aie d&%i& %ac@mm

v1é, Abstract Interpretatmn

Giuseppe Amaro F _S(,'ril Gzannozrz Gmnm Mainetto
(}NUCE cor- 10 '







Conservative Multigranularity Locking for an
Object-Oriented Persistent Language
via Abstract Interpretation:
G. Amato, F. Giannotti, G. Mainetto

CNUCE-CNR, Via 8. Maria 36, 56126 Pisa
e_mail: {fosca,gmsys} @cnuce.cnr.it

Abstract. This paper presents an experiment of using a formal technique for static program analysis,
based on Abstract Interpretation, in the context of an Object—Qriented Persistent Programming Language.
Implicit ransactions of APPL, a subset of Galileo, are statically analysed for inferring information to
Support a new concurrency control protocol that merges the wisdom of the Conservative Two-phase
Locking with the flexibility of the Multiple Granularity Locking without requiring any predeclaration to
transaction programmers. This is an improvement of a previous experiment that concentrates only on the
Conservative Two-phase Locking, where the grain of the collected information was particularly
significant in case of simply structured transactions. In this paper we are inferested in rendering finer this
grain while accessing objects of classes. More precisely, the paper presents a second analysis that detects
if a transaction surely accesses all objects of a class or probably a subset of them. Collected information
atlows to choose the appropriate locking grain: a unique lock for the class versus a set of individual locks,
one for each abject of the class.

1. INTRODUCTION

The evolution of database programming languages (DBPLs), which provide a unifying
framework for data definition and manipulation, opens up opportunities for applying
techniques used in the programming language area to solve problems occurring 1n the
database area and vice versa. This exchange of experiences is more easily feasible for
persistent programming languages (PPLs) because they are the subclass of DBPLs closer
to programming languages. In PPLs the persistent value data model is completely
integrated in a programming language [Atkinson 1987].

In the programming language area there is a particular emphasis on the use of
formal techniques for guaranteeing the safety of optimisations and transformations
performed from a compiler. The exploitation of formal techniques’ application to PPL
optirnisation problems will lead to: a better understanding of such problems; the
provisions of safe solutions of these problems, usually approached only on the basis of
empirical experience; the addition of new functionalities to PPL systems,

A consolidated formal technique of static program analysis is abstract interpretation
(AD) [Cousot 1977] [Abramsky 1987]. Al aims at statically gathering approximate
information about program’s dynamic semantics for the sake of compiler and run-time
support optimisations.

We are experimenting Al in object—oriented (OO) PPLs, The goal of the experience
presented in this paper is to support a new concurrency control protocol that merges the
wisdom of the conservative two-phase locking (C2PL) with the flexibility of the multiple
granularity locking (MGL) [Bernstein 1987]. Information for managing this new
protocol, called conservative multiple granularity locking, is automatically inferred
through AI technique from the text of an Abstract Persistent Programming Language
(APPL) transaction. APPL is an OOPPL derived from Galileo [Albano 1985]. APPL

L This work was partly supported by the EEC under contract No ERB-CIPA-CT-93-1616, Special Project
ANATRA and Bilateral Project SIENOSP of CNR Engeneering Comitee.



transactions are implicit, i.e. they do not require neither a predeclaration of the persistent
values that will be accessed nor the explicit programming of transaction operations.

A first experiment was about C2PL protocol [Amato 1993]. In C2PL, transactions’
operations can be safely interleaved when there is no overlapping among the sets of
accessed data, namely readsets and writesets. Given the text of an APPL transaction and a
representation of the data stored in the database, an abstract interpreter derived, in finite
time, an approximation of its readset and writeset. To realise C2PL, the outcome of the
interpreter was analysed from the scheduler before beginning the transaction execution.

The resuits of this first experiment confirmed the adequacy of the approach but in
some cases the grain of the collected information was too coarse. MGL protocol
addresses this problem. The shortcomings of the approach were essentially due to always
considering a class as a single data item and to an insufficient attention to the peculiarities
of APPL primitives. In APPL there are two different ways of visiting the database: the
navigation, performed through the selection of objects’ components representing
associations, and the query. A navigation deals with one, two or several objects of a class
and it always accesses the state of the involved objects; a query deals with all the objects
of a class but it does not necessarily access their states. So we defined a new second
analysis focused on those computations involving query primitives. '

The main idea of this second analysis is to have an abstract semantics that expresses
a notion of probability about the execution of constructs that compose APPL transactions.
Intuitively, if an access primitive to an object state is applied in a branch of a conditional
then its execution probability is half of the conditional execution’s probability. The access
probability to all the objects of a class is statically inferred considering all the execution
paths involved in the evaluation of a query primitive. The access probability to all the
objects of a class permits to statically choose the appropriate locking mechanism: a unique
lock for the class versus a set of individual locks, one for each object.

The paper is organised as follows. Section 2 sketches the features of APPL
language and system and provides an informal semantics of its primitives. Section 3
briefly describes the MGL protocol, its use in QO databases (DBs) and the conservaiive
multiple granularity locking protocol; Section 4 describes the format framework on which
is based the static analysis; Section 5 presents the application of the analysis to few
sample transactions and Section 6 contains few final remarks.

2. APPL LANGUAGE AND SYSTEM
2.1 APPL Language

APPL is the abstract syntax of a version of Galileo tailored to keep the most relevant
database constructs provided by the original language [Albano 1985]. Galileo is a non-
purely functional PPL, with QO features. Classes with multiple inheritance (is_a relation)
and objects are the data types used to model OO features.

Aclass is a “bulk” type constructor, like set_of or list, characterised by two facts:
an instance_of relation exists between a class and the set of actual objects belonging to it
(this set of objects is called the extension of the class); a subset relation exists between the
extensions of two classes that are in an is_a relation. Classes have a unique class
identifier.

Objects are instances of record types and every object has a unique object identifier.
The same object can contemporary belong to several classes, those that are in an is_a
relation. Equality on objects means sameness: two objects are equal if and only if they
have the same object identifier. The identity of an object is used for modelling its



association with other objects. Objects can have values of any type as components, as for
example functions used to model methods of classical OO languages.

Galileo is a unique programming language for the definition of the database schema
and the manipulation of persistent values. The definition of the database schema is
performed through a sequence of fop—level declarations. Being a persistent programming
language, Galileo allows to define at the top-level both classes and individual objects like
integers, functions, records, etc. The manipulation of persistent values takes place
through implicit transactions, i.e. top-level expressions in which transaction operations
are implicitly defined. Galileo transactions use top-level declarations to solve their non
local bindings.

APPL language is an expression language, where the term expression denotes also
statements. In the paper we will use the following conventions:

e e Exp generic expressions
ce Con constants

p & Prim primitives

xe Ide identifiers

lbe Lab abels of fields

Constants, primitives, identifiers and labels have different syntactical notations. In
particular, primitives are reserved keywords and they will be indicated in bold italics.

APPL is the abstract syntax of a strongly statically typed language, so that its
sentences are well-typed and operator overloading is resolved. For a given primitive the
type of its operands is known. To improve readability of APPL sentences, the syntax of
some expressions is denoted using metavariables that remind the type of the value the
expression evaluates to:

be Exp boolean value

fe Exp functional value
[ e Exp reference value
¢e Bxp object value

re Exp record value

APPL language assumes that a user—defined function has a single argument, and only
sequential declarations of (recursive) values are allowed. ,

An APPL transaction is a block primitive containing an optional sequence of
declarations, that (recursively) bind an identifier to a value, followed by a sequence of
expressions:

trans = block (d,, ..., d, ¢, ..., e block (e, ..., e,)
d o= let (x,e) | letrec (x,e)

An APPL expression can be a constant, an identifier, a user defined function application
and the application of a language primitive:

ex=clxle(e) | ple, ... e

In APPL there are primitives for flow control, block definitions and declarations. Other
primitives are defined for each basic and constructed type that allow specific operations to
be performed on values of such a type. Primitives defined on references are: reference
constructor, dereferencing, assignment.




var (¢) creates and returns a reference to the value of e
at (I} dereferences / i.e. returns the value referenced by !
ass (I, e) assigns the value of ¢ to the reference |

APPL primitives on classes are: insertion of an object in a base class; removal of an object
from all the classes to which it belongs; specialisation of an object from a superclass to a
subclass; query on all objects belonging to the extension of a class. [Ghelli 1990]
demonstrates that this set of primitives is minimal that is it is sufficient to model all the
expected features of classes in which objects can migrate from one class to another.

insert (x, r) creates an object and inserts it in the class x

specialise {0, 1, X) specialises the object 0 with r and inserts o in the class x
remove (0) removes the cbject o from all classes

for_class {x, f) f function is appiied to all objects of class x

The insertion of an object in a base class implies the construction of an object from the
record value given as second parameter of the primitive. The insertion into a subclass is
performed in several steps: firstly the object is inserted in a base class, then it is
specialised from the base class down into the subclass, and so on. Specialisation adds
and replaces the fields of the record given as second parameter to the object given as first
parameter,

The query primitive for_class has two parameters: the extension of a class and a
single argument function. It is semantically equivalent to the mapcar construct of Lisp
[McCarthy 1962]: the function is successively applied to one object of the extension at a
time, and the results are collected into a sequence. It is worth noting that the query
primitive is more powerful than the traditional OO queries with associative retrievals and
navigations because it allows to express a generic function to be evaluated on all objects
of a class. This generic function can apply methods, update object state, etc. Due to its
generality, the query primitive can not be optimised.

Classes, objects and references are the only modifiable values of the language, the
ones on which side—effects are allowed. Other primitives that will appear in the rest of the
paper are the followings:

same (0, ;) test for object equivalence

obj_of (0, Ib) selection of field Ib from object ¢

ite (b, e, €2) if_then_else conditional primitive
func (x,e) function constructor

2.2 APPL System Architecture and Operation

Our systern adopts the client-server architecture, usual in OODBs [De Witt 1990] and
used in several PPLs including Distributed Galileo [Di Giacomo 1993].

The server handles: the Shared Persistent Type Environment (SPTE), ie. a
mapping from global identifiers to type expressions, the Shared Persistent Value
Environment (SPVE), i.e. a mapping from global identifiers to storage locations, and the
Shared Persistent Store (SPS), i.e. a mapping from storage locations to storable values.
Information in SPTE and SPVE constitutes the database schema; this information is
frozen after being defined. SPS is the database and its state can change during the
execution of APPL transactions.

SPTE, SPVE and SPS are initialised when the database designer initially inserts a
sequence of top-level declarations into the centralised server. A component of APPL
system analyses the initial declarations to produce the Database Representation (DBR).



Copy of SPTE ~—p  (aliteo Copy of DBR Static <:pproximate R/W set
Galileo [mplicit Trans ﬂ Type Checker \AppL Implicit Tmnya\nalyser APPL Explicit Trans
Clienl 1 Client 2 Client n
(A A0 [ A4 (A A
9% C3

I S interconnsction structure: : |

Server

Shared Persistent Typs Environment (SPTE) cons?nlfjgtigeagg:ferduler
Shared Parsistant Value Envirornmaeant (SPVE)
Database Representation (DBR)

Figure 1: APPL System Architecture and Operation

DBR aims to summarise SPVE and SPS information in a format useful for an efficient
static analysis of transactions.

A client has the task to compile, analyse and execute APPL transactions. When a
client begins a session, it loads from the server a copy of SPTE for the sake of type
checking, a copy of DBR for the static analysis, a copy SPVE for the generation of the
intermediate code,

Once a transaction has been successfully type-checked, the client analyses the
transaction’s text and the DBR to deduce an approximation of the readset and writeset of
the transaction. This information consists of lock modes on classes and modifiable
individual objects. The analysis adds explicitly to APPL transaction’s text the primitives
for locking objects of classes when they are needed according to MGL protocol.

The scheduler of the server analyses the approximate information about
transaction’s readset and writeset: when all these database resources can be granted, it
acknowledges the requesting client. Finally the transaction execution begins. During it
communication network is used only to access shared persistent values and to request
locks on objects of classes if they are needed. Figure 1 summarises the architecture and
the operation of APPL system.

3. MULTIGRANULARITY LOCKING IN APPL

3.1 Multiple Granularity Locking

MGL protocol has been firstly proposed in the context of relational DBs [Gray 1975].
The use of MGL aims to minimise the number of locks to set while a transaction accesses
set of tuples of a relation. In this protocol, data items are organised in a tree where small
itemns are nested within larger ones. Each nonleaf node represents the data associated with
all its descendants; thus the root of the tree represents the whole database. Nodes of the
tree are called granules. Transactions can lock nodes explicitly, which in turn locks
descendants implicitly. Two kinds of locks are defined: exclusive and shared. An
exclusive (X) lock excludes any other transaction from accessing (reading or writing) the



NL 1S IX S SIX X

NL N Y N N v v
is v v v N v No
IX v N v No No No
S v v No v No No
SIX v N No No No No
X Y No No No No No

Figure 2: CompatiBility Matrix for Multiple Granularity Locking

node; a shared (S) lock permits other transactions to read the same node concurrently but

prevents any updating of the node,

To grant a transaction a lock on a node, the scheduler would have to check if any
other transaction has explicitly locked any ancestor of such a node. This is clearly
inefficient. To solve this problem, a third kind of lock mode called infention lock was
introduced [Gray 1978]. All the ancestors of a node must be locked in intention mode
before an explicit lock can be put on the node. In particular, nodes can be locked in five
different modes. A nonleaf node is locked in intention—shared (IS) mode to specify that
descendant nodes will be explicitly locked in S mode. Similarly, an intention—exclusive
(IX) lock implies that explicit locking is being done at a lower level in X mode. A shared
and intention—exclusive (SIX) lock on a nonleaf node implies that the whole subtree
rooted at the node is being locked in S mode and that explicit locking wiil be done at a
lower level with X mode locks. A compatibility matrix for the five kinds of locks is
shown in Figure 2, where null (NL) mode represents the absence of a request. The
matrix is used to determine when to grant lock requests and when to deny them.

For a given Lock Instance Graph (L1IG) G with a tree structure, [Gray 1975]
defines the following MGL protocol based on the previous compatibility matrix:

(1) A transaction T can lock a non root node 7 of G in S or IS mode only if T holds an
IX or IS lock on n’s parent (and by induction on all n’s ancestors).

(2} A transaction T can lock a non root node n of G in X, SIX or IX mode only if T
holds an SIX or IX lock on n's parent (and by induction on all #’s ancestors).

(3) To read (or write) the content of a node, a transaction T must own an S or X (or X)
lock on some ancestor of the node (included the node itself).

(4) Locks should be released either at the end of the transaction (in any order) or in a
leaf—to~root order. In particular, if locks are not held to the end of the transaction,
the transaction should not hold a lock on a node after releasing the locks on its
ancestors.

Notice that once a transaction acquires a node in S or X mode, no further explicit locking
is required at lower levels and leaf nodes are never requested in intention modes since
they have no descendants.

MGL protocol has been generalised to work for direct acyclic graphs (DAGs) of
resources rather than simple trees [Gray 1978]. The key consideration is that to lock
implicitly or explicitly a node of a DAG, a transaction should lock all the parents of the
node and so by induction lock all the ancestors of the node. In particular, to lock a
subgraph one must implicitly or explicitly lock all the ancestors of the subgraph in the
appropriate mode.

In the example of Lock Type Graph (LTG) reported in Figure 3, to lock a record
for updating, a transaction should obtain a IX lock on the database and on area, file,
indices containing the record, and an X lock on the record itself. Alternatively, especially



DATABASE

AREAS

7N

FILES INDICES

N

RECORDS

Figure 3: Lock Type Graph

when a transaction wants to update most of the records of a file, it could lock the database
and the area in IX mode and the file and the indices containing the records in X mode,
thereby implicitly locking records in exclusive mode.

The MGL protocol increases concurrency and decreases overhead. This is
especially true when there is a combination of short transactions with a few accesses and
transactions that last for a long time accessing a large number of objects such as audit
transactions that access every item in the database.

3.2 Multiple Granularity Locking in OODBs
MGL protocol has been proposed and realised in ORION, an OODB with multiple

inheritance [Garza 1988]. The motivation for using this protocol in the context of OODBs
is that the OO data model provides a natural hierarchical organisation of data items in
granules of different size: every object is a member of the set representing the extension
of a class; a class can be a subclass of one or several superclasses, which implies that
there is a subset relationship among the extension of a subclass and the extensions of its
superclasses. In this context, when most of the objects belonging to the extension of a
class are (o be accessed, it makes sense to set one lock for the class, rather then one lock
for each object.

In [Garza 1988] the hierarchies representing the is_a relationship and the
instance_of relationship are inserted into the traditional LTG (Figure 4). Given an
ORION database schema, a LIG will be a rooted DAG that directly connects the database
root node to base class nodes (sources in the is_a hierarchy). Subclasses of base classes
are represented as subnodes of base class nodes, and so on till to represent all the is_a
hierarchy. Class nodes are connected to their extensions and extensions to objects thus
representing the instance_of relationship. The LIG is a rooted DAG because in ORION
there is multiple inheritance.

The passage from a tree to a rooted DAG implies the following changes to the first
three rules previously defined:

(1) A transaction T can lock a non root node n of Gin S or IS mode only if T holds an

IX or IS lock on some parent of n.

(2) A transaction T can lock a non root node n of G in X, SIX or IX mode only if T
holds an SIX or IX lock on all of n’s parents.
(3} To read the content of a node, a transaction T must own an S or X lock on some

ancestor of the node (included the node itself). To write the content of a node, a



DATABASE

CLASS
HIERARCHY

EXTENSIORNS

OBJECTS
Figure 4: Object-Oriented Lock Type Graph

transaction T must own, for every path from the root to the node, an X lock on
some ancestor of the node along that path (included the node itself).

In the ORION system there are two types of operations that involve the class hierarchy:
schema change operations and queries. A schema change operation needs to lock in X
mode a class definition, the definition of its subclasses, their extensions. A query on a
class needs to lock in S mode the extensions of the class and of all its subclasses.

3.3 Conservative Multiple Granularity Locking in APPL
3.3.1 APPL LIG

The first step in the automatic support of a protocol that combines C2PL and MGL. is to
fix the organisation of persistent APPL values in terms of granules.

The LTG of a DB depends on the physical organisation of persistent data and on the
operations allowed on them. In APPL every object of a class is represented by an
extensible record with identity. Class extensions are represented as sets of object
identities. The extensions are separate sets with no explicit subset relationship: if for
example an object contemporary belongs to A and B classes then its identity is replicated
in the extensions of A and B. In APPL the for_class primitive manipulates only all object
identities of an extension, insert primitive modifies the last element of an extension,
specialise modifies an object state and the last element of a (subj)extension, remove
modifies an object state and an element of a set of extensions and ebj_of operates on an
object state. If we are able to provide an APPL LTG that allows to separate operations on
class extensions from those on object states then our system can provide a fine resolution
of the analysis. This is obtained organising the APPL LTG as shown in Figure 5. An
APPL LTG has granules for class extensions containing smaller granules for extension
elements and granules for class hierarchies (sets of object states) containing smaller
granules for object states. In an APPL LIG a superclass S is directly related to its
subclasses and to those object states having S as the most specific class. Figure 5
shows also a simple example of APPL LIG (nl-ee stands for a null extension element).

The rationale for this separation is clarified by the following example. Let us
suppose that there are two transactions T1 and T2: T! uses a for_class primitive just to
count the number of objects in A class, T2 specialises one object of A class into B
subclass. T1 and T2 can execute in parallel because T1 reads all A extension (S lock on A
extension) non interfering with T2 that modifies B’s extension and specialises the object



7<§) DATABASE
EXTENSIONS CDASS A ext B _ext A _class

HIERARCHY ‘ l
EXTENSION OBJlECTS ol-ee 02-ee nl-ee o02-ee BanClaSS
ELEMENTS ce
Lock Type Graph Lock Instance Graph o2

Figure 5: Lock Type Graph and a Lock Instance Graph for APPL

(X lock on B’s null extension element and on the object of A). The reader can verify the
correctness of the protocol on the LIG of Figure 5 using the algorithm given in
Subsection 3.1.

Once we have clarified APPL LIG, it is clearer the aim of static analysis. The goal
of the analysis is twofold: firstly to deduce an approximation of the readset and writeset
expressed in terms of the leaves of APPL LTG; secondly to infer if and how the previous
information on the leaves can be synthesised in coarser granules.

The first goal is accomplished through a conservative locking analysis, the second
one through the multigranular locking analysis. The combination of the information
gained by the two analyses produces the expected result, the conservative multigranular
locking analysis.

3.3.2 Conservative locking analysis

The conservative locking analysis for APPL transactions is described in details in [Amato
19931, In this subsection we give a short description of the technique used and of the
obtained results.

A central point of Al is to guarantee the termination of the analysis. The termination
of the conservative locking analysis relies on the fact that the abstract execution operates
on finite abstract domains.

In our case, one problem is the DBR, i.e. the way in which SPVE and SPS are
abstracted. It is necessary to render finite these two components so that the analysis
terminates for sure, while keeping interesting information about a transaction execution.
SPVE is frozen, so that it is trivial to abstract it. Every individual persistent object is
represented by exactly one abstract individual object. The main problem is to make finite
the abstract domains for the data structures whose cardinality cannot be statically
determined: class extensions and sequences. A class extension is abstracted by a sequence
of exactly two object identifiers: the first object identifier relates the class extension to one
abstract object representing all the objects existing in the database before transaction
execution, the second object identifier relates the class extension to the new objects
potentially created by the transaction. In this way the analysis can distinguish new objects
from old ones. Sequences are abstracted in the same way of class extensions.

The second problem to solve is how to render finite the number of new values
generated from the analysed transaction. Indeed a real execution of a transaction could
loop for ever and it could for example generate an infinite number of new persistent class
objects. The solution is to bind statically the occurrence of every value constructor in a



transaction’s text to just one abstract location. In this way every time a value constructor
comes across during an abstract execution, it evaluates to the same abstract location and
one abstract stored value plays the role of a set of concrete values.

The outlined analysis is sufficient to obtain information to realise a conservative
locking protocol with a non fine resolution. This analysis provides satisfactory
information about accesses to individual objects. As far as extension elements and object
states are concerned, there are two deficiencies in this analysis both connected to the
multigranular issue. The first is that class extension updates result in an X lock on all the
extension because every class extension is treated as a single data item. The second
shortcoming comes from the non distinction between navigational accesses to class
objects and an access to class objects through a query primitive. These two kinds of
accesses are both treated in the same manner, but while a query primitive deals with all
the extension of a class and potentially with all its objects, a navigational access probably
regards only a small subset of class objects. These two shortcomings are overcome by the
multigranular locking analysis.

3.3.3 Multigranular locking analysis

The analysis described in the previous subsection gives us enough insight about
navigation in the database and we consider this information sufficient to statically set
intention locks on extensions and class hierarchy in the database’s LIG. We a priori
decide that navigation deals with a small subset of objects in an extension. To gather
significant information about the objects reached through navigation, knowledge about
the cardinality of the associations among objects, selectivity of predicates, etc. should be
necessary. This kind of statistical information about the state of database is used for
example by OO query language optimisers (see [Graefe 1993] for a comprehensive
survey). The issue of verifying the usage of optimising techniques developed for query
processing in languages as Galileo is out of the scope of this paper.

The multigranular locking analysis deals only with the query primitive.

The first previous shortcoming was about a class extension of APPL LIG. The
query primitive is the unique primitive that deals with an extension as a whole. It is quite
simple to statically determine a superset of class extensions that will be accessed during a
transaction execution. Multigranular analysis infers this information just looking for every
occurrence of a query primitive in the text of a transaction (and in the text of involved
methods). These class extensions will be locked in S mode. A complete analysis that
deals with class extensions is a simple variant of the analysis that we will present about
class hierarchy.

The second shortcoming regards the class hierarchy of APPL LIG. The way in
which we deal with this issue wiil be described and exemplified in the next two sections.
Multigranular analysis provides information for setting shared, exclusive and shared
intention exclusive locks on the class hierarchy of APPL LIG. This analysis will associate
every node of the class hierarchy with an §, X, SIX, NL lock mode.

3.3.4 Conservative multigranular locking analysis

When the multigranular locking analysis finishes, firstly we combine intention locks
given from conservative locking analysis with locks on APPL LIG class extensions.
Then we combine intention locks with other locks on class hierarchy. This kind of
information regards single nodes of the class hierarchy that represents a database schema
with multiple inheritance: first S, SIX and X locks must propagate down in the hierarchy
then IS, IX locks must propagate up in the hierarchy to statically set up information for a



Extension Ext=elemment Class Object
insert (x, r) IX x X nl_ece NL NL
specialise {0, r, x) IX x X nl_ee IX x Xo
remove (o) IX o’s exts X o's ee IX 0’s classes X o

or class (x, Sx NL NL NL
obj _of (0, 1) NIL NL __IS o’s classes So

Figure 6: Locks of Primitives in APPL Lock Instance Graph

DAG multigranular protocol. Finally the lock is determined for the root granule of APPL
LIG.

The lock mode set from a transaction consisting of a single primitive is shown in
Figure 6. When in the text of a transaction there is a combination of such primitives,
some locks can be redundant and can be eliminated as for example those on extension
elements and on objects. It is quite clear that given a primitive in a transaction and the set
of locks on class extensions and class hierarchy derived from multigranular conservative
analysis, it is always possible to statically decide if an access primitive must be explicitly
preceded by a lock primitive or not. The strongly and static typing of Galileo ensures this.
For example, it is always possible to foresee a set of classes to which the object operated
on by a remove primitive belongs. Explicit lock primitives are added in the text of the
transaction a final step of transformation resulting from analyses.

4. FORMAL FRAMEWORK

The static analysis of an APPL transaction for multigranular locking information is based
on the formal framework of Al used in [Hudak 1987]. Firstly, an exact “non-standard”
semantics of APPL transactions is defined. It behaves as the standard one, moreover it
collects information on the dynamic behaviour of the program. An exact non-standard
interpretation of an APPL transaction may not terminate as the standard one. Secondly, an
apstract version of the exact non-standard semantics is defined, aimed to deduce
mformation about how many objects of a class are manipulated and in which way.
Finally, results of abstract semantics have to be proven correct wrt exact ones and that
abstract semantics terminates for every possible input APPL transaction. The exact non-
standard semantics is only sketched, a complete presentation may be found in in [Amato
1993. This semantics behaves exactly as the standard one, plus it keeps track of the
accesses to modifiable values such as references, object states and classes. This is
obtained associating two flags to each location in which a modifiable value is stored.
During the non-standard execution of a transaction, flags are used to record if a location
is accessed, respectively for reading or updating its content. Flags are set when read or
update primitives are performed. Read and update primitives are specific for the type of
value stored in the location. In our language the following cases hold:
1) A reference is read when a dereference primitive a¢ is executed, and it is updated
when an assignment ass is performed;
i) Anobject state is read from an object access primitive: obj_of selects a field of an
object, speciatise updates an object;
iif) A class extension is read from a query primitive for_class, a base class extension is
updated from the insertion primitive insert, a subclass extension is updated from
the specialisation primitive specialise.



top- level expression

maXx

) levO=max
' ese ) levl

Figure 7. Levels in Abstract Execution

4.1 Abstract Semantics

The analysis we are interested in, is aimed to detect if a transaction accesses the state of
every object of a class or only a subset of them. The abstract semantics formalizes the
probability that a transaction accesses all objects of a class. This process builds on three
concepts which are the basic items of our abstract domains:

i) success probability: it is the probability that the condition of an if-then-else statement
holds. Such probability may be inferred by using statistical information on the database
status.

As an example consider the following predicate x.age > 35 , where x ranges over the
class employee. Suppose that we have statical information on the distribution of the
values of the attribute age of the employee. We can use such statistics to compute the the
success (fail) probability of such predicate so if the 75% of employee are over 35, the
success probability of the predicate is 0.75.  When such statistics are not available
success probability of the predicate is 0.5.

ii} execution probability: it is the probability that a statment will be executed. When a
statment oceurs within a branch of a if-then-else, its execution probability will depends on
the success (fail) probability of the condition.

iti) access probability: it is the probability that all objects of a class are accessed. Notice
that, there is only a primitive in our language which involves the extension of a class.
Such primitive is the for_class which applies a function to all objects of a class. If such
function contains an access primitive all objects of the class may (or may not) be
accessed.

The above notions of probabilities are rephrased by the abstract semantics which
manipulates abstract values ranging from 0 to max, where the constant max is a positive
integer and it represents in terms of probability the value L.

The abstract execution probability is computed according to the following rules:



i) let ¢ be transaction: then its abstract execution probability is max;

ii)  let e be the conditional expression ite(b.ei,e2) with abstract execution probability
aep, and let asp the abstract success probability of 5: » will have as abstract
execution probability aep, e/ will have as abstract execution probability aep div
(max div asp) while ¢2 will have as abstract execution probability aep div (max div
(max - aspy), where div is the integer division;

iii) lete be any other expression with execution probability aep: all its subexpressions
will have the same execution probability aep

The abstract access probability is computed according to the following rules:

1) when an access primitive p is applied to the current object o during the execution of
an expression reached from a for_class, the abstract access probability of o is the
abstract execution probability of p;

ii)  when evaluating a conditional, the abstract access probability of all objects is the
least upper bound between the sum of the abstract access probabilities collected
from the else and then branches, and the abstract access probability of the
condition.

iif)  when any other expression is evaluated the abstract access probability of all objects
is the least upper bound of the abstract access probabilities computed while
executing the subexpressions.

4.2.1 Abstract Domains
The abstract domains used by the abstract semantics are defined as follows:

Env =Ide — Val + Class
Val = Aval + Aobj + Afun
Class = {1 .. class_no}
Aobj = {1 .. class_no}

St = Class = Aobj

Aval = {none}

Lock = Aobi — (X xS x SIX)

X =5 = 5IX = Aaprob

Aaprob= Aeprob = Asprob =1{0, 1, 2, ..., max }
Fun = Val — St — Aeprob — (Val x Lock)

Basic values, references, records, object states and sequences are abstracted by the
singleton (none} because we are not interested in the behaviour of a transaction on
individual values and on associations among values. Our anaiysis is only interested in
determining when an object is accessed during the abstract execution of for class
primitive. The extension of a class is denoted by a unique abstract object identifier. class
_no is the number of classes in the database.

The Lock domain is used to record the abstract access probability of an object by
associating an abstract object identifier with a triple <X, §, SIX>. The corresponding X, S,
and SIX domains have 0 as bottom, max as top, and the ordering of the other elements is
the usual natural ordering. We will indicate the bottom of the Lock domain with NL, i.e.
NL=Ao.<0, 0, 0>. The elements of the Aaprob, Aeprob, Asprob domains represent respectively
abstract access probability , abstract execution probability , abstract success probability.
Finally, the Fun domain is used for functions: given its argument, a store and a abstract
execution probability, a function returns a value and a lock.



4.2.2 Tuning of the analysis

'The accuracy of the probability computed by the information returned from the abstract
analysis depends on the choice of max. The level at which expressions are evaluated
decreases every time an occurtence of the conditional construct is evaluated, until the level
becomes 0. Notice that, level O does not mean that there are no more sub-expression, but
it means that our choice of max covers only till this depth of the execution tree. So, if
there are further sub-expressions their execution level is approximated to 0. This
behaviour affects also the computation of the access level and hence the access
probability. So, all the object accessed by expression at level O will have access level O
that represents no access. This is in the case where our analysis may give a worst
approximation with the respect the real execution. The consequence of this behaviour
affects only the performance (choosing an object locking instead a class locking) while
correctness is preserved.

The more accurate choice of max should provide that the level of the nested
conditionals that can be reached during execution should be greater than 0. This value is
not computable statically because of recursion. An acceptable choice of max can be made
for example considering the depth of a tree built as follow:

i)  we start from a node for the main expression e representing the transaction to be
analysed;

1)  if the node corresponding to an expression contains a conditional construct, the
node has owns two children, corresponding to then and else expression;

iii)  if an expression e contains a function call g(x), g(x; is syntactically substituted with
its body, if the substitution of gfx) has not been made previous in the path starting
from the root of the tree and reaching e (this is the way we cut the recursion).

4.2.3 Semantic equations

In this subsection, we will consider the semantic functions AL for expressions and AD for
local deciarations.

AL: Exp — Env -» St — Aeprob — (Val X Lock)
AD: Dec -» Env — 5t — Aeprob — {Val x Lock X Env)
AP: Exp — Env — St — (Asprob)

AL and AD evaluate respectively an expression and a declaration in a given environment,
a store and a abstract execution probability. AL returns a value and a lock, AD returns a
value, a lock and a modified environment. AP returns the abstract success probability of a
conditional expression.

Within the equation the convenctions p Env, o eSt, 7 Aeprob will be used.

The description of AP function is out of the aim of the paper. It may be depend by
statistical information on the database status and it may be computed by same other
analysis tool. In this sense we just say that:

AP [e] p o= vracle(e, p, o),
where
oracle: (Exp, Env, St) — Asprob
is the function that uses the statistical information.

In the sequel of the section we present only few relevant semantic equations of our
abstract semantics.



AL [ite (b, e;. e5)}porm=let p=AP[b]pc
<valy, lk>=AL [b]lpon
<valy, lky> = AL [e,] p o (7 div (max div p))
<valy, lk;> = AL [e2] p o (7 div (max div (max - p)))
- kg = asum (iky, Ik;)
in <none, sup (lky, Ik,) >

The boolean expression 4 is evaluated at the execution probability of the conditional
construct itseif. The then and the else branches are evaluated at the appropriate execution
probability as described previously. The global result is the sup between the sum? of the

locks resulting by the evaluation of the two branches and those locks resulting by the
boolean expression evaluation.

AL [for_class (x,f) | pon= let <funlk>=AL[flpor
cid = p {x)
otd = o {¢id)
<vallky> = fun oid on
in <none, sup(lk,, lk,) >

for_class primitive applies a function f to the unique class object bound to the class
identifier x. The lock of the object changes only if it is accessed during the function
application.

AL[specialise (o,rx)]pom=let <ecidik>=AL[o]pox
<~lk>=AL[r]lponr
Ik = if (0id © none)
then [<x,0,m>/0id]
else NL
i <eid,sup (tki,lky1k) »
specialise primitive modifies an object so its lock is updated in X and SIX mode.
Notice that o expression evaluates to none if the object has not been reached through a
for_class primitive: in this case x (execution probability), is not recorded.

AL[obj_of 0 b)) por= let <oidlkj>=AL[o]pon
Ik = if {0id  none)
then [<0,7,7>/ 0id}
else NI,
in <none, sup (lky,lk) >

The ebj_of primitive reads the object so the object lock is updated in S and SIX mode.

2 The auxiliary function asum: Lock x Lock — Lock is defined as follows;
asum (tk),lk;} = Lsmioid]
where V 0id € Dom(Lock)
sm = <lk,(oidyl 1 +3lk,(0id) L 1,1k, (0id N 2421k (0id) L 2,0k (0id) L 3+2tk{0id) L 3>
and +* :(X+8+8IX) X (X+8+SIX) — (X+5+S8IX) is defined as follows:
a+'b =a+bh ifa+b <max
= max elsewhere



AL[remove (o) por= Tet <otdlk>=AL{o]pon
Ik = if (cidr none)
then {<m,0,7>/ 0id]
else NL
in <none, sup (lky, ik} >

The remove primitive modifies the object lock in X and SIX modes.
4.2.4 Correctness and termination

The correctness of the analysis has been proven with respect to the exact non-standard
semantics of the language. The intuitive notion of correctness is the following: if after the
analysis of a transaction an abstract object o, contains max in X (8) then all the objects of
the exact class, that corresponds to the abstract class to which o, belongs to, will be
accessed for updating (reading); if after the analysis of a transaction an abstract object o,
contains max in SIX then all the objects of the exact class, that corresponds to the abstract
class to which o, belongs to, will be indifferently accessed for updating or reading.

The termination of the analysis is guaranteed by the finiteness of the abstract
domains and by the monotonicity of the functions that perform the analysis on such
domains. In fact the termination of the fix—point computation depends on the
monctonicity of the function involved in the computation and on the usage of domains
with finite ascending chains [Hermenegildo 1990]. The finiteness of the domains is
trivially stronger than having finite ascending chains.

5. EXAMPLES OF THE APPROACH

The analysis starts evaluating a transaction with max as initial Jevel and with a DBR as
previously defined (Section 4.2.2). The goal of transaction’s analysis is to know for
each class the approximate access probability to all the objects of its extension in S, X and
SIX mode. The table below reports the combination of the admissible results of the
analysis and the final lock decisions. For example. suppose that the analysis results in a
max value for the X component of ¢/ class’s abstract object. Independently from the values
of the other two components, we argue that all the objects of ¢/ will be dynamically
modified from the transaction so we ask an X lock for ¢f class to Jock implicitly all its
objects (first column of the table).

X max 0 >0, <max 14 >0, <max <HIaxX

) - max <HIAX >0, <max max <mMax
SIX - - <max - - max
Final Lock X N X IS _SIX SIX

The next three examples have the following Galileo database schema consisting of the
Persons superclass and its subclass Employees.

use Persons class
person <->
(! name: string;
and code: string
and address: string ... 1)



[ Tock ] T Lok T Tok N

objl <0,0,0> I objl <0,0,0> fl objl [ <0,0,0> {

obj2 <0,0,0> | obj2 <0,max,max> [ obi2 | <max/2,max,max>||

Figure 8: Analysis’ Results of T1, T2, T3.

and Employees subset of Persons class
employee <->
(lis person
and salary: var int ... 1);

The resulting DBR has two abstract classes with a single abstract object.

Env . St |
[

Persons cll cl! objl

Employees |cl2 cl2 obj2 ||

Example T1
T1 is a transaction that counts the objects of Employees class.

block { let (Counter, var (1)),
let (Count,func(Obj,ass (Counter,+ (af {Counter), 1)),
for_class {Employees,Count),
Counter

)

T1 does not access any object state. This means that the class hierarchy in APPL LIG is
not involved. The occurrence of the for_elass primitive in the text of the transaction will
only produce an § lock on Empioyees extension of APPL LIG.

Example T2
T2 increases the salary of all the employees except the one bound to Eobj identifier. T2
returns the sequence of the salary of all the employees.
block { let (Payfunc(QObj,
ite (same {Obj,Eobj),
at (obj_of (Obj, ‘salary’)),
block ( let (Sal,obj_of (Obj, ‘salary’}),
ass {Sal,+ (af (Sal),const)},
at (Sal)))

)
for_class (Employees,Pay)}

)

Notice that all the objects are accessed in shared mode. This leads to ask an S lock on the
Employees class.

Example T3
T3 looks for one person object and specialises it.



same(..) Object accessed in
Shared mode at level
ax (then + else)

obj_of(..)

Object accessed
atlevel max div 2
in Shared mode

bject accessed
at level max div 2
in Shared mode

Figure 9: Tree of Abstract Execution of Example T2

The transaction accesses in S mode all persons and it accesses in X mode a single person.

block (let (Upd function (Obj,

ite (same (obj_of (Obj,Cod),487502),
specialise (Obj,est,Employees),
skip })

}s
for_class (Persons,Upd))

This leads to ask a SIX lock for the Persons class,

6.

FINAL REMARKS

The paper has presented an approach for dealing with conservative multigranular locking
in a PPL with OO features inspired by Galileo. There are several firm believes that

motivate a static analysis of the implicit transactions expressed in this language:

a)

b)

)
d)

the programmer is relieved from the burden of explicitly programming a complex
concurrency control protocol;
the supporting system knows that the concurrency control protocol has been
automatically generated and it is safe, so the system is relieved from the task of
controlling the correctness of the implemented concurrency control protocol;
the overhead of the static analysis in a client-server architecture can only burden on
a client;
the use of conservative multigranular locking protocol reduces the run—time
overhead of the supporting system while allows a satisfactory concurrency degree.

The result is a programmable system that as a whole represents a compromise between a
high level of abstraction during its programming and a satisfactory efficiency at run—time,
The efficiency is pursued reducing at a minimum the functionalities provided at run—time
by the scheduler in the server, increasing the set of functionalities provided by a client
(static analysis and part of the concurrency control functionalities at Tun—time),
transferring in a phase that precedes transaction execution the granting of access to shared

resources (conservative protocol).



cond

Object accessed at level
max in Shared mode and
at level max div 2 in
eXclusive mode

samef,.)

specialise (..)
obj_of(..) v

Object accessed
at level max div 2
in eXclusive mode

~Object accessed
at level max in
Shared mode

Figure 10: Tree of Abstract Execution of Example T3

The proposed approach focuses on reducing the granularity of the analysis but still
the best results are for transactions with a simple structure of the control. We have done a
step forward concerning the previous experiment but there is space for further
improvements. To provide a better accuracy of the analysis the use of techniques
developed in the context of query processing and symbolic execution might be
investigated. We strongly believe that abstract interpretation is a unifying framework for
all these kinds of techniques.

At the moment a prototype of the proposed system is under development. In this
profotype the analyser is integrated with the existing APPL system, so that the analysis,
the scheduling and the execution of transactions coexist and interact. A further step is to
test some significant case studies to evaluate the performance figures obtained.

7. REFERENCES

[Abramsky 1987]
Abramsky S. and C. Hankin (eds), Abstract interpretation of declarative languages, Ellis
Horwood, Chichester, UK.

[Albano 1985]

Albano A., L. Cardelli and R. Orsini, “Galileo: A strongly typed interactive conceptual
language”, ACM Transactions on Database Systems, Vol. 10, N. 2, pp. 230-
260.

{Amato 1993]

Amato G., F. Giannotti and G. Mainetto, “Data Sharing Analysis for a Database
Programming Language via Abstract Interpretation”, Proc. of the 19th Int.
Conf. onVLDB, Dublin, Ireland, pp. 405-415.

[Atkinson 1987]
Atkinson M. P. and O. P. Buneman, “Types and Persistence in Database Programming
Languages”, ACM Computer Surveys, Vol 19, N. 2, pp. 105-190.

[Bernstein 1987] )
Bernstein P., V. Hadzilacos and N. Goodman, Concurrency Control and Recovery in
Database System, Addison-Wesley, Reading, MA,



[Cousot 1977] '

Cousot P. and R. Cousot, “Abstract Interpretation: an unified lattice model for static
analysis of programs by construction of approximation of fixpoints”, Proc.
4th POPL, pp. 238-252.

[De Witt 1990}

D. J. DeWitt, P. Futtersack, D. Maier and F. Velez, “A Study of Three Alternative
Workstation-Server Architectures for Object-Oriented Database Systems”,
Proc. of the 16th Int. Conf. on Very Large Database Conference, Brisbane,
Australia, pp. 107-12L.

[Di Giacomo 1993]

Di Giacomo M., G. Mainetto and L. Vinciotti, “Gestione della Persistenza ¢ delle
Transazioni nel Sistema Galileo Distribuito”, Atti del Primo Convegno
Nazionale su Sistemi Evoluti per Basi di Dati, D. Saccd (editor), pp. 227-
243, an extended version is contained in CNUCE Tech. Report C93-035.

[Garza 1988]

Garza J. F. and W. Kim, “Transaction Management in an Object—Oriented Database
System”, Proc. ACM SIGMOD Intl. Conf, on Management of Data, Chicago,
Illinois, pp. 37-45.

[Ghelli 1990]

Ghelli G., “A Class Abstraction for a Hierarchical Type System”, Proc. of the 3rd Int.
Conf. on Database Theory, Paris, S. Abiteboul (ed.), Springer—Verlag,
LNCS 470, pp. 56-71.

[Graefe 1993]
Graefe G., “Query Evaluation Techniques for Large Databases”, ACM Computing
Surveys, Vol. 25, N. 2, pp. 71-170.

[Gray 1975]

Gray J., R. Lorie and G. Putzoly, “Granularity of locks and degrees of consistency in a
shared database”, IBM Res. Rep. RJ1654, IBM Research Laboratory, San
Jose, CA also in Modeling in Database Management Systems, Nijssen (ed.),
North Holland, 1976.

[Gray 1978]

Gray 1., “Notes on Database Operating System”, IBM Res. Rep. RJ2188, IBM Research
Laboratory, San Jose, CA also in Operating Systems — An Advanced Course,
R. Boyer, R. M. Graham and G. Siegmiiller (eds.), Springer Verlag, LNCS
60, 1978.

[Heremenegildo 1990]
Heremenegildo M., “Abstract Interpretation and Its Applications”, Invited Talk,
‘Advanced School on Foundations of LP, Alghero, Italy.

[Hudak 1987] . .

Hudak P., “A semantic model of reference counting and its abstraction”, in lAbstract
interpretation of declarative languages, Abramsky S. and C. Hankin (eds),
pp. 45-62.

[McCarthy 1962] . .
McCarthy J., P.W. Abrahams, D.J. Edwards, T.P. Hart and M.L Levin, Lisp 1.5
programmers’s manual, MIT Press.



