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A B S T R A C T   

Objective: To assess the effectiveness of 3 novel lung ultrasound (LUS)-based parameters: Pneumonia Score and 
Lung Staging for pneumonia staging and COVID Index, indicating the probability of SARS-CoV-2 infection. 
Methods: Adult patients admitted to the emergency department with symptoms potentially related to pneumonia, 
healthy volunteers and clinical cases from online accessible databases were evaluated. The patients underwent a 
clinical-epidemiological questionnaire and a LUS acquisition, following a 14-zone protocol. For each zone, a 
Pneumonia score from 0 to 4 was assigned by the algorithm and by an expert operator (kept blind with respect to 
the algorithm results) on the basis of the identified imaging signs and the patient Lung Staging was derived as the 
highest observed score. The output of the operator was considered as the ground truth. The algorithm calculated 
also the COVID Index by combining the automatically identified LUS markers with the questionnaire answers and 
compared with the nasopharyngeal swab results. 
Results: Overall, 556 patients were analysed. A high agreement between the algorithm assignments and the 
expert operator evaluations was observed, both for Pneumonia Score and Lung Staging, with the latter having 
sensitivity and specificity over 92% both in the discrimination between healthy/sick patients and between sick 
patients with mild/severe pneumonia. Regarding the COVID Index, an area under the curve of 0.826 was 
observed for the classification of patients with/without SARS-CoV-2. 
Conclusion: The proposed methodology allowed the identification and staging of patients suffering from pneu-
monia with high accuracy. Moreover, it provided the probability of being infected by SARS-CoV-2.   

1. Introduction 

Pneumonia usually involves the outer non-mediastinal pleural sur-
face and progresses through stages. Lung ultrasound (LUS) is a robust 
imaging technique able to detect pulmonary changes associated with 
pneumonia and their evolution depending on the degree and extent of 
consolidation [1]. Indeed, it has been widely used as a non-invasive 
bedside technique for identifying, diagnosing and following-up pneu-
monia and other respiratory diseases [2–7]. Although its capability to 
provide relevant diagnostic information on pulmonary tissue has been 
investigated since the 1990s [8,9], the standardization of a procedure 

for the quantitative scoring of disease severity is still debated [10–12]. 
In 2020, the usefulness of LUS emerged during the pandemic caused 

by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
[13,14]. The improvement in sensitivity in the early identification of the 
associated coronavirus disease (COVID-19) when integrating LUS with 
reverse transcription polymerase chain reaction (RT-PCR) has been 
recently demonstrated [15]. Moreover, both for the generic pneumonia 
management and in the case of COVID-19, LUS has been presented as a 
first-line diagnostic imaging, alternative to chest computed tomography 
(CT), particularly useful in children, pregnant women, critical patients 
and patients in areas with high rates of community transmission [13,16, 
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17]. Additionally, CT waiting lists are particularly long, making the 
employment of CT for the identification of COVID-19 patients logisti-
cally challenging [18], besides being intrinsically inappropriate because 
of the involved radiation, which also hinders its application for the 
short-term follow-up. 

On the other hand, LUS has not yet been widely adopted among the 
routine clinical procedures to face COVID-19 pandemic, probably due to 
the lack of automatic and objective approaches, which in fact results in 
the need for expert sonographers for scan execution and data 
interpretation. 

One of the main limitations to an intensive LUS use in the triage 
phase is actually the need of experienced operators able to recognize the 
characteristic pneumonia patterns, and consequently return its classifi-
cation and staging [19]. Therefore, it would be of utmost importance to 
provide the medical community with an advanced technology for the 
automatic and operator-independent identification and staging of 
pneumonia using quantitative LUS. 

A novel technology based on the automatic analysis of ultrasono-
graphic data has been implemented aiming to recognize the character-
istic pneumonia patterns, without requiring experienced sonographers. 
Actually, the system guides the operator during the lung echographic 
scan, which can involve up to 14 anatomical zones, and automatically 
generates a report indicating, for each zone, the level of pneumonia 
severity on a scale from 0 to 4 (where 0 indicates the absence of the 
disease and 4 represents the maximum severity). 

The aim of this study was to introduce this new methodology and to 
preliminarily investigate its usefulness and accuracy in pneumonia 
evaluation and staging, by addressing two main primary objectives: (i) 
assessing the accuracy of a novel LUS-measured parameter (Pneumonia 
Score) in the scoring of pneumonia in each analysed point with respect to 
the corresponding scoring performed by an expert operator; (ii) assess-
ing the effectiveness of a derived parameter (Lung Staging) in the total 
staging of pneumonia, again with respect to an expert operator. As 
secondary objective, the performance of a further novel index (COVID 
Index), related to the probability that the observed pneumonia was due 
to SARS-CoV-2 infection, was evaluated. 

2. Materials and methods 

2.1. Study design and setting 

This study was performed in collaboration with the Emergency and 
Admission Department (DEA) of the “Vito Fazzi” Hospital in Lecce 
(Italy), the Spallanzani Hospital in Rome (Italy) and the San Matteo 
Hospital in Pavia (Italy). The recruited patients were both healthy vol-
unteers and patients with lung infections of various aetiology. The pa-
tients underwent a LUS scan using the SensUS Touch – EcovidUS version 
device (Amolab Srl, Lecce, Italy), equipped with the Lung 19 software 
module and provided in an “open” configuration, specific for research 
purposes. 

The enrolment period lasted from April 15th to May 31st 2020. To 
reach the required sample size, as detailed later in text, additional 
clinical cases were obtained from clinical databases freely accessible 
online, such as Butterfly, Grepmed and ThePocusAtlas (available at 
butterflynetwork.com, grepmed.com and thepocusatlas.com, 
respectively). 

The resulting dataset was randomly split into two equal-sized sub- 
datasets, which were separately used: the first to implement the algo-
rithm with the clinical parameters described below (cf. “Outcome” 
paragraph) and the second as an independent cohort to validate their 
performance. 

The protocol was approved by the institutional review board. All 
patients provided an informed consent and all data were immediately 
anonymized. The study was conducted in accordance with the principles 
of the Declaration of Helsinki for clinical research involving human 
subjects. 

2.2. Selection of participants 

The eligibility criteria for the inclusion in the study were: both 
women and men; all ethnicities; age >18 years; healthy volunteers or 
subjects who referred to the point of care for triage because of one or 
more of the following conditions: (i) Travel/residence history in the 
areas with a high rate of COVID–19 transmission; (ii) Exposure to pa-
tients with fever or respiratory symptoms who were in the areas with a 
high rate of COVID–19 transmission; (iii) Epidemiological associations 
with COVID–19 infection; (iv) Clinical manifestations of COVID–19 
infection such as fever, cough, hypoxemia or other respiratory symp-
toms, radiographic features of pneumonia (such as ground glass opacity 
or patchy consolidation in the lungs), normal or decreased number of 
white blood cells, decreased lymphocyte count in the early stage of 
disease, etc. 

2.3. Measurements 

The recruited patients underwent a clinical and epidemiological 
questionnaire prior to the ultrasound acquisition, outlined as an adap-
tation of the World Health Organization seroepidemiological investi-
gation protocol for COVID-19 infection [20], in order to collect 
information about concomitant symptoms (i.e.: fever; sore throat; res-
piratory symptoms including cough, difficulty in breathing and 
wheezing; loss or alteration of smell and taste; diarrhea) and likelihood 
of exposure to SARS-CoV-2 (i.e.: travel or residence in a country with 
local transmission in the 14 days prior to the onset of symptoms; close 
contact with probable or confirmed cases in the 14 days prior to the 
onset of symptoms). 

The device used to perform the LUS scan consisted of a battery based 
ultra-portable ultrasonographic unit and a convex probe operating at the 
nominal frequency of 3.5 MHz. The Lung 19 software module integrated 
in the device included a novel proprietary algorithm for the automatic 
recognition of the characteristic patterns of pneumonia, whose working 
principle is detailed in the next paragraph. The LUS acquisition was 
guided by the software, which had most of the presets pre-configured 
with locked values (e.g., tissue harmonics off). The only unlocked pa-
rameters were depth, focus and gain: depth (ranging from 90 to 210 
mm) was set according to the patient’s BMI; focus was set as close as 
possible to the pleural line level; gain value was selected by the operator 
to obtain the better visualization of the pleura and possible pneumonia 
markers. In general, the locked preset values combined with the indi-
cated setting of depth, focus and gain resulted in a quick and effective 
acquisition procedure, also in presence of potentially challenging situ-
ations (e.g., obese patients). A water-soluble and hypoallergenic 
coupling gel, e.g. Aquasonic® 100 Ultrasound Gel (Parker Laboratories, 
Fairfield, NJ, USA), was used for the probe-skin coupling. The probe was 
suitably preserved from contamination through the use of a latex probe 
cover. Moreover, the employed portable ultrasound device was easily 
sanitized before and after each use with disinfectant wipes. 

The LUS acquisition protocol was fully guided by a software interface 
and was based on the 14-zones method [21], namely 7 zones per side 
(left and right). However, because one of the main scopes of the adopted 
methodology is to perform a quick diagnosis, a minimum of four zones 
was considered sufficient in the triage phase, although the acquisition of 
more zones was allowed and left to the clinician judgement. The location 
and the minimum number of zones were selected according to recent 
studies already available in the literature [22]. Each acquired zone was 
scanned with the probe in longitudinal and transversal direction, with 
12 frames acquired per scan (thus, a total of 24 frames per zone were 
acquired). In detail, for each patient, the following zones could be ac-
quired: (1) Posterior portion of the lower quadrant of the right lung; (2) 
Posterior portion of the middle quadrant of the right lung; (3) Posterior 
portion of the upper quadrant of the right lung; (4,5,6) Same as (1,2,3) 
for the left lung; (7) Sub-axillary portion of the lower quadrant of the 
right lung; (8) Sub-axillary portion of the upper quadrant of the right 
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lung; (9,10) Same as (7,8) for the left lung; (11) Anterior portion of the 
lower quadrant of the right lung; (12) Anterior portion of the upper 
quadrant of the right lung; (13,14) Same as (11,12) for the left lung. A 
snapshot of the software interface after the acquisition is reported in 
Fig. 1. The same zones and the same images were evaluated by both the 
algorithm and the expert operator, in order to make the assigned scores 
fully comparable. 

2.4. Outcomes 

The algorithm automatically analysed each frame through specific 
morphological filters and thresholds based on the geometrical distri-
butions of the pixels in each image in order to automatically recognize 
the presence of the following signs: focal, multi-focal, confluent B-lines 
or "lung comets"; small or consistent consolidations (in particular: small 
multifocal, intralobular or interlobular with possible dynamic aerial 
bronchogram consolidations); A-lines; pleural effusions. 

The working principle of the proposed method is shown in Fig. 2. For 
each acquired zone on the patient chest, the algorithm assigns a Pneu-
monia Score value through the procedure described below. 

For each considered anatomical zone, each image is segmented 
through the following steps (applied to either longitudinal and trans-
versal acquisitions and illustrated in Fig. 3a for the case of a transversal 
image):  

1. Preliminary image validation, based on grey level and geometrical 
feature analysis, in order to verify the image suitability for the sub-
sequent processing steps and to discard possible images of insuffi-
cient quality.  

2. Image pre-processing, consisting in grey level adjustment and image 
cutting and resizing (Fig. 3b). 

3. Search for ‘raw’ target structures (i.e., anatomical landmarks, echo-
graphic markers and signs), based only on pixel cluster positions and 
their grey level intensity values, where the term ‘raw’ indicates that 
this first attempt of marker segmentation may necessitate further 
refinements because the identified pixel clusters could contain some 
imperfections due to background noise (Fig. 3c).  

4. Identified ‘raw’ target structures undergo dedicated processing steps 
based on a series of image filtering procedures and morphological 
operations, including in particular median filtering, pixel erosion/ 

dilatation, and hole filling, in order to finally detect the sought target 
structures (Fig. 3e–f).  

5. Storing of the coordinates of the target structures, in order to obtain 
their dimensions and relative positions (Fig. 3g). 

Once all the images belonging to the considered zone underwent the 
segmentation process through the above listed steps, in the parameter 
extraction phase the algorithm compares all the dimensions and relative 
positions resulting from step 5 and calculates the characteristic features 
of the detected structures (e.g., number of B-lines, width of the B-lines 
and of the white lung, dimensions of the consolidations, etc.). The 
Pneumonia Score associated to the examined anatomical zone is 
computed from these parameters based on the criteria reported later in 
this paragraph. The maximum of the Pneumonia Score values obtained on 
a given patient is then labelled as Lung Staging. The outcomes of the 
parameter extraction phase, combined with the information deriving 
from the questionnaire, are finally used to estimate the COVID Index as 
detailed later in the text. 

For each analysed zone, the Pneumonia Score, ranging from 0 to 4, 
was assigned by the algorithm on the basis of the identified pneumonia 
signs (see also Fig. 4). This score expressed the following disease grades: 
“0” in case of no disease, with presence of A-lines and absence of vertical 
artefacts (Score 0 in Fig. 4); “1” in case of early stage of the disease, with 
less than 3 focal B-lines (Score 1 in Fig. 4); “2” in case of intermediate 
stage of disease, with diffused and multifocal B-lines (Score 2 in Fig. 4); 
“3” in case of advanced stage of the disease, with diffused and multifocal 
B-lines and initial subpleural consolidations and white lung pattern 
(Score 3 in Fig. 4); “4” in case of very severe stage of the disease, with 
diffuse and multifocal B-lines and lung consolidations (Score 4 in Fig. 4). 
Then, the Lung Staging was obtained as the highest Pneumonia Score 
identified during the examination, and consequently it ranged from 0 to 
4 as well. This diagnostic parameter represented the overall staging of 
the disease as a global assessment of the lung health status. Of note, the 
adopted software was thought and designed to give the operator the 
possibility to correct the Pneumonia Score values assigned by the algo-
rithm. However, this function was inhibited in the device used for the 
present study, since the purpose was to validate the automatic algorithm 
with respect to the scores assigned by the expert operator, employing a 
“double-blind” approach. For this reason, changes to the automatically 
assigned scores were never made in any step of this study. 

Fig. 1. Software interface after the acquisition. The image is a screenshot of the automatic data elaboration of the results, including Pneumonia Score, Lung 
Staging and COVID Index values. The main panel of the user interface shows the acquired B-mode images. 
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All the images available for each considered patient, both longitu-
dinal and transversal, were stored and off-line analysed by an expert 
sonographer, who was kept blind with respect to the results automati-
cally provided by the software. The operator was asked to assign a 
Pneumonia Score, according to the scale explained above, to each scan-
ned anatomical zone of each enrolled patient. The assessment performed 
by the expert operator was taken as reference and considered as “ground 
truth”. Similarly, the Lung Staging value obtained by the algorithm was 
compared to the value obtained by the expert operator considered as 
reference. 

Finally, as regards the calculation of the probability that the pneu-
monia was due to SARS-CoV-2, the ultrasonographic data collected from 
patients for whom the positivity or negativity to the virus had been 
previously verified using an RT-PCR oropharyngeal swab were cata-
logued on the basis of the presence of specific ultrasound patterns, such 
as number and arrangements of the B-lines, consolidations, pleural 
modifications, etc. Thus, the software estimated the COVID Index (%) by 
integrating the presence of specific imaging patterns, usually presenting 
bilaterally and in basal lobes (patchy, no-gravity related B-lines, with 
very defined spared areas; sonographic white lung; irregular or frag-
mented pleural line; small peripheral consolidations or, rarely, larger 
consolidations in more advanced phases; trivial localized pleural effu-
sion in the context of more deaerated areas [19]) with the clinical, de-
mographic and epidemiological information derived from the 
questionnaire (as detailed in the “Measurements” paragraph) through a 
regression model. Each clinical and epidemiological information was 
associated to a specific score value, which had been previously deter-
mined through a statistical analysis of available data on the occurrence 
of the considered conditions in COVID-19 patients. The questionnaire 
result was then integrated with the image analysis result, calculated 
using a proprietary algorithm that acted in a similar way by assigning a 
specific score value to each detected pneumonia marker and to each 
further detected echographic sign of possible COVID-19 infection (being 
again based on the statistical analysis of available data on the presence 
of the considered echographic markers and signs in COVID-19 patients). 
The final COVID Index was obtained as a weighted average of the two 
partial results. Regarding the validation of the COVID Index, the pre-
dicted probability given by the COVID Index was correlated with the 
actual incidence of COVID-19 pneumonia in the considered patients 
(verified by RT-PCR). 

2.5. Analysis 

As concerning both the Pneumonia Score and the Lung Staging, the 
significance of the relationship between the 5-stage classification 

performed by the algorithm and by the expert operator was assessed 
through the calculation of the Cohen’s K, the Chi-squared (χ2) test and 
the Spearman’s correlation coefficient ρ. The accuracy of the algorithm 
in the Pneumonia Score and Lung Staging assignment with respect to the 
classification performed by the expert operator was evaluated as diag-
nostic concordance, i.e. the ability to give the same score as the expert 
operator, calculated as the ratio between the number of concordant 
scores and the overall number of assessed cases. 

Moreover, in order to evaluate both the ability to distinguish be-
tween patients with or without pneumonia (i.e. Lung Staging > 0 or Lung 
Staging = 0, respectively) and the ability to distinguish between patients 
with mild and severe signs (i.e. Lung Staging ≤ 2 or Lung Staging > 2), the 
sensitivity, specificity, positive predictive value (PPV), negative pre-
dictive value (NPV), positive likelihood ratio (LR+) and the negative 
likelihood ratio (LR− ) were also assessed [23]. 

The association between the COVID Index and the actual incidence of 
SARS-CoV-2 pneumonia was estimated considering 10-point ranges of 
COVID Index (i.e. groups of patients with COVID Index <10, ≥10 and <
20, ≥20 and < 30, etc.) and correlating the average COVID Index with 
the percentage of SARS-CoV-2 positive patients in each considered 
range. In principle, for each single COVID Index value the correlation 
with the percentage of patients actually infected by SARS-CoV-2 should 
be assessed. However, since a limited number of patients was available 
for each COVID Index value, the patients were grouped into 10-point 
ranges. In the plot reported in Fig. 6, coordinates of each point repre-
sent the mean COVID Index of the group of patients in the considered 
COVID Index range and the percentage of such patients that actually 
resulted positive to SARS-CoV-2. For example, the mean COVID Index of 
the patients in the range 40–50 was equal to 44.3% and 50.0% of them 
resulted positive to SARS-CoV-2. The strength of the correlation was 
assessed as Pearson correlation coefficient r and coefficient of determi-
nation r2. The accuracy of the COVID Index to discriminate between 
patients positive or negative to SARS-CoV-2 was investigated using 
Receiver Operating Characteristic (ROC) curve analysis [24,25]. 

We estimated that a sample size of 245 patients was necessary to 
observe a sensitivity and a specificity of 85%, considering a prevalence 
of the disease of 0.8 (intended as the proportion of the population 
arriving to the Emergency Department for suspected pneumonia that 
actually had the disease, estimated from a previous group of patients), 
with a type I error α = 0.05 [26]. 

The statistical analysis was performed using MATLAB® R2018a (The 
MathWorks, Inc., Natick, MA) and MedCalc Statistical Software version 
19.6 (MedCalc Software Ltd, Ostend, Belgium). 

Fig. 2. Block Diagram: Working principle of the implemented algorithm.  
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3. Results 

3.1. Characteristics of the study subjects 

Overall, 556 cases were considered for this study. According to the 
expert operator evaluation, 124 patients (22.3%) were classified as Lung 
Staging = 0 (no disease), 184 (33.1%) as Lung Staging = 1 (early stage), 
108 (19.4%) as Lung Staging = 2 (intermediate stage), 96 (17.3%) as Lung 
Staging = 3 (advanced stage) and 44 (7.9%) as Lung Staging = 4 (severe 
stage). The most commonly observed clinical manifestations of lung 
infections in the recruited patients were fever, hypoxemia, cough or 
other respiratory symptoms. The dataset was split into two datasets of 

equal size (278 cases each, randomly assigned), which were indepen-
dently used to implement and validate the proposed algorithm, respec-
tively. Overall, 2421 zones were analysed. 

3.2. Main results 

Considering the independent validation dataset and assessing the 
performance of the algorithm in the Pneumonia Score assignment, the 
Spearman correlation coefficient was ρ = 0.932 (95% CI: 0.927 to 0.937, 
p < 0.0001), the χ2 test was significant (contingency coefficient = 0.860, 
p < 0.0001) and Cohen’s K was 0.901 (95% CI: 0.887 to 0.914). The 
overall rate of agreement between the Pneumonia Score assigned by the 

Fig. 3. Image segmentation steps applied to a typical transversal image: Application of image processing steps for automatic segmentation of an ultrasound 
frame containing pleura and three B-lines: (a) initial image; (b) image pre-processing; (c) ‘raw’ identification of target structures; (d) conversion to a binary map and 
median filter application; (e,f) hole-filling and pixel erosion/dilatation for the separate identification of pleura (e) and B-lines (f), taking also into account automatic 
selection criteria based on morphological considerations; (g) determination of dimensions and relative positions of the target structures. 
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expert operator and the one assigned by the algorithm was 90.8%. 
As considering the 5-grade Lung Staging classification, the Spearman 

correlation coefficient between the Lung Staging assigned by the auto-
matic algorithm and the expert operator was ρ = 0.916 (95% CI: 0.894 to 
0.933, p < 0.0001). At χ2 test, a significant p-value was obtained (p <
0.0001), with a contingency coefficient of 0.843, showing that there was 
a strong relationship between the evaluation performed by the auto-
matic algorithm and the expert operator. The distribution of classifica-
tion among classes performed by the expert operator and the software 
algorithm is shown in Fig. 5. The Cohen’s K was 0.848 (95% CI: 0.808 to 

0.888). The percentage of overall agreement in the 5-grade classification 
was 80.6%, meaning that in large majority of cases the diagnostic 
classification performed by the algorithm was in the same class as the 
one performed by the operator. 

As concerning the capability to classify patients into sick and healthy 
(i.e. Lung Staging = 0 and Lung Staging > 0, respectively), the diagnostic 
agreement was 93.5%, the sensitivity was 94.4% and specificity was 
90.3%. The PPV and NPV were 97.1% and 82.4%, respectively. As 
concerning the capability to classify patients with mild or severe signs, 
instead, (i.e. Lung Staging ≤ 2 and Lung Staging > 2, respectively), the 

Fig. 4. Pneumonia score classification: Score 0 – Absent: a normal lung pattern was identified such as the presence of clear pleural line (highlighted by white 
triangular arrowheads) and A-line (highlighted by green arrows); Score 1 – Initial: a small number of B-lines, less than 3 (highlighted by pale yellow arrows); Score 2 
– Intermediate: the presence of diffused and multifocal B-lines (highlighted by yellow arrows); Score 3 – Advanced: with diffused and multifocal B-lines and initial 
subpleural consolidations and white lung pattern (highlighted by the orange arrow); Score 4 – Peak: with lung consolidations (highlighted by red arrows). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. – Histogram of the Lung Staging 5-class classification performed by the Lung 19 software with respect to the gold standard reference, i.e. the classification 
performed by the expert operator. 
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diagnostic agreement was 92.2%, the sensitivity was 92.0% and speci-
ficity was 92.8%, whereas the PPV and NPV were 96.1% and 85.3%, 
respectively. The extensive results about the performance obtained with 
the validation dataset are reported in Tables 1–3. 

Considering the prevalence of SARS-CoV-2 positivity compared to 
the average COVID index evaluated in steps of 10 units, the correlation 
was very high, with r = 0.977, r2 = 0.954 and the slope of the regression 
line 0.92 (95% CI: 0.75 to 1.08). The regression distribution is reported 
in Fig. 6. 

At ROC analysis (Fig. 7), the AUC was 0.826 (95% CI: 0.775 to 0.869, 
p < 0.0001). In correspondence of optimal cut-off associated to the 
Youden index, providing the best trade-off sensitivity and specificity is 
maximised, i.e. COVID Index > 35.5%, the sensitivity and specificity 
were 80.4% (95% CI: 71.8%–87.3%) and 70.0% (95% CI: 62.3%– 
77.0%), respectively. 

4. Discussion 

To meet the clinical needs related both to a standardization of an 
automatic quantitative pneumonia assessment and to the recently 
emerged SARS-CoV-2 pandemic, an algorithm based on a fully auto-
matic ultrasonographic data processing for the identification of imaging 
patterns distinctive of pneumonia has been proposed and validated on a 
first set of patients. To the best of our knowledge, this is a unique 
approach for the automatic and quantitative analysis of the lung health 
status, giving a measure of the pneumonia severity and indicating the 
probability of its association with SARS-CoV-2. This technology might 
pave the way for a standardization of the pneumonia assessment using a 
radiation-free approach. Indeed, the results showed a high level of ac-
curacy of the algorithm in distinguishing the cohort of healthy people 
from the sick patients with a very high level of sensitivity and, among 
the sick patients, the algorithm was able to correctly identify the lower 
stages (Lung Staging 1 or 2) with respect to the higher ones (Lung Staging 
3 or 4). Overall, a substantial agreement between the 5-class staging 
performed by the algorithm and the gold standard method, i.e. the 

Fig. 6. Linear regression between average COVID Index per 10-point ranges and 
percentage of SARS-CoV-2 positive patients. 

Table 1 
2 by 2 used for the classification of healthy or sick patients.    

Expert operator 

Disease Present Disease Absent 

automatic algorithm Disease Present 204 6 
Disease Absent 12 56  

Table 2 
2 by 2 used for the classification of mild or severe patients.    

Expert operator 

Mild Disease Severe Disease 

automatic algorithm Mild Disease 124 5 
Severe Disease 11 64  

Table 3 
Algorithm performance evaluated with respect to the expert operator classifi-
cation considered as reference, in the classification of healthy or sick patients 
and of patients with mild or severe signs.  

STATISTIC (95% CI) LUNG STAGING 
CLASSIFICATION IN 
HEALTHY AND SICK 
PATIENTS 

LUNG STAGING 
CLASSIFICATION IN MILD 
AND SEVERE SYMPTOMS 

DIAGNOSTIC 
CONCORDANCE 

93.5% (90.0%–96.1%) 92.2% (87.6%–95.5%) 

SENSITIVITY 94.4% (90.5%–97.1%) 92.0% (85.9%–95.9%) 
SPECIFICITY 90.3% (80.1%–96.4%) 92.8% (83.9%–97.6%) 
POSITIVE 

LIKELIHOOD 
RATIO (LR+) 

9.8 (4.6–20.9) 12.7 (5.4–29.5) 

NEGATIVE 
LIKELIHOOD 
RATIO (LR− ) 

0.06 (0.04–0.11) 0.09 (0.05–0.16) 

POSITIVE 
PREDICTIVE 
VALUE (PPV) 

97.1% (94.1%–98.6%) 96.1% (91.4%–98.3%) 

NEGATIVE 
PREDICTIVE 
VALUE (NPV) 

82.4% (72.8%–89.1%) 85.3% (76.7%–91.1%) 

AREA UNDER THE 
CURVE (AUC) 

0.948 (0.915–0.971) 0.954 (0.915–0.978)  

Fig. 7. ROC curve analysis of COVID Index ability to discriminate between 
patients positive or negative to COVID-19. The black bold line represents the 
ROC curve (AUC = 0.826) and the thin grey lines represent the 95% confidence 
interval. The dashed back lines indicate the value of sensitivity and specificity 
in correspondence of the Youden Index. 
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staging performed by the expert operator, has been demonstrated. The 
majority of the discordances between the methods concern the early and 
intermediate stages, and only in 5 out of 278 cases (1.8%) a difference of 
2 stages has been observed between the proposed algorithm and the 
expert operator. 

The clinical performance obtained by the Lung Staging in the evalu-
ation of the patient lungs reflected the even higher performance ob-
tained by the Pneumonia Score in the assessment of each zone, separately 
considered. This might be due the intrinsic nature of Lung Staging, 
calculated as the maximum value of Pneumonia Score observed for a 
given patient: indeed, the high occurrence of 0 scores when the single 
zones are considered with respect to the overall lung evaluation, might 
contribute to the apparently better accuracy of the Pneumonia Score with 
respect to the Lung Staging. Moreover, when the Lung Staging is auto-
matically calculated, a disagreement in a single Pneumonia Score might 
result in a Lung Staging disagreement, even if the scores were accurately 
assigned for the majority of analysed zones. This aspect underlines the 
usefulness of the possibility for the operator to confirm or to correct the 
automatically assigned Pneumonia Score. 

The SARS-CoV-2 pandemic has led to an increasing request of point- 
of-care ultrasound in daily clinical practice as an extension to bedside 
clinical examination through the employment of small and portable 
devices [19]. It has been recently demonstrated that the LUS can be 
successfully employed to detect lung alterations attributable to 
SARS-CoV-2 infection, even earlier than the positivity assessed by 
RT-PCR, thus allowing to compensate the false negative results obtained 
by the oro/naso-pharyngeal swab [15]. However, being the results 
mainly derived from the individual interpretation of the acquired im-
ages, qualitative and subjective analyses might occur: in this context, the 
development of an automatic and quantitative analysis is urgently 
needed [27]. 

The two main limitations of this study are the lack of the assessment 
of the intra- and inter-operator variability in pneumonia staging using 
LUS imaging and the unavailability of clinical data to define severity. 

Regarding the lack of variability assessment, with this initial settle-
ment and validation of the software module, the variability in pneu-
monia staging was not considered crucial, also because there was no the 
actual possibility of re-scanning the patients due to the emergency 
context and to the use of some cases obtained from online databases: 
variability will be investigated with subsequent dedicated studies, 
involving smaller number of patients and just focused on the assessment 
of repeatability and reproducibility. This aspect is also connected with 
the involvement of different operators. On one side, this might be a 
disadvantage, since the evaluation of the performance might have been 
influenced by the contribution of the inter-operator variability, but on 
the other side the real-life use of LUS should be considered: though the 
use of this technology is simple and requires a relatively short training 
period [28], the employment of LUS has only recently spread in clinical 
practice. For this reason, the majority of the operators have a short 
experience. It would be of interest the assessment of the performance by 
varying the operator’s experience, also to assess whether the guided 
acquisition and the automatic analysis offered by the software would be 
an aid in the reduction of the operator-related variability. In this 
context, the use of an expert operator analysis as a gold standard 
reference could be also considered a limitation of the study, although 
this is a very common approach in studies aimed to evaluate the accu-
racy of automatic or semi-automatic algorithms for ultrasound image 
processing for various purposes. 

Regarding the absence of clinical data to define disease severity, 
actually, values such as oxygen saturation, oxygen support, PaO2/FIO2 
ratio etc., were not available because the considered cases derived either 
from scanning performed in the emergency context or from online da-
tabases. However, the key object of the present study was to compare the 
automatic LUS score assigned by the algorithm with the score assigned 
by an expert operator based on the echographic image analysis only, and 
this should not be influenced by the mentioned clinical data. 

Moreover, this study is a snapshot of a short-period activity during 
the SARS-CoV-2 pandemic, therefore characterized by the high preva-
lence of the COVID-19 pneumonia. The use of this technology in a 
standard clinical scenario should be investigated in subsequent studies. 

Finally, the monitoring of the enrolled patients is missing in this 
report. Indeed, the addition of further analysis for the monitoring would 
have made it incompatible with the overloaded clinical routine, but it 
will be planned in further studies dedicated to the monitoring of pneu-
monia disease evolution. 

As yet, there are no devices that can automatically evaluate ultra-
sonographic data derived from lung investigations, unless based on 
artificial intelligence approaches [29,30]. Nonetheless, important 
studies have been conducted before the onset of the SARS-CoV-2 
pandemic, on the development of automatic or semi-automatic algo-
rithms based on LUS image processing, but they are not commercially 
available so far. Interesting approaches for the automatic identification 
and quantitative assessment of B-lines in patients with pulmonary 
edema or acute respiratory distress have been recently proposed [10, 
31], showing that the implementation of quantitative LUS through 
computer-aided scoring had potential benefits in terms of faster data 
analysis and applicability to large datasets at no additional cost. Inter-
estingly, the method proposed in the present study is similar, though it 
integrates also the fully automatic analysis of ultrasonographic data and 
works in real-time. In a study by Corradi et al. [11], the diagnostic 
performance of a method for the quantitative analysis of LUS was 
compared with chest X-ray and visual assessment of LUS for the detec-
tion of pneumonia, using CT as the gold standard. Quantitative LUS 
showed greater sensitivity (93%), specificity (95%) and diagnostic ac-
curacy (94%) than chest X-ray and visual ultrasound or their combina-
tion in diagnosing pneumonia. This is an evidence of how quantitative 
LUS might represent a valid support for the physicians dedicated to the 
triage phase and committed to quickly referring the patient to the 
appropriate care unit. 

The methodology proposed in the present study allowed for the 
identification of patients suffering from pneumonia with high accuracy. 
The implemented method integrated the known advantages of the 
generic LUS (such as portability, non-invasiveness and real-time infor-
mation), which allow for the use at bedside also in intensive care units, 
first aid departments and Special Continuity Care Units that provide 
home care for COVID-19 patients, with the automatic approach that 
increased the objectivity and gave a quantitative indicator of the 
pneumonia staging, with potentially important implications in terms of 
reduction of operator-related variability and usability regardless of the 
operator’s experience. 

5. Conclusions 

This new LUS-based technology, described and preliminarily vali-
dated in this study, showed a good capability of diagnosing and staging 
pneumonia. The reported results unveil also the potential of the new 
LUS-based technology to be used to monitor pneumonia evolution in a 
personalized way (i.e., by repeating the exam with the frequency 
deemed as appropriate by the physician). Moreover, in addition to a 5- 
stage pneumonia scoring given by the Lung Staging parameter, the sta-
tistical probability of being infected by SARS-CoV-2 was also expressed 
through the COVID Index, thus allowing the clinical staff to activate the 
most adequate clinical path. 

This device might represent a significant decision support tool for 
both experienced and less experienced staff (in particular for personnel 
in training), due to the simplicity of its use, with a user-guided acqui-
sition and a fully automatic real-time analysis. Indeed, it does not 
require the visual analysis of the acquired images, though it is given the 
operator the possibility to accept or to intervene to modify the auto-
matically obtained result. The adoption of this approach within the 
triage and intensive care areas, as well as in the ambulance or at pa-
tient’s home, might have important implications both at the population 

F.A. Lombardi et al.                                                                                                                                                                                                                            



Respiratory Medicine 189 (2021) 106644

9

level, since it would allow for mass screening and widespread preven-
tion (particularly for the more fragile population, such as the elderly and 
patients with previous comorbidities or other risk factors), and at 
healthcare system level, offering a rapid and cost-effective identification 
of any-aetiology pneumonia in a simple and objective way. 
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