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Abstract: Geometric machine calibration is a widespread technique used to increase 

machine accuracy thanks to a set of measures and adequate algorithms that permit 

identification and, generally, compensation of all relevant repetitive errors in the 

structure.  Traditional strategies are challenged by the vast kinematic variety of Parallel 

Kinematic Machines, today under development for industrial applications.  An original 

approach is proposed and implemented to calibrate machine with generic architectures 

and varying geometrical errors.  The analysis time is very short because the kinematic 

model is numerically obtained from a customized multi-body package and then 

automatically elaborated with numerical routines.  As an example, the methodology is 

applied, in simulation, to a PKM with 3 translational degrees of freedom. 
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1. INTRODUCTION 
 

A huge family of machines, used in very different 

industrial sectors, from machine tools, to robot and 

manipulators, are built to position a tool, or end-

effector, into space, following the requirements of the 

desired task.  Their positioning accuracy is affected 

by several error sources, like servo error, thermal 

structure expansion, static and dynamic structure 

flexibility and manufacturing accuracy of the 

machine itself.  A possible approach to reduce the 

effect of geometrical inaccuracies is based on 

“software compensation”: the basic idea is to 

identify, by specific tests, the real machine geometry 

and use it to drive the machine instead of the nominal 

one.  The precision of the calibrated machine 

depends on several factors, like the number of 

available controlled axes, the error sources stability 

in time and the accuracy of the calibration procedure 

and instrumentation.  Geometrical calibration has 

been widely used in the machine tool sector, where 

machine kinematics is often trivial (e.g. a machine 

with three orthogonal axes) and in the robotic sector 

(where common accuracy requirements are not so 

stringent).  A new challenge is emerging in the 

growing sector of machines based on parallel 

kinematics structures (“PKM”, as the machine used 

hereafter as test case, shown in Figure 1): many of 

their applications are a compromise of typical 

machine tool and robotic tasks, producing a tricky 

combination of kinematic complexity and high 

accuracy requirements. 

  

Geometrical accuracy is still a critical factor for 

PKM industrial deployment: accurate and easy SW 

calibration would permit to speed up machine 

assembly, based only on rough alignment, and to 

obtain more accurate machines. 

 

Several works have been published in this field, 

coping with the large kinematics variety typical of 

PKMs (Boer et alii, 2000), but they are often affected 

by two lacks: they are related to a specific machine 

architecture and/or they consider only a subset of 

possible error sources, because they exploit analytical 

simplifications valid only for the nominal kinematics 

(e.g. the axes of the revolute joints that constitute an 

universal joint must be coplanar and orthogonal). 

 

To overcame these limitations an original approach is 

herein proposed and implemented in a specific 

software environment, in order to permit calibration 

of machines with various architecture (parallel or 

serial) and any kind of geometrical errors. 

 

After a short presentation of the design environment, 
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joints
fictitiouseffectorend qEIJx δδ ⋅=

the proposed approach is presented and applied to the 

model of a 3 dof PKM developed by ITIA-CNR. 
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Fig. 1. The test case PKM (without fixed frame), 

with a Ball Bar device used for calibration (here 

presented by its Finite Element Model). 

 

 

2. THE VIRTUAL PROTOTYPING 

ENVIRONMENT 

 

The described approach has been implemented in the 

Virtual Prototyping Environment for Parallel 

Kinematic Machine development, built by ITIA-

CNR in the last years.  Leaving a more complete 

description to previous papers (Leonesio et alii, 

2001), we recall here that the VPE-PKM has been 

conceived to support design of generic machinery 

characterized by a complex kinematics, producing in 

a short time all key indicators, like singularity 

analysis, workspace, actuators required force/torque, 

internal effort in the structure, effect of lumped 

compliances and of manufacturing tolerances.  

 

These capabilities have been obtained joining the 

general modelling power of a commercial multi-body 

(“MB”) software (ADAMSTM, MDInc) with the 

efficiency of PKM-specific analysis routines 

(implemented in MatlabTM, The MathWorks, Inc.), 

as depicted in Figure  2.  The MB package has been 

customised, for example adding routines for 

automatic workspace exploration, while kinematic 

analyses are performed in the mathematical 

environment using linear mechanism models 

produced by the MB package in each point of the 

workspace selected by the user. Geometrical errors 

are considered like “fictitious machine actuators”, 

able to move the End-Effector in a uncontrolled way.  

This information is extracted from the machine 

linearized model, computing a so called “Extended 

Inverse Jacobian” “EIJ” (similarly to what is usually 

done to analyse the relationship between End-

Effector motion and main machine actuators motion): 

 

(1) 

 

that relates End-Effector motion (6 dof in space) with 

motions at different fictitious joints.  The Extended 

Inverse Jacobian is the base of all calibration 

analyses, but can be used also to establish 

manufacturing tolerances and assembly procedures, 

given a desired accuracy at the EE. 

 

 

3. THE TEST MACHINE 

 

The machine used to simulate the calibration 

procedure is a PKM with 3 translational dofs (plus 2 

rotational dofs at the wrist, not considered here) built 

by ITIA-CNR for light deburring operations in a shoe 

manufacturing plant. The machine is a Tsai platform, 

where the moving platform is connected to the fixed 

base by three similar variable length struts, with 

universal joints at both ends (it is therefore classified 

as a 3-RRPRR mechanism). Under specific 

conditions on the orientation of revolute joints axis, 

the machine posses pure translational degrees of 

freedom. 
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Fig. 2. Architecture of the Virtual Prototyping Environment 
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The nominal machine kinematics can be easily 

obtained writing vector equations representing the 

closure of three loops connecting the fixed and 

moving platform (O-O1 vector) through the three 

struts, as represented in Figure 3:  

            

x + [R]bi = Ai + qiwi ,                     (2) 

 

adopting the following definitions: 

• x position of O1UVW with respect to OXYZ 

• bi position of the ideal joint Bi center referred to 

O1UVW 

• Ai position of the ideal joint Ai center  referred to 

OXYZ 

• qi length of the ith leg,  

• wi unit vector defining the ith leg with respect to 

OXYZ 

O

O 1

a 1

q iw i

b 1

A 1

B 1

A 3

A 2

B 2

B 3

 
Fig. 3. Vector kinematics, used for machine control 

 

These equations have been solved to get the inverse 

kinematics and coded in the Numerical Control (NC), 

to drive the machine.  It is important to analyse the 

parameters involved in these formulas, because the 

calibration procedure has to produce corrected values 

for them, to minimize the residual error: it is not 

possible to compensate other geometrical errors (for 

example a universal joint composed by two non-

orthogonal revolute joints). 

 

 A first step in calibration is the selection of the 

“Error Sources” (ES) in the machine: as a general 

rule, each joint can introduce Error Sources 

corresponding to its constrained degrees of freedom. 

While the calibration algorithm is able to identify and 

eliminate redundant ESs (i.e. correlated ESs), 

anyhow, to reduce the analysis time, is useful to 

adopt a methodology that suggest independent ESs, 

like the Denavit-Hartemberg scheme. For the 

presented test case, the ESs illustrated in Figure  4 

have been defined.  They are all translational: 

location of the three universal joints (“UJ”) 

connected to ground (3 dofs x 3), referred to the work 

table origin, plus relative location of the UJs located 

at both ends of each strut (5 x 3 ES) plus one ES for 

each strut, to model the error of the controlled axis 

that modulates strut length.  Similarly, 3 dofs x 3 

joints are needed to describe the location of the three 

UJs on the mobile platform, referred to the tool 

attachment point.  In total there are 9+15+3+9 = 36 

ESs. 

 

Some ESs can interest geometrical features that are 

not taken into account by the vector kinematics: for 

example, strut bending or torsion. The VPE can 

evaluate also their effect, in order to know how a 

simplified kinematic model implemented in the 

Numerical Control) limits the possibility to perform 

an accurate calibration. 

 

The “importance” of each ES depends on three 

independent aspects, taken into account by the VPE: 

 

1. How machine precision is measured.  

Depending on the specific production task, the 

error to minimize has to be defined as a particular 

mixture of translational and rotational EE errors; 

e.g. axial error are usually not critical in drilling 

operations. 

2. How each ES produces EE motion, in all 
workspace.  This relationship, linearized for each 

pose, is represented by the EIJ. 

3. How much error is expected for each ES.  This 
is a function of the manufacturing process: 

typically location errors in small components are 

small, while joint location error on large structure 

is much bigger. 
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Fig. 4. Architecture of the Virtual Prototyping Environment 
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This kind of analysis is performed by the VPE, 

producing for example graphs like that one in Figure  

5, showing how each ES contribute to EE error. 

 

Aside single “Error Sources”, the VPE can also 

identify “Error Functions”, when a specific Error 

Source cannot be considered as a constant 

displacement for all machine poses, for example the 

positioning error of a  controlled axis that varies the 

strut length, that generally depends on strut 

extension, e.g. because of an error in the ball screw 

lead (maybe due to thermal expansion).  In this case 

the user can specify that an ES is an “Error Function 

EF(x)”, indicating  the independent “x” dimension in 

the model (in this case strut extension).  The VPE sw 

computes the Extended Jacobian as usual, saving also 

the corresponding “xi” values.  In the post-processing 

phase (in Matlab) the EF can assume different values 

for each pose (in contrast to the unique value 

considered for normal Error Sources), but this errors 

are constrained by the shape selected for the Error 

Function.  At the moment two possibilities are 

considered: a polynomial function (for linear axes) 

and sine/cosine shapes (for rotational axes). 

 

The linear system to be solved for calibration 

contains the corresponding constrain equations (here 

for the linear case): 

 

 

 

 

(3) 

 

 

 

where aj and bj are coefficients describing, in our 

example, respectively the lead error and a constant 

offset error in the analysed strut. 

 

Any measurement strategy and device (Ball Bar, 

laser interferometer, comparator) introduce new Error 

Sources in the calibration procedure, due to two 

different causes: 

 

1. the device measurement error. 
2. the device location in respect to the examined 
machine. 

 

These measurement ESs have to be taken into 

account in the calibration procedures: the user must 

define in the mathematical environment the equations 

relating these ES and the calibration measurements.  

The analysis of their influence is not the goal of this 

paper, nevertheless in the Test Case an ES is defined 

for the radial measurement error and 6 others for the 

locations of the Ball Bar ends, referred one on the 

fixed table, and the other to the machine head.  

Summing these to the 36 ESs considered in the 

machine kinematics, a total of  43 ESs is got. 

 

The calibration algorithm requires the EIJ on each 

point where calibration measures are performed.  The 

EIJ are not obtained directly by the linearized model 

computed in the multi-body package, for two basic 

reasons: 

 

1. the VPE must support the user in selecting the 
most efficient set of calibration measurements, 

therefore calibration set-ups are still undefined in 

the multi-body environment. 

2. the EIJ is typically a smooth function in the 
workspace (i.e. far from singularities), thereafter an 

exact computation of the EIJ in each pose would 

require unnecessarily heavy computations in the 

multi-body environment. 

 

The VPE is thereafter based on EIJ interpolation on a 

N-dimensional grid (where N is the number of 

degrees of freedom of the machine).  Each single EIJ 

coefficient is interpolated by linear, cubic (used in 

this case) or spline functions, under user control, to 

estimate the EIJ in all points where calibration 

measures are performed. 

 

Interpolation accuracy depends on the variability of 

the jacobian, on the number of nodes on which the 

interpolation is built and can be investigated for a 

specific machine comparing interpolated EIJs with 

EIJs directly computed by the VPE on a set of 

control poses. 

 

The following table shows the tolerance of each ES, 

deduced from mechanical drawings and components 

catalogues, inserted in the VPE. 

Table 1. Expected manufacturing accuracies  

 

Figure 5 shows the EE location error (in the Y 

direction) produced by such ESs (named as in Figure  

4): for our machine all universal joints produce 

similar effects on the EE, but the most influencing 

are the ES related to the fixed structure, because of 

their larger tolerances. 

 

Error source type 

Maximum 

expected 

value 

Joint location on the fixed structure 70 µm 
Location error in joint spiders 20 µm 
Joint location on each strut 30 µm 
Actuator accuracy (ball screw) 40 µm 
Joint location on the mobile platform 15 µm 
Strut bending due to static and dynamic 

loads 

0.02° 

Strut torsion due to static and dynamic 

loads 

0.06° 
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4. CALIBRATION TEST CASE 

 

The machine multi-body model has been modified 

introducing 4 geometrical errors: the first 2 errors 

(see Tab.2) are present in the machine model used by 

the Numerical Control; the second ones, instead, are 

non compensable errors, since they are not included 

in vector kinematics (described in section III).  The 

considered ESs have been classified among the most 

relevant ones in the previous analysis. 
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Fig. 5. Analysis of ES effect on End Effector location 

error 

 

Table 2. Introduced geometrical errors  

 

The next step is to define the measurements needed 

to calibrate the machine: in the present study, it was 

decided to measure EE location error on circular 

trajectories, using a “Ball Bar” (“BB”) device 

because they are very practical instruments with fast 

set-up and accurate measurements (e.g. measuring 

range: ± 5 mm, system accuracy: ± 1 µm, measuring 

resolution down to 0,01 µm). Similar procedures can 

be developed in the VPE for other instruments, like 

laser interferometers or laser trackers. 

 

As the Ball Bar does not provide information on 

rotations of the whole machine around the adopted 

fixed point, to fully identify machine location in 

space is necessary to select three different set-ups, 

connecting three different points on the Fixed 

Platform (Af, Bf, Cf) to three points on the Moving 

Head (Am, Bm, Cm respectively), as shown in 

Figure  6. For the experiment herein presented, a 

single circular trajectory with a radius of 150 mm has 

been simulated for each set-up. 

 

During motion the Ball Bar registers all distance 

variations between its attachment points (producing 

measures similar to Figure 7): 51 uniformly 

distributed samples of the radial error have been 

collected for each circle , giving a total of 153 

samples, used for machine calibration. 
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Fig. 6. Circular trajectories used for calibration in the 

test case 
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Fig. 7. Radial error before calibration (circle in the 

YZ plane) 

 
In order to obtain the Extended Inverse Jacobian 

matrix corresponding to all measurement poses, the 

EIJ has been interpolated over a grid of 252 points, 

with the following dimensions: X axis 380 mm, Y 

axis 380 mm, Z axis 760 mm, centred in the machine 

Error Source description value 

ES 3: Rev. 2fe 

Revolute between 

ground & spider, Left 

strut, axial dir. 
50 µm 

ES 7: Rev. 3fe 

Revolute between 

ground & spider, Back 

Strut, axial dir. 
60 µm 

ES 22: Pr1 

Prismatic coupling in 

the middle of right 

strut, bending. 

0.01° 

ES 33: Pr3 

Prismatic coupling in 

the middle of 

horizontal strut 

0.05°  
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{ } [ ] { }. ji ESMmeasure ⋅=

workspace.  

 

Starting from the EIJ interpolated the EE motion due 

to each ES is projected on the measurement direction, 

given by the Ball Bar axis.  In this way a matrix M is 

built, that correlates ESs and calibration measures: 

 

(4) 

 

The M matrix is then examined to identify, if any, 

“not-observable” ESs, corresponding to columns of 

M characterized by very small values.  If these ESs 

are important, the user must define new 

measurements, more influenced by those ESs. In the 

test case the following ESs have been discarded 

because their effect was smaller than one hundredth 

of the maximum coefficient in the M matrix: 1, 4, 8, 

9, 13, 16, 17, 18, 19, 20, 24, 25, 29, 30, 36, 37, 38, 

39, 40, 41, 42. 

 

Then the kept part of the M matrix has been 

examined to locate correlated ESs.  ES can be 

correlated for two reasons: 

 

1. their effect on EE motion is equivalent in the 
whole workspace (e.g. two axial ESs that modify 

the strut length at the two ends of it).  The user is 

free to select a dependent ES to eliminate. 

2. their effect on the chosen calibration measures is 
equivalent: the user has to decide if tests have to be 

extended with other set-ups able to distinguish 

between considered ESs (e.g. changing the Ball 

Bar connection point on the moving and/or fixed 

platform). 

 

In the VPE, when a cluster of correlated ESs is 

identified (basing of the correlation thresholds 

defined), one of them is automatically removed, 

trying to preserve a list of “preferred” ESs specified 

by the user (e.g. because they correspond to physical 

regulation points of the machine).  After this analysis 

10 ESs have been kept in the test case (2, 3, 5, 6, 7, 

22, 26, 33, 35, 43). 

 

The linear system corresponding to the kept section 

of M is solved in a Least Mean Square sense, 

producing the ES values listed in the following table, 

in very good agreement with the corresponding 

theoretical values: 

 

ES n°:  id 
identified 

value 
real value 

ES 3: Rev. 2fe 50.001 µm 50 µm 

ES 7: Rev. 3fe 59.99 µm 60 µm 

ES 22: Pr1 0.01° 0.01° 

ES 33: Pr3 0.0499° 0.05° 

Max. of all other ESs 1.2E-3 0 

Table 3. Identified Error Sources 

 

While identification of many ESs can be very useful 

to better qualify the machine and optimise the 

manufacturing accuracy, only few ESs are present in 

the NC kinematic routines (e.g. the vector kinematic 

exposed in section III), permitting thereafter a 

software error compensation (“Rev. 1f” and “Rev. 

3fe” in the test case); others (like “Pr. 1” and “Pr. 3”) 

are not directly compensable. The VPE can 

investigate how much error, compared to the 

expected global machine error, is possible to 

compensate with the Numerical Control. 

Figure  10 shows the residual radial error on the 

circle in the YZ plane after this full identification and 

partial compensation (solid line A): the maximum 

error is now around ±28 mm (due to the not 

compensated ESs). 

 

For compensation purposes is generally more 

effective to identify only ESs present in NC 

kinematics, because the Least Square approach will 

try to use them also to compensate as much as 

possible the ESs not represented (so the optimal 

value is not the real value of each ES!). A second 

identification has been performed, limited to the NC 

ESs: the result is curve B in Figure  10, with a 

residual error of ±12 mm. 

 

A different approach can be adopted: enrich the NC 

inverse kinematics in order to model some of the 

previously disregarded ESs, to permit their 

compensation. As an example, the effect of ES “Pr3” 

(torsion of the horizontal strut) on the end-effector 

position has been added. This is usually not done 

because the inverse kinematics became rapidly very 

complex when many ESs are considered: to avoid 

this drawback, linearizations are performed 

exploiting the fact that typically ESs assume very 

small values, compared to machine dimensions. 

 

Since the posterior strut is connected to moving 

platform via an universal joint, a torsion (ϕϕϕϕ1) of this 
strut produces a rotation of the moving platform (ϕϕϕϕ2)  
in accordance with the following well-known 

relationship (see Figure  8): 

 

                          .costantan 21 αϕϕ ⋅=             (5) 

 

Approximating the tangent with its argument, we 

obtain: 

 

                            .cos21 αϕϕ ⋅=                         (6) 

  

Angle α can be easily deduced from geometry as a 
function of Y, Z coordinates of the universal joint 

that connects the moving platform to the horizontal 

struts, itself depending from end-effector position 

(see Figure  8):  
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Fig. 8. Rotation transmission through universal joint 
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Fig. 9 End-effector displacement due to a virtual 

rotational displacement of moving platform. 

 

Now, centre C of rotation ϕϕϕϕ2 has to be determined to 
calculate the corresponding end-effector 

displacement. It can be noticed that such point C has 

to belong to YZ projections of both strut 1 and 2, just 

because in this plane these struts behave like two 

rods (see Figure  9); therefore, point C is determined 

by their intersection, solution ( 21
,ηη ) of the following 

vector equation: 

 

                
( )

( ) .2222

1111

η

η

⋅−+=

=⋅−+=
yzyzyz

yzyzyz

AbA

AbAC
           (8) 

 

End-effector displacement can be easily calculated 

linearizing kinematics and expressing it as a cross 

product between rotation arm and rotation vector: 

 

                  ( ).CEEkδ −∧⋅= δϕϕ
ee                  (9) 

 

Without kinematics linearization, positions of 

universal joints bi can not be considered as constant 

parameters in error displacement computation, since 

they depend from the machine position itself: 

iterative methods would have to be used to solve 

inverse kinematics, implicating an harmful, useless 

waste of time. 

 

Using this “extended inverse kinematics” it is 

possible to compute corrected references positions 

compensating for the modelled error, as depicted in 

Figure  10 by the dotted line C: maximum trajectory 

error (always on a circle in ZY plane) is now about 4 

mm, mostly due to the effect of the remaining 

uncompensated ES (“Pr.1”) . 
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Fig. 10. Radial error after different SW 

compensations strategies. 

 

 

5. CONCLUSION 

 

The developed methodology and software permit to 

quickly generate equations needed to perform a 

geometric calibration of a generic Parallel 

Kinematics Machine, using various calibration 

devices and considering any Error Source, even not 

represented in the machine nominal kinematic model. 

To permit full compensation of the most significant 

ESs, it has been shown how an extended inverse 

machine kinematics can be developed (exploiting 

linearization when possible) to take into account ESs 

not included in the nominal kinematic model. 

 

Further developments are focused on the analysis of 

measurement errors on the identification accuracy, 

before performing the calibration of the real machine. 
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