ) is defined. We note that for β = 1 we have
obtained, for different λ values, the unweighted indices called Cumulative Power Divergence
(CPD)

T (λ)
CPD ≡ T (λ;1)

WCPD =
J−1∑

s=1

wsds(1 − ds)�(λ)
s =

J−1∑

s=1

�(λ)
s

4 Correspondence analysis based on T (ˇ)
WCCS

In this section the variant of weighted CA based on cumulative frequencies Cis called
Weighted Cumulative Correspondence Analysis (hereafter WCCA) is shown. In this con-
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text we consider only value λ = 1, since in this case we have a spectral decomposition of
the T (β)

WCCS . In other case, when the λ �= 1 the Generalize Singular Value Decomposition
(GSVD) cannot be used. The aim is to obtain a graphical representation in a reduced space of
the row and column categories. In fact, this new approach graphically determines the similar
cumulative categories Cis with respect to nominal ones, according to the choice of w

β
s . We

denote it by the following formula

B(β) = D−1
I PXT (Wβ)

1
2 (2)

where Wβ is diagonal square matrix of dimension [(J − 1) × (J − 1)] of general term w
β
s

and X is a matrix of dimension [(J − 1) × J )] formed in this way:

X = L − [D(1J−11TJ )]
where L is a lower triangular matrix of dimension [(J − 1) × J )], and 1 is a vector of
ones of appropriate dimension and D = diag(ds). The Correspondence Analysis based on
cumulative frequencies provides the following:

GSV D[B(β)]DI ;I ⇒ B(β) = U(β)�(β)[V(β)]T

where U(β) is the I × M matrix of left singular vectors (with M=rank[B(β)]) such that
[U(β)]TDIU(β) = I and V(β) is the (J − 1) × M matrix of right singular vectors such
that [V(β)]TV(β) = I, and �(β) is a positive definite diagonal matrix of order M where the
(m,m)-th element λ(β)

m is the m-th singular vector of B. In particular, the total inertia can be
expressed in terms of B so that

T (β)
WCCS

n
=

M∑

m=1

[λ(β)
m ]2 = trace{[B(β)]TDIB(β)} =

I∑

i=1

J−1∑

s=1

pi•[b(β)
is ]2 (3)

To visually summarise the association between the row and the column categories, we
define the row and column principal coordinates by

F(β) = U(β)�(β) (4)

and

G(β) = V(β)�(β) (5)

Here, F(β) and G(β) are of size I × M and (J − 1) × M . The s-th row of matrix G(β)

contains the coordinates of category y(1 : s) (see Table 1) in the M-dimensional space.
However, it is well known that the proximity evaluation between a row principal coordinate
and a column principal coordinate has been long questioned, because F(β)[G(β)]T �= B(β)

(see (2)). Authors in Gabriel (1971) proposed a rescaling of (4) and (5) yielding a biplot
display. They obtained

F(β) = U(β)[�(β)]δ

and

G(β) = V(β)[�(β)]1−δ

for 0 ≤ δ ≤ 1. In Lombardo et al. (1996) authors referred to such plots as “column isometric”,
“symmetric” and “row isometric” factorisations, respectively. The “row isometric” plot (δ =
1) is then achieved by jointly plotting the row principal coordinates (4) and the column
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Table 1 Cross-classification of
493 students satisfaction with
university curriculum counselor
service and its use

Satisfaction level

(I) (II) (III) (IV) Total

Use 1 6 24 31 5 66

Use 2–4 5 42 49 5 101

Use 5–6 6 87 57 5 155

Use 7–8 11 73 44 7 135

Use 8+ 6 14 10 6 36

33 240 191 28 493

standard coordinates G(β) = V(β). Similarly, the “column isometric” biplot is obtained by
using the row standard F(β) = U(β) and the column principal coordinates (5). In Nair (1986,
1987) it is pointed out that the TWCCS statistic can be approximated using Satterthwaite’s
method (Satterthwaite 1946). Indeed, letting �(β) be the (J − 1) × (J − 1) diagonal matrix
of the nonzero eigen values γ

(β)
s of matrix XTWβXDJ , then

GSV D(X)Wβ ;DJ
⇒ X = Z(β)[�(β)] 1

2 [Q(β)]T

where [Z(β)]TWβZ(β) = [Q(β)]TDJQ(β) = I and XTWβX = [Q(β)]T�(β)Q(β). Thus, for

K(β) = D
1
2
I PQ

(β)

T (β)
WCCS = n × trace

{

D
1
2
I PX

TWβXPTD
1
2
I

}

= n × trace

{

D
1
2
I P[Q(β)]T�(β)Q(β)PTD

1
2
I

}

= n × trace
{
K(β)�(β)[K(β)]T

}

= n
J−1∑

s=1

γ (β)
s

I∑

i=1

[k(β)
is ]2

In Nair (1986, 1987) authors evidence that, as n → ∞ the quantity n×∑I
i=1[k(β)

is ]2 is an
asymptotically (central) chi-squared distribution for s-th component with (I − 1) d.f. under
the null hypothesis: n × ∑I

i=1[k(β)
is ]2 ∼ χ2

(I−1)(s). Consequently, as n → ∞, the limiting

distribution of T (β)
WCCS is then a linear combination of iid chi-squared random variables

T (β)
WCCS →D

H0

J−1∑

s=1

γ (β)
s χ2

(I−1)(s)

In Nair (1987) the author indicates that, by using Satterthwaite’s two-moment approxi-
mation (Satterthwaite 1946), this distribution can be approximated as

T (β)
WCCS ∼ r (β)(I − 1)χ2

v(β)

with

r (β) = 1

(I − 1)

∑J−1
s=1 (γ

(β)
s )2

∑J−1
s=1 γ

(β)
s

v(β) = 1

r (β)

J−1∑

s=1

γ (β)
s
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For this reason, we can be defined the following statistical test

T̃ (β)
WCCS ∼ χ2

v(β)

with T̃ (β)
WCCS = T (β)

WCCS
r (β)(I−1)

. In particular the degree of freedom can be written in this way:

v(β) = (I − 1)(J − 1)

η(β)

with η(β) = (J−1)
∑J−1

s=1 (γ 2
s )(β)

(
∑J−1

s=1 γ
(β)
s )2

> 1. Moreover, given T̃ (β)
WCCS and the contingency table

composed by I independent rows, it’s possible to measure which of them is statistically
significant. In particular:

T̃ (β)
WCCS(i) = n

1

r (β)(I − 1)

J−1∑

s=1

wβ
s Ni•

(
Cis

Ni•
− ds

)2

∼ χ2
(J−1)
η(β)

(6)

Regards to WCPD, the degrees of freedom are invariant for different values of λ (Cressie
and Read 1984, 1989). In this context the s-th components are a solution of the following
expression

T (λ;β)
WCPD −

J−1∑

s=1

γ (β)
s �(λ)(s) = 0

with constraint
∑J−1

s=1 �(λ)(s) = �(λ), where �(λ) is the PD family calculated on the original
contingency table N. Thus, we can define the following statistic:

T̃ (λ;β)
WCPD = T (λ;β)

WCPD

r (β)(I − 1)
∼ χ2

(I−1)(J−1)
η(β)

In this context, one of the fundamental problem to solve is choosing an appropriate value
of β. A possible approach for defining the β choice is to draw a plot that shows the trend of
the statistic T̃ (λ;β)

WCPD and the critical value χ2
(I−1)(J−1)

η(β)
;1−α

as a function of the β parameter.

The values of the β parameter will be the one that maximizes the difference between T̃ (λ;β)
WCPD

and χ2
(I−1)(J−1)

η(β)
;1−α

. In this way, the β value will be defined to obtain the statistic T̃ (λ;β)
WCPD

furthest from the hypothesis of independence.

5 Further properties

In this section, the proprieties of WCCA are showed. Let’s consider now the i-th row of (4).
Its generic value f (β)

im is the principal coordinate of the i-th row along the m-th dimension of
the correspondence plot

f (β)
im = u(β)

im λ(β)
m
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and it is centred at the origin of the space �M . Therefore, the squared Euclidean distance of
the i-th row coordinate from the origin of the plot is

d2(i, 0) =
M∑

m=1

[ f (β)
im ]2 =

J−1∑

s=1

wβ
s

(
Cis

Ni•
− ds

)2

Note that Taguchi’s inertia can be expressed in terms of this distance so that

T (β)
WCCS

n
=

I∑

i=1

pi•d2(i, 0)

We can also obtain, a similar expression for the ordered column categories. To prove this
result, we examine the s-th row of (5). The coordinate of the s-th pair of cumulative categories
on the m-th principal dimension of the correspondence plot is given by

g(β)
sm = v(β)

sm λ(β)
m

Therefore, the squared Euclidean distance of the s-th column coordinate from the origin
of the plot is:

d2(s, 0) =
M∑

m=1

[g(β)
sm ]2 = h(β)

s φ2
s = h(β)

s
X2
s

n
(7)

so that T (β)
WCCS inertia is

J−1∑

s=1

d2(s, 0) = T (β)
WCCS

n

Equation (7) points out that the squared Euclidean distance of the s-th cumulated category

from the origin amounts to the weighted φ2
s = X2

s
n computed on the s-th contingency table

of size I × 2. This implies that

T (β)
WCCS = n

J−1∑

s=1

M∑

m=1

[g(β)
sm ]2 (8)

Each X2
s is asymptotically a chi-squared random variable with (I − 1) df, under the null

hypothesis of independence. It can be proofed that it is possible to partition this T (β)
WCCS

statistic (7) into orthogonal components, each of which is a chi-squared random variable
with degree of freedom equal to 1

n[g(β)
sm ]2

h(β)
s

→d
H0

χ2
1

This result allows us to identify which are the significant cumulative categories by con-
structing confidence circles, for each cumulative category. If it includes the origin of the axes,
then it is not significant. In this way we will refer to the independence regions inside a circle
in a two-dimensional plot. It highlights the cumulative categories that haven’t a statistically
significant contribution to the association between the row and column variables at a pre-
defined α (confidence circle). The centre of this independence region is gsm while the radii
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length of the 100(1 − α)% confidence circle in a two-dimensional correspondence plot is
given by

r (β)
s =

√

h(β)
s χ2

α

n
(9)

Here χ2
α is the 1− α percentile of a chi-squared distribution with two degrees of freedom

(Lebart et al. (1984); Beh and D’Ambra (2010)). The radii length rs of the s-th cumu-
lated categories confidence circle is defined by (9). These circles provide a way to identify
which cumulative categories are consistent with the independence hypothesis and which
are not. Indeed, if the confidence circle 100(1 − α) includes the origin of the axes, the
cumulative s-th category is consistent with the independence hypothesis. Moreover, let
g(β)
s = (g(β)

s1 , . . . , g(β)
sM ) and g(β)

s′ = (g(β)

s′1 , . . . , g(β)

s′M ) be the vector of coordinates of the
cumulated categories s (first column of sub-table Ns), and s′ (first column of sub-table Ns′ )
respectively, in the M-dimensional space. In this way, it is possible to calculate the similarity
between the cumulated categories s and s′ by computing Tucker’s congruence coefficient
ψss′ referred to as the cosine similarity (Tucker (1951); Abdi (2007))

ψ
(β)

ss′ = (g(β)
s )T g(β)

s′

||g(β)
s || × ||g(β)

s′ ||
= cos(θ) (10)

where θ is the angle between gs and gs′ . Here,ψ is the correlation of vectors gs and gs′ about
their origin (or "zero"), whereas Pearson’s correlation coefficient is based on the deviations
from their respective means. If ψss′ is near to 1 (almost collinear), then the row profiles
of sub-tables Ns and Ns′ appear to be proportional whilst this characteristic is lost when
ψss′ is near to 0 (almost orthogonal vectors). When ψss′ is near to 1 or -1, then all of the
row profiles play the same (or inverse) role in explaining the cumulated categories s and s′.
Different roles are played when ψss′ is near to 0. Instead, the row profiles appear inversely
proportional when ψss′ is near to -1. Moreover, it is important to point out that the Tucker’s
congruence coefficient ψ(β)

ss′ is invariant for several values of β.

6 Confidence circles

In the typical CA, the confidence circles proposed by Lebart et al. (1984) are a useful tool
to check if a particular row category is significant. Generally, if the origin lies outside the
confidence circle for a particular category, then that category contributes to the dependency
between the row and column categories of the contingency table. If the origin lies within
the circle for a particular category, then that category does not contribute to the dependence
between the variables. These circles are similar to the regions that in Mardia et al. (1982)
authors derived for canonical variate analysis, while in Ringrose (1992, 1996) they also
explored their use for CA by means of bootstrap procedure. In classical Cumulative Cor-
respondence Analysis (CCA), based on decomposition of Taguchi’s index (Taguchi 1966,
1974), the confidence circles have been shown by D’Ambra et al. (2021). This concept can
also be extended in WCCA. Suppose that a two-way contingency table consists of a row
(predictor) and column (response) variable that is asymmetrically structured. The T̃ (β)

WCCS
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can be expressed in terms of the predictor coordinates such that

T̃ (β)
WCCS = n

r (β)(I − 1)

I∑

i=1

M∑

m=1

pi•[ f (β)
im ]2 ∼ χ2

(I−1)(J−1)
η(β)

For the i-th row coordinate

n

r (β)(I − 1)

M∑

m=1

pi•[ f (β)
im ]2 ∼ χ2

(J−1)
η(β)

(11)

Equation (11) is equivalent to (6) defined in Sect. 4. Therefore, it results that

M∑

m=1

pi•[ f (β)
im ]2 ∼ r (β)(I − 1)

n
χ2

(J−1)
η(β)

When the variables of a bivariate table are considered symmetrically related, as in the case
of CA, the confidence circles approach is used to identify those categories that contribute
most to the hypothesis independence test (Lebart et al. 1984). These circles are similar to
those used in canonical analysis (Mardia et al. 1982). Another approach to calculate them
is based on a bootstrap procedure. In the case that the bivariate table concerns to ordinal
variables, it has been described how the radii of these circles are identical to those in Lebart
et al. (1984). The relationship between the i-th column coordinate for the twomore important
components of a two-dimensional plot is

pi•[ f (β)
i1 ]2 + pi•[ f (β)

i2 ]2 ∼ r (β)(I − 1)

n
χ2

2
η(β)

At the α level of significance, this can be expressed as

[ f (β)
i1 ]2 + [ f (β)

i2 ]2 ∼ r (β)(I − 1)

Ni•
χ2

2
η(β)

,α

Therefore, the 1−α confidence circle for the i-th columncoordinate in the two-dimensional
plot has a radii length

r (β)
i =

√
√
√
√

r (β)(J − 1) × χ2
2

η(β)
α

Ni•
(12)

Note that it depends on the i-th marginal proportion classified into that category. Thus, for
a very small ranking in the i-th predictor category, the radii length will be relatively large.
Likewise, for a relatively broad ranking, the radii length will be relatively small.

7 Empirical studies

7.1 Empirical study 1—satisfaction with university curriculum counselor service

The Table 1 shows a contingency table between the satisfaction of university curriculum
counselor service and its use. The row variable, named Use, is the X categorical variables
(with I = 5) and it represents the use of university curriculum counselor service. It is on
ordinal scale with five categories: one time (Use 1), from 2 to 4 times (Use 2–4), 5 or 6 times
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Table 2 T (λ)
CPD as sum of Power Divergence index of the sub-tables

s X̃2
s G̃2

s T 2
s G2

s C Rs X2
s

λ = −2 λ = −1 λ = −0.5 λ = 0 λ = 2/3 λ = 1

1 7.767 7.608 7.713 7.959 8.549 8.982

2 9.846 9.756 9.733 9.719 9.719 9.727

3 6.638 7.002 7.439 8.106 9.485 10.459

T (λ)
CPD 24.252 24.369 24.886 25.784 27.753 29.168

Fig. 1 T̃ (λ;β)
WCPD statistic and critical value for 1 − α = 0.95 in function of β

(Use 5–6), 7 or 8 times (Use 7–8), more than 8 times (Use 8+). The column variable is the
Y categorical variables (with J = 4) an it defines the satisfaction of university curriculum
counselor service. The variable is on ordinal scale from 1 (dissatisfied) to 4 (extremely
satisfied). This dataset was examined also by Camminatiello et al. (2021).

Table 2 shows the T (λ)
CPD indices for different λ values. It is clear that the optimal subtable

that has the greatest contribution is (I: II) vs (III: IV) (s = 2) for each λ, except for the last
index where the optimal subtable is (I: III) versus (IV) (s = 3). Moreover, the critical value
with 1 − α = 0.95 and 4 degree of freedom is 9.488, therefore only statistical index of the
optimal sub-tables is significant. The last index value produces an exception because in this
case the sub-tables (I:II) vs (III: IV) (s=2) and (I: III) vs (IV) (s=3) are significant.

In Fig. 1 the value for statistic T̃ (λ;β)
WCPD with λ ∈ (−2,−1,−0.5, 0, 2/3, 1) and critical

value, with 1 − α = 0.95 as function of β, is shown. In particular, the statistic T̃ (λ;β)
WCPD

results significative for each value of β with λ ∈ (0, 2/3, 1) underlining a strong statisti-
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Table 3 T (λ;β)
WCPD as Weighted sum of Power Divergence index of the sub-tables

s h(0.66)
s X̃2

s h(0.69)
s G̃2

s h(0.75)
s T 2

s h(0.83)
s G2

s h(0.98)
s C Rs h(1.06)

s X2
s

λ = −2 λ = −1 λ = −0.5 λ = 0 λ = 2/3 λ = 1

1 3.054 3.248 3.883 4.990 8.092 10.590

2 6.120 6.325 6.861 7.662 9.451 10.578

3 2.454 2.826 3.579 4.929 8.946 12.467

T (λ;β)
WCPD 11.628 12.400 14.323 17.582 26.489 33.636

Table 4 T (λ;β)
WCPD statistic significance

Index λ β T (λ;β)
WCPD r (β)(I − 1) T̃ (λ;β)

WCPD η(β) d.f. p-value

WCN − 2 0.66 11.628 0.536 21.683 1.162 10.326 0.0197

WCLRm − 1 0.69 12.400 0.567 21.854 1.151 10.425 0.0195

WCTF − 0.5 0.75 14.323 0.638 22.466 1.132 10.600 0.0174

WCLR 0 0.83 17.582 0.751 23.427 1.113 10.785 0.0139

WCCR 2/3 0.98 26.489 1.043 25.388 1.094 10.973 0.0079

WCCS 1 1.06 33.636 1.259 26.722 1.092 10.991 0.0050

Table 5 T (1.06)
WCCS inertia

decomposition
Axis Inertia % Cumulative %

1 0.04635 67.9377 67.9377

2 0.02091 30.6495 98.5871

3 0.00097 1.4129 100.0000

T (1.06)
WCCS
n 0.06823 100

cally significative association between the rows and column-aggregated sub-tables. On the
contrary for λ ∈ (−2,−1,−0.5) the statistic T̃ (λ;β)

WCPD doesn’t result significative for high

β value. The β values that maximize the distance between T (λ;β)
WCPD and critical value for

λ ∈ [−2;−1;−1/2; 0; 2/3; 1] are β = 0.66, β = 0.69, β = 0.75, β = 0.83, β = 0.98
and β = 1.06, respectively. The Table 3 explains the weighted statistics for each λ value
related to all the subtables, the optimal sub-table doesn’t change for each value of λ, but the
importance of the sub-table is stronger in forming T (λ;β)

WCPD . Table 4 shows T
(λ;β)
WCPD index and

T̃ (λ;β)
WCPD statistic based on β values that maximize the distance between T̃ (λ;β)

WCPD statistic and
p value with 1 − α = 0.95, for λ ∈ {−2;−1;−0.5; 0; 2/3; 1}. For λ = 1 the Fig. 2 shows
the row statistic calculated by (6) and critical value calculated with 1−α = 0.95 in function
of β. All the categories are not significant for β < 0.34, while for β ≥ 0.34 only the category
"Use 8+" results significant.

From the point of view of CA based on spectral decomposition of T (β)
WCCS ≡ T (1;β)

WCPD , the

choice of β falls in the value of 1.06, a value that maximizes the difference between T̃ (β)
WCCS

and critical values as shown in Fig. 1 and Table 4. By partitioning the inertia using T (1.06)
WCCS ,

we obtain the principal inertia values which are summarised in Table 5.
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Fig. 2 T̃ (β)
WCCS(i) ≡ T̃ (1;β)

WCPD(i) statistic and critical value for 1 − α = 0.95 in function of β

Table 6 Radii length of
indipendence regions

(I) (I:II) (I:III)

Ray 0.120 0.115 0.120

Figure 2 illustrates the WCCA plot (dimensions 1–2) of the cumulated column categories
(principal coordinates) and the overlapped independence circle. This plot depicts 98.59% of
the association that exists between the two variables in WCCA. For the column categories,
the label “(I)” reflects the cumulative total of rating "(I)" and “(II:IV)” with those of ratings
(II), (III) and (IV). Labels “(I:II)” and “(III:IV)” reflect instead the comparison related to the
cumulative total of ordered rating from "(I)" to "(II)" with "(III)" and "(IV)". The remaining
labels can be interpreted in a similar manner.

Figure 3 indicates that all contrasts based on the cumulative categories illustrate a valuable
weight for the analysis because the independence region, with the radii length defined by (9)
and summarized in Table 6, doesn’t include the origin. Figure 3 highlights a strong opposite
congruence between the first and last aggregated sub-tables. This configuration points out that
the row categories, for the first and last sub-tables, show an opposite behaviour concerning
the cumulated categories. This is not true for the second aggregated sub-table. The meaning
of Fig. 3 is confirmed by reading Table 7 which indicates the similarity matrix amongst the
s-th contingency tables of order I × 2 according to (10). This matrix reveals that the values
of the Tucker congruence coefficient for the first and second sub-tables are close to -1, with
the exception of the second sub-table. This implies that all the row profiles of the first and
second sub-tables play an inverse role in explaining the cumulated categories s and s′. The
second sub-table plays a not clear role (values near to 0).
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Fig. 3 WCCA plot: cumulated column categories and independence regions

Table 7 Similarity matrix (I) (I:II) (I:III)

(I) 1 – –

(I:II) − 0.055 1 –

(I:III) − 0.941 0.236 1

In Fig. 4 we represent a two-dimensional biplot of the asymmetric association between the
row and the column categories of Table 1. This plot is a row isometric biplot where the origin
represents the column marginal distribution (that is the independence of the ordered columns
from the rows). The confidence circles of the row categories, with radii length defined by
(12) and summarised in Table 8, are then superimposed on the predictor categories. The
Fig. 4 communicates its significance in explaining the relationship because its circle doesn’t
include the origin. Considering the rules of the row isometric biplot (Lombardo et al. 1996),
Fig. 4 highlights the role played by “Use 8+” category, that is “use of university curriculum
counselor service more than 8 times”, in predicting both the low category (I) than the high
category to (IV). Moreover, it endorses that the optimal subtable (I:II) vs (III: IV) (s = 2) is
not characterized by category “Use 8+”.

7.2 Empirical study 2—CO2 light-duty vehicle evaluation relating to different type
approval

The dataset comes from an experimental campaign carried out on urban roads of the Naples
city areas (Meccariello and Della Ragione 2017) with a vehicle of the same segment for
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Table 8 Rows significance and
radii length of confidence circles Ray T (1.06)

WCCS(i) d.f. p value

Use 1 0.329 3.257 2.747 0.312

Use 2–4 0.266 3.551 2.747 0.276

Use 5–6 0.214 4.791 2.747 0.161

Use 7–8 0.230 2.458 2.747 0.463

Use 8+ 0.445 12.723 2.747 0.004

Fig. 4 Row isometric WCCA biplot (δ = 1) with superimposed confidence circles

each Euro. The identified path crosses the Naples city center, greatly influenced by road
traffic, whose characteristics are 22 km long and mainly flat. Vehicles have been equipped
for on-road tests basically by anOn-BoardDiagnostics (OBD) tool to obtain engine operating
parameters (velocity, revolutions per minute, temperature, car gear), a GPS tool to collect the
geographic point and a PEMS Semtech-DS gas analyzer to acquire (CO), nitrogen oxides
(NOx), carbon dioxide (CO2) emissions at 1Hz. The Table 9 shows a contingency table
between the CO2 emission values and type approval directive.

The row variable, named Euro, is the X categorical variable (with I = 3) and it represents
the evolution of the EuropeanUnion emission regulations for the light duty vehicles. The type
approval technology changed from 2004 to now, as technology increased, the CO2 emission
limits became lower. The variable Euro is on an ordinal scale with three categories: Euro
4 standards (2000/2005) with Directive 98/69/EC1, Euro 5/6 standards (2009/2014) with
regulation 715/20072. The column variable, named CO2 is the Y categorical variables (with
J = 7) and it is split up in seven classes. The variable is on ordinal scale, with a range from

1 https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31998L0069
2 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32007R0715
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Table 9 Contingency table between the CO2 emission values and type approval directive

CO2 level

(I) (II) (III) (IV) (V) (VI) (VII) Total

Euro 4 182 137 442 535 469 578 1077 3420

Euro 5 148 198 828 653 466 537 1223 4053

Euro 6 16 1247 655 305 195 278 630 3326

346 1582 1925 1493 1130 1393 2930 10,799

Fig. 5 T̃ (λ;β)
WCPD statistic and critical value for 1 − α = 0.95 in function of β

0 g/s (low emission) to 15g/s (high emission). The classes are divided as follows: CO2(I )
values less than 0.4 g/s, CO2(I I ) values greater than 0.4 g/s to 0.6 g/s; CO2(I I I ) values
greater than 0.6 g/s to 0.8 g/s, CO2(I V ) values greater than 0.8 g/s to 1 g/s, CO2(V ) values
greater than 1 g/s to 1.2 g/s, CO2(V I ) values greater than 1.2 g/s to 1.5 g/s, CO2(V I I )
values greater than 1.5 g/s.

In Fig. 5 the value for statistic T (λ;β)
WCPD with λ ∈ (−2;−1;−0.5; 0; 2/3; 1) and critical

value with 1− α = 0.95 in function of β is shown. In particular, the statistic T (λ;β)
WCPD results

significative for each value of β underlining a strong statistically significant association
between the rows and column aggregated sub-tables. Table 10 explains the construction of
the indexes T (λ;β)

WCPD . In the construction of the index, for λ = −2, the first sub-table is the
most important, with a weighting factor of about 23%. On the other hand, for values other
than −2, the sub-table does not have a relevant weight in the construction of the indices.

123



Annals of Operations Research

Table 10 T (λ;β)
WCPD as Weighted sum of Power Divergence index of the sub-tables

s h(1.38)
s X̃2

s h(1.25)
s G̃2

s h(1.21)
s T 2

s h(1.19)
s G2

s h(1.18)
s C Rs h(1.18)

s X2
s

λ = −2 λ = −1 λ = −0.5 λ = 0 λ = 2/3 λ = 1

1 2050.569 627.104 421.079 322.937 260.995 245.882

2 2729.642 1986.397 1824.688 1773.299 1813.753 1875.332

3 1931.219 1522.385 1417.687 1369.764 1356.711 1367.160

4 1149.485 913.368 848.471 813.841 793.042 790.467

5 664.425 524.239 484.892 462.898 447.638 444.194

6 357.801 272.002 247.943 234.047 223.492 220.511

T (λ;β)
WCPD 8883.141 5845.495 5244.761 4976.785 4895.631 4943.546

Table 11 T (λ;β)
WCPD statistic significance

Index λ β T (λ;β)
WCPD r (β)(I − 1) T̃ (λ;β)

WCPD η(β) d.f. p-value

WCN − 2.00 1.38 8883.140 4.464 1989.753 2.088 5.748 < 0.001

WCLRm − 1.00 1.25 5845.495 3.468 1685.441 2.126 5.643 < 0.001

WCTF − 0.50 1.21 5244.761 3.227 1625.240 2.145 5.594 < 0.001

WCLR 0.00 1.19 4976.785 3.115 1597.438 2.156 5.566 < 0.001

WCCR 2/3 1.18 4895.631 3.062 1598.968 2.161 5.552 < 0.001

WCCS 1.00 1.18 4943.546 3.062 1614.617 2.161 5.552 < 0.001

Overall, in the construction of the index, the greatest weight is given by sub-table 2 as it
assumes a high weight for each λ value.

Table 11 shows T (λ;β)
WCPD index and T̃ (λ;β)

WCPD statistic based on β values that maxi-

mize the distance between T̃ (λ;β)
WCPD statistic and pvalue with 1 − α = 0.95, for λ ∈

(−2;−1; 0.5; 0; 2/3; 1).
For λ = 1 the Fig. 6 presents the row statistic calculated by (6) and critical value calculated

with 1−α = 0.95 in function of β. All categories are significant for the entire set of β values
because they are above the critical region.

Respect to the correspondence analysis based on spectral decomposition of T (β)
WCCS =

T (1;β)
WCPD , the choice of β falls in the value of 1.18. By partitioning the inertia using T (1.18)

WCCS ,
we obtain the principal inertia values which are summarized in Table 12. From Table 12 it
can be seen that the first axis explains 98% of the total variability.

Figure 7 illustrates the WCCA plot (dimensions 1–2) of the cumulated column categories
(principal coordinates) and the overlapped independence circle. In Fig. 7 the total inertia is
100% given the number of categories of the Euro variable.

Figure 7 indicates that all contrasts based on the cumulative categories play an important
role in interpreting the analysis because the independence region, with the radii length defined
by (9), does not include the origin. Also it highlights a strong opposite congruence between
the first and last aggregated sub-tables. In Table 13 we can observe that the first sub-table is
opposed to all the others. In fact, the values of the latter are all negative. Instead, the other
sub-tables are all strongly correlated with each other. In Fig. 8 a two-dimensional biplot of the
asymmetric association between the row and the column categories of Table 9 is shown. This
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Fig. 6 T̃ (β)
WCCS(i) ≡ T̃ (1;β)

WCPD(i) statistic and critical value for 1 − α = 0.95 in function of β

Table 12 T (1.18)
WCCS inertia

decomposition
Axis Inertia % Cumulative %

1 0.45045 98.40006 98.40006

2 0.00732 1.59994 100.00000

T (1.18)
WCCS
n 0.45778 100

plot is a row isometric biplot in which the origin represents the column marginal distribution.
Figure 8 evidences that the all categories Euro are significant in explaining the relationship
because their circles don’t include the origin.

Moreover, the Fig. 8 highlights the role played by the “Euro 6” respect to Euro 4 and Euro
5. In fact, they are on the opposite side. It has to point out that the technological improvement
of the Euro 6 is much higher than that which took place between the improvement from Euro
4 to Euro 5. Compared to CO2 emissions, the transition from Euro 4 to 5 was much lower
than the transition to Euro 6. In fact, from Euro 4 to Euro 5, the greatest variations occurred
in NOx and CO emissions. CO2 for the Euro 4 and 5 technologies is about 202g/km
compared to the first version of the Euro 6 which is about 120g/km (DIRECTIVE 98/69/EC
of 1998, for Euro 4, and REGULATION (EC) No. 715/2007 of 2007, for Euro 5 and 6, of the
European Parliament and of the Council). Furthermore, it must be taken into consideration
that the emissions values used are derived from vehicle in real use, which normally produce
different emission values with respect to the regulatory limits. The latter are very close to
each other, and so the effect that we can see on pollutant emissions is less noticeable and
weaker.
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Fig. 7 WCCA plot: cumulated column categories and independence regions

Table 13 Similarity matrix (I) (I:II) (I:III) (I:IV) (I:V) (I:VI)

(I) 1.000 − 0.926 − 0.984 − 0.994 − 0.992 − 0.965

(I:II) − 0.926 1.000 0.978 0.962 0.966 0.992

(I:III) − 0.984 0.978 1.000 0.998 0.999 0.996

(I:IV) − 0.994 0.962 0.998 1.000 0.999 0.988

(I:V) − 0.992 0.966 0.999 0.999 1.000 0.990

(I:VI) − 0.965 0.992 0.996 0.988 0.990 1.000

8 Conclusion

The PD family proposed by Cressie and Read (1984, 1989) allows to link different indexes
known in literature. However, it can be observed how these indexes behave badly for studying
of association between categorical ordinal variables. To improve their behaviours, a new class
of CCS-type based on Weighted Cumulate Chi-Squared (WCCS-type test) was defined. It
was obtained with the introduction of a β parameter. Furthermore, for a particular value of
the parameter, the Correspondence Analysis based on cumulative frequencies was performed
and its properties were shown. Finally, the proposed methodology was used in two particular
case studies concerning satisfaction with the university curricular consultancy service and
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Fig. 8 Row isometric WCCA biplot (δ = 1) with superimposed confidence circles

the assessment ofCO2 emissions produced by light-duty vehicles in relation to different type
approvals.
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permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdi, H. (2007). Rv coefficient and congruence coefficient. In Encyclopedia of measurement and statistics
(pp. 849–853). Sage.

Agresti, A. (2007). An introduction to categorical data analysis (2nd ed.). Wiley.
Barlow, R., Bartholomew, D., Bremner, J., & Brunk, H. (1972). Statistical inference under order restrictions.

Wiley.
Beh, E. J. (2001). Confidence circles for correspondence analysis using orthogonal polynomials. Journal of

Applied Mathematics and Decision Sciences, 5, 35–45.
Beh, E. J., & D’Ambra, L. (2010). Non-symmetrical correspondence analysis with concatenation and linear

constraints. Australian and New Zealand Journal of Statistic,52, 27–44.
Beh, E. J., D’Ambra, L., & Simonetti, B. (2007). Ordinal correspondence analysis based on cumulative

Chisquared test, correspondence analysis and related methods. Rotterdam: CARME.
Beh, E. J., D’Ambra, L., & Simonetti, B. (2011). Correspondence analysis of cumulative frequencies using a

decomposition of Taguchi’s Statistic. Communication in Statistics - Theory Methods,40, 1620–1632.

123

http://creativecommons.org/licenses/by/4.0/


Annals of Operations Research

Camminatiello, I., D’Ambra, A., & D’Ambra, L. (2021). The association in two-way ordinal contingency
tables through global odds ratios. Metron. https://doi.org/10.1007/s40300-021-00224-7.

Cressie, N., & Read, R. C. T. (1989). Pearson’s X2 and the loglikelihood ratio statistic G2: A comparative
review. International Statistical Review,57, 19–43.

Cressie, N., & Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society
- Series B, 46, 440–464.

D’Ambra, A., & Amenta, P. (2011). Correspondence analysis with linear constraints of ordinal cross classifi-
cations. Journal of Classification,28, 70–92.

D’Ambra,A.,Amenta, P.,&Beh, E. J. (2021). Confidence regions and other tools for an extension of correspon-
dence analysis based on cumulative frequencies. AStA Advances in Statistical Analysis,105, 405–429.

D’Ambra, L., Amenta, P., & D’Ambra, A. (2018). Decomposition of cumulative chi-squared statistics, with
some new tools for their interpretation. Statistical Methods & Applications,27, 297–318.

D’Ambra, L., Beh, E. J., & Amenta, P. (2005). Catanova for two-way contingency tables with ordinal variables
using orthogonal polynomials. Communication in Statistics - Theory Methods,34, 1755–1969.

D’Ambra, L., Beh, E. J., & Camminatiello, I. (2014). Cumulative correspondence analysis of two-way ordinal
contingency tables. Communication in Statistics - Theory Methods,43, 1099–1113.

D’Ambra, L., Koskoy, O., & Simonetti, B. (2011). Cumulative correspondence analysis of ordered categorical
data from industrial experiments. Journal of Applied Statistics,36, 1315–1328.

Emerson, P. L. (1968). Numerical construction of orthogonal polynomials from a general recurrence formula.
Biometrics, 24, 696–701.

Fisher, R. A. (1940). The precision of discriminant functions. Annals of Eugenics, 10, 422–429.
Gabriel, K. R. (1971). The biplot graphic displaywith application to principal component analysis.Biometrika,

58, 453–467.
Hirotsu, C. (1986). Cumulative chi-squared statistic as a tool for testing goodness of fit. Biometrika, 73,

165–173.
Hirotsu, C. (1990). A critical look at accumulation analysis and related methods: Discussion. Technometrics,

32, 133–136.
Horst, P. (1935). Measuring complex attitudes. The Journal of Social Psychology, 6, 369–374.
Lebart, L., Warwick, K. M., & Morineau, A. (1984). Multivariate descriptive statistical analysis. Wiley.
Leti, G. (1983). Statistica descrittiva. Il Mulino
Lombardo, R., Beh, E. J., & D’Ambra, A. (2011). Studying the dependence between ordinal-nominal cate-

gorical variables via orthogonal polynomials. Journal of Applied Statistics,38, 2119–2132.
Lombardo, R., Carlier, A., & D’Ambra, L. (1996). Nonsymmetric correspondence analysis for three-way

contingency tables. Methodologica,4, 59–80.
Mardia, K. V., Bibby, J. T., & Kent, J. M. (1982).Multivariate analysis. Academic Press.
Meccariello, G., & Della Ragione, L. (2017). Statistical determination of local driving cycles based on experi-

mental campaign as WLTC real approach. SAE Technical Paper. https://doi.org/10.4271/2017-24-0138
Nair, V.N. (1986). Testing in industrial experimentswith ordered categorical data.Technometrics, 28, 283–291.
Nair,V.N. (1987).Chi-squared type tests for ordered alternatives in contingency tables. Journal of theAmerican

Statistical Association, 82, 283–291.
Ringrose, T. J. (1992). Bootstrapping and correspondence analysis in archaeology. Journal of Archaeological

Science, 19, 615–629.
Ringrose, T. J. (1996). Alternative confidence regions for canonical variate analysis. Biometrika, 83, 575–587.
Sarnacchiaro, P., & D’Ambra, A. (2007). Explorative data analysis and Catanova for ordinal variables: An

integrated approach. Journal of Applied Statistics, 34, 1035–1050.
Sarnacchiaro, P., & D’Ambra, A. (2011). Cumulative correspondence analysis to improve the public train

transport. Electronic Journal of Applied Statistical Analysis, 2, 15–24.
Satterthwaite, F. (1946).An approximate distribution of estimates of variance components.BiometrikaBulletin,

2, 110–114.
Taguchi, G. (1966). Statistical analysis. Maruzen.
Taguchi, G. (1974). A new statistical analysis for clinical data, the accumulating analysis, in contrast with the

chi-square test. Saishin Igaku, 29, 806–813.
Takeuchi, K., & Hirotsu, C. (1982). The cumulative chi square method against ordered alternative in two-way

contingency tables. Report of Statistical Research, Japanese Union of Scientist and Engineers, 29, 1–13.
Tucker, L. R. (1951). Amethod for the synthesis of factor analysis studies. (Personnel Research Section Report

No. 984). Department of the Army, Washington, DC.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s40300-021-00224-7
https://doi.org/10.4271/2017-24-0138

	Weighted cumulative correspondence analysis based on a particular cumulative power divergence family
	Abstract
	1 Introduction
	2 Notation
	3 Weighted cumulative power divergence family
	4 Correspondence analysis based on TWCCS(β)
	5 Further properties
	6 Confidence circles
	7 Empirical studies
	7.1 Empirical study 1—satisfaction with university curriculum counselor service
	7.2 Empirical study 2—CO2 light-duty vehicle evaluation relating to different type approval

	8 Conclusion
	References




