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Abstract

During the last years, considerable progresses have been made in developing
on-line species occurrence databases. These are crucial in environmental and
agricultural challenges, e.g., they are a basic element in the generation of species
distribution models. Unfortunately, their exploitation is still difficult and time
consuming for many scientists. No database currently exists that can claim
to host, and make available in a seamless way, all the species occurrence data
needed by the ecology scientific community. Occurrence data are scattered
among several databases and information systems. It is not easy to retrieve
records from them, because of differences in the adopted protocols, formats and
granularity. Once collected, datasets have to be selected, homogenized and pre-
processed before being ready-to-use in scientific analysis and modeling. This
paper introduces a set of facilities offered by the D4Science Data Infrastructure
to support these phases of the scientific process. It also exemplifies how they
contribute to reduce the time spent in data quality assessment and curation
thus improving the overall performance of the scientific investigation.
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1. Introduction

Data sharing in the research domain is a practice whose benefits are nowa-
days well understood by both data owners and data consumers (Gray et al.,
2002; Hey et al., 2009; Boulton et al., 2012). Its adoption makes available to
scientists a considerable amount of data that they can exploit in conducting
their research. Sharing empowers them not only to access datasets produced
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and collected by colleagues working in the same domain, it also enables the ex-
ploitation of very different data made available in other domains. This new data
availability, especially the cross-domain one, is opening the way to new types of
scientific practices, e.g., experiments, analysis, modeling, that were not possible
few years ago. It also strongly facilitates the multi-disciplinary collaborations
that are needed to address today large research challenges. The attempts to
exploit data in contexts different from where data has been produced have re-
cently highlighted that an effective data reuse is often too challenging for the
individual scientists (Borgman, 2011). Individual datasets are accessible with
different protocols and through different user interfaces. This situation requires
that a considerable amount of scientists time is spent in understanding how to
access the datasets, in selecting the most appropriate ones, homogenizing them
and, more in general, preparing the datasets that fit the purpose of the planned
scientific investigation. This lack is pushing researchers and technologists in
computer science to think about new approaches for data sharing and man-
agement practices. These approaches must be flexible and powerful enough to
adapt to the multitude of different and evolving situations, making the under-
lying complexity transparent to the scientists.

Data Sharing and Reuse in Biodiversity Research: State of the Art. Data shar-
ing and reuse is particularly relevant in modern biodiversity research to address
large scale questions (Bendix et al., 2012; Costello, 2009; Enke et al., 2012;
Michener and Jones, 2012). Large scale initiatives have been launched in the
past years, either at global – e.g., GBIF (Edwards et al., 2000), OBIS (Grassle,
2000), VertNet (Constable et al., 2010), Catalogue of Life (Jones et al., 2011) –
or regional level – e.g., speciesLink1 and List of Species of the Brazilian Flora2

– to support the worldwide sharing of various collections of biodiversity data.
The development of standards for data sharing has been promoted by estab-
lishing appropriate interest groups (Meng, 2004; Bach et al., 2012). Domain
specific standards have been developed to focus on different interoperability as-
pects, e.g., Darwin Core (Wieczorek et al., 2012) and ABCD (TDWG, 2005)
for data representation, DiGIR and TAPIR (TDWG, 2010) for distributed data
discovery, LSIDs (Clark et al., 2004) for data citation.

In spite of this large offer and initiatives, the biodiversity domain also suffers
from the sharing and reuse problems highlighted above. Goddard et al. (2011)
described and analysed them by reviewing the state of biodiversity data host-
ing and discussing the technological and social barriers affecting data sharing.
Bach et al. (2012) analysed the technical solutions and standards implemented
by existing information systems and repositories to support multidisciplinary
biodiversity research. Well known initiatives aiming at simplifying biodiversity
data access, like GBIF, are reacting to the need of simplifying biodiversity data
access by carrying out strategic plans to further enhance the offering of “seamless

1http://splink.cria.org.br/
2http://floradobrasil.jbrj.gov.br/2012/
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data access, integration, analysis, visualisation and use” (Global Biodiversity
Information Facility, 2011). There is a general awareness of the need to “seek
a solution whereby these data are rescued, archived and made available to the
biodiversity community” (Goddard et al., 2011). At the same time, it is clear
that it is neither feasible nor reasonable to envisage a solution based on a single
system in charge of maintaining and making available the entire production of
biodiversity data. Rather it is expected that such a solution will be made avail-
able through an open endeavour in which (a) initiatives building databases for
such data will continue to exist, (b) existing key players will continue to evolve
towards larger federations, aiming at bringing the data out of these databases
and promoting their sharing and reuse (e.g., GBIF and Catalogue of Life), and
(c) increasingly more automatic support to the access and exploitation of shared
data will be offered through new infrastructures working side-by-side with the
rest – e.g., Pangea (Diepenbroek et al., 2002), DataONE (Michener et al., 2012)
and Map of Life (Jetz et al., 2012).

Paper contribution. This paper introduces one of these new infrastructures,
namely D4Science (D4Science.org, 2012; Candela et al., 2009). In particular,
the paper describes the facilities D4Science offers to support access and reuse
of species occurrence data. D4Science provides scientists with an integrated
and flexible computer-assisted environment, built on top of existing databases
and information systems. It offers facilities for supporting two key phases of the
reuse practice, i.e., data acquisition and data preparation. By “data acquisition”
it is meant the action of discovering, selecting and accessing relevant data in
diverse and disperse databases in a seamless way. By “data preparation” it is
meant the action that precedes the actual reuse of the data, i.e., distilling and
amalgamating discovered data as needed for “fitting the purpose” of the research
activity. D4Science offers these facilities “as-a-Service”3, i.e., community of
practices can start using these facilities like off the shelf instruments without
incurring in technology development and deployment efforts. The given facilities
are developed by following an approach that supplements (while not supplants)
databases and information systems mandates and arrangements for datasets
collection and aggregation. Thus D4Science contributes to the implementation
of the global biodiversity open endeavour envisaged by many (Goddard et al.,
2011; Roberts and Moritz, 2011; Peterson et al., 2010).

2. Methods

As already discussed in the introduction, data about species occurrences are
now scattered among several databases and information systems. There is no
single service that gives access to the entire spectrum of this kind of data across

3The term “as-a-Service” has been introduced in the context of the Cloud technologies
(Foster et al., 2008). It refers to both a business model and a delivery model. These are based
on the notion of “service”, where a customer pays the provider on a consumption basis for
such a “service”.
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the boundaries of disciplines, themes, regions, and taxonomies. A number of
initiatives (e.g., GBIF) aggregate large amount of data from different databases
and publish integrated versions of them through a single uniform interface. In
order to implement such services they ask to the databases providers to adhere
to established publication guidelines, formats and protocols. Moreover, during
the aggregation phase they apply specific transformations in order to generate
the required unified view. Usually, these transformations are not only limited to
the syntactic format. They often implement harmonisation and quality enhance-
ment practices that are decided by the service provider and are not explicitly
made known to the data consumers.

D4Science is a data e-Infrastructure which supports a different approach. It
is built and operated by a dedicated software system: gCube (Candela et al.,
2008). It offers a rich array of resources including datasets and data management
facilities by leveraging on existing information systems and other data infras-
tructures. Further, it supports the creation and operation of virtual research
environments (Candela et al., 2010, 2013), i.e., virtual spaces where group of sci-
entists, remotely distributed, have access to the resources (data, tools and com-
puting capabilities) needed to perform their specific works. D4Science makes its
facilities available “as-a-Service” by two provision models: (a) a human-oriented
model, i.e., the facilities are offered via a number of portlets via the D4Science
portal, and (b) a service-provider-oriented model, i.e., the facilities are offered
via a number of web based protocols and APIs. Among its facilities D4Science
offers (i) a seamless access to third-party repositories and information systems
and (ii) an open set of functionalities for data transformations and quality im-
provement. In the rest of this paper we will describe these functionalities and
highlight how they can be exploited in the scientific practices.

2.1. Occurrence Data Acquisition Facilities

Differently from the other solutions provided so far in the biodiversity do-
main, D4Science does not impose any specific guideline or protocol/format to
the databases or information systems it aggregates. Rather, it is conceived to
deal with the heterogeneity and challenges resulting from a scenario where the
providers are neither expected to be collaborative nor to modify their strate-
gies for data publication. Moreover, D4Science does not build an aggregated
database. Rather, it realises data aggregation dynamically, at query time.

D4Science offers a service for species occurrence data discovery and access
named Species Products Discovery (SPD). In addition to species occurrence
data, the service supports discovery and access to nomenclature data (Taxo-
nomic items). However, the features associated with this type of information
are out of the scope of this paper, they are discussed in Amaral et al. (2014).

SPD is conceived as a sort of mediator service (Wiederhold, 1992) over a
number of databases. In order to give access to species occurrence data, the
SPD service has been equipped with plug-ins interfacing with three major in-
formation systems: GBIF, OBIS, and speciesLink. To enlarge the number of
information systems and data sources integrated into SPD, it is sufficient to
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implement (or reuse) a plug-in. A plug-in is able to interact with an informa-
tion system or a database by relying on a standard protocol, e.g., TAPIR, or by
interfacing with its proprietary protocol. Every plug-in mediates queries and
results from the language and model envisaged by SPD to the peculiarities of
a single database. In particular, every mediator relies on mappings (Lenzerini,
2002) supporting (i) the rewriting of queries from the unifying SPD query lan-
guage to the query language supported by the specific data provider, and (ii) the
transformation of results from the specific data provider format to the unifying
SPD format. Details on the SPD query language, the SPD unifying data for-
mat and the mapping of retrieved data into the unifying format are extensively
discussed by Candela et al. (2014). It is important to highlight that records,
once described in the unified data model, contain details on their provenance
produced accordingly to the citation policies promoted by each database. The
effort needed to implement a new mediator depends on the complexity of the
mappings between the data source query language and results format to the
SPD ones. However, the definition of such mappings is quite easy because of
the similarities in objectives and data between the data provider and SPD. In
our experience in building tens of mediators, the average time to develop a real
plug-in is two working days.4

Occurrence data discovery mechanism is based on a very simple procedure
that allows a user to specify either the scientific name or a common name of the
target species. The goal is to favour the recall, i.e., to maximise the amount of
datasets discovered by means of a query. In practice, the system runs a query
on all the databases and collects the results in a unified result set. To overcome
the potential issues related with taxonomy heterogeneities, the service offers a
mechanism enabling query expansion, i.e., the user query can be augmented with
synonyms and “similar” species names from other data sources. For instance,
it is possible to define queries by specifying that the scientific name to search is
“Sarda Sarda” and the system might also use the synonyms names as reported
in OBIS. This implies that every plug-in is called to report the results for all the
datasets corresponding to the list of species specified in the target database. In
addition to species names users can specifically select the databases to search
among. They can also specify constraints on the spatial and temporal coverage
of the data to which they are interested.

The service is offered through a web-based user interface (Fig. 1) consisting
of (i) a search panel (on the top) for specifying the information need, (ii) a
results view panel (on the right) for browsing the list of datasets resulting from
a query, and (iii) a classification panel (on the left) offering clustered views of the
results, e.g., the classification, the data provider, the database, and the rank.
The occurrence data discovered are presented to the user in an homogenised

4Examples of developed plug-ins are available through the gCube webpage hosted by the
Ohloh service http://www.ohloh.net/p/gCube. In particular, by using the Browse Code a
user will have access to the entire gCube software code. SPD and its plug-ins are in the
data-access area.
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Figure 1: The SPD web interface with search facility running on Sarda sarda.

form, i.e., every dataset is described by carefully reporting typical Darwin Core
information like (i) the original data provider, (ii) the author of the record, (iii)
credits to the final provider, (iv) the species scientific name, (v) the coordinates
of the occurrence, (vi) the basis of record, and (vii) the recording date.

The user is also provided with a number of facilities for inspecting the re-
trieved data. These allow to identify the “right” data, collect them and start
forming a “research database”. Among these facilities there are two diverse
visualisations of the records belonging to the discovered occurrences datasets:
a detailed one and a geospatial one (Fig. 2). Both these views allow to have
access to a comprehensive description of every single occurrence point that has
been identified via the SPD.

After selecting some occurrence points, SPD enables users to save such points
in several formats, including CSV and Darwin Core. Such objects can be stored
and shared with collaborators by relying on a user workspace (Assante et al.,
2014). This is a core service of any virtual research environment. It is conceived
to resemble a classical folder-based file system a user may be familiar with. The
real added value of this file-system-like environment is represented by the large
array of items it can manage in a seamless way and store in the Infrastructure.

2.2. Occurrence Data Preparation Facilities

After occurrence data have been retrieved, a processing phase is often re-
quired to clean data or to discover complementarity between different datasets.
Data providers, in fact, can be collectors of other providers and this means that
taking occurrence records from many sources could introduce redundancy in
the extracted dataset. Furthermore, it cannot be assumed that data providers
supervise the quality of the datasets they publish. Datasets can contain errors
or can miss information. In other cases the providers can mix specimens and
catch reports or survey observations. Cleaning operations are useful to make
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Figure 2: The SPD web interface displaying the selected datasets of species occurrences. The
visible columns correspond to Darwin Core fields.

scientists able to use occurrence records in their experiments. Such experiments
can focus on niche modelling, where occurrence points are assumed to approxi-
mate presence points and the environmental features attached to each point are
correlated to the preferred habitat by a species. Otherwise, a scientist could use
the occurrence records to evaluate the coverage or the quality of a field survey
for a certain species. In this case, the aim is to understand if a representative
number of occurrences has been collected, which contains a good heterogeneity
of species habitat variables. Another possible usage of cleaning operations is the
estimation of the degree to which the projection of a niche model on a certain
area makes sense, i.e., how much the values produced by a model are reliable.
If the range of variation of the environmental parameters taken at the presence
(or absence) points of a species is representative for a certain projection area,
then the projection domain is very similar to the training set. Thus, projecting
the model onto that area is coherent with the information that was provided to
the model during the preliminary training session.

D4Science is endowed with processing facilities for occurrence points which
address all the above issues. Cleaning operations are performed by means of
processing tools that allow to delete duplicates, to merge two datasets of occur-
rences or to select only points falling in marine areas. Errors or outliers detection
is addressed by means of clustering techniques, which isolate zones having a low
density of points or being far from the others. Furthermore, D4Science supplies
facilities to evaluate the similarity among the features attached to presence
points with respect to those attached to some other locations. These techniques
are mainly based on the Principal Component Analysis (Jolliffe, 2005), a math-
ematical method that assesses the degree to which the dimensions of a vector
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are independent on each other.
The application of these techniques to the occurrence data coming from the

D4Science discovery facilities is not trivial. Each occurrence, in fact, is a rich
information set containing additional data, other than a pair of geographical
coordinates. Stating that two occurrence records are equal requires not only to
evaluate if two points are close, but also to check if the scientific names and
the authorships are equal or at least lexicographically similar. Furthermore,
also the dates of creation and update should coincide. Such information set
must be properly taken into account, in order to avoid situations in which two
occurrences refer to the same scientific name, but with two different authorships,
which could mean they refer to completely different species.

In the next subsections we will describe the operations D4Science supplies
to its users to perform processing operations on occurrence records. These take
into account the complete information context around each occurrence record
extracted by the data discovery facilities. This set of operations is the result of
a collaboration with many communities of practice involving biodiversity prac-
titioners dealing with occurrence data.5. These communities principally aim at
producing species distribution models and at enriching occurrence records with
information about the environmental characteristics of species presence loca-
tions. By analysing their requirements, three main categories of processes have
been identified: algebraic operations (cf. Sec. 2.2.1), clustering and outliers
detections (cf. Sec. 2.2.2). Several examples can be found of applications of
these processing categories to biodiversity data, e.g., Cumming et al. (2012);
Graham et al. (2004, 2008). The main limitation of these examples, is that
they are not included in the context of an integrated e-Infrastructure allowing
users to explore data and to process them in an efficient way. Furthermore, alge-
braic operations applied to occurrence records are not usually flexible enough to
rapidly account for coordinates approximations and discrepancies in recording
dates. On the other hand, among the several approaches to clustering and out-
liers detection present in literature, we propose common algorithms that suit
with the elicited requirements. Moreover, D4Science is an open development
platform that uses a plugin approach for the deployment of new functionalities
(Candela et al., 2009; Coro et al., 2014), thus accommodating requests for new
algorithms requires low development effort.

2.2.1. Algebraic Operations on Occurrence Datasets

Differently from other solutions in the biodiversity domain, D4Science pro-
vides every scientist with a computer-assisted environment enabling to inspect
the collected datasets and to understand which are the discrepancies and over-
laps among such datasets. In fact, even if the datasets are somehow homogenised
during the acquisition phase, this does not mean that their contents are compa-
rable or ready to be used in a scientific experiment. For example, coordinates

5These communities include that operated by the iMarine project (http://www.i-marine.
eu) and the EUBrazilOpenBio project (www.eubrazilopenbio.eu/)
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could be given at different precision and authors names (or species names) could
be written in different formats. There is no single “data format” that suits with
any scientific experiment, then scientists need an environment facilitating their
data preparation activities.

D4Science offers a number of algebraic operations specifically conceived to
deal with species occurrence data. These include union, intersection, subtrac-
tion and duplicates deletion that use a probabilistic approach. Algebraic opera-
tions allow scientists to retrieve complementary or duplicate information among
datasets.

The D4Science service for occurrence points manipulation is named Occur-

rence Data Management (ODM). It is endowed with a web-based user inter-
face (Fig. 3) and it supports the above algebraic operations by using tolerance
thresholds for assessing when two occurrence records are to be considered equal.
Thresholds can be defined by every single user for every single operation and
involve a spatial tolerance and a syntactic tolerance.

The spatial tolerance (TSp) is used to assess if two occurrences refer to the
same point in the world, assuming a WGS-84 projection (True, 2004) for the
coordinates. It represents the resolution at which a scientist considers two points
to be the same: e.g., if TSp = 0.5 degree and the distance between two points
is lower than 0.5 degree then the two points will be identified as potentially the
same point.

The syntactic tolerance (TSy) evaluates the lexical similarity between the
scientific names and the “recordedBy”6 fields in two records. A normalized lex-
icographic distance (Levenshtein, 1966) Ls(s1, s2) is used between the scientific
names (s1 and s2) reported in two records. The same measure Lr(r1, r2) is
used on the “recordedBy” fields (r1 and r2) of the same records. Eventually, the
product L = Ls(s1, s2)∗Lr(r1, r2) gives an overall lexical similarity between the
records. If L ≤ TSy, then the two records are declared to be similar.

A further comparison applies to the recording dates: if recording dates are
reported in both the two records, they are checked to be the same, otherwise
the check does not apply. A mismatching in the recording dates means that the
two records are different.

We based the similarity comparison on the coordinates, the scientific name,
the “recordedBy” field, and the recording date, as they contain the minimal
information to identify an occurrence point. We assume, in fact, that two oc-
currence records are equal if and only if they refer to the same species, the same
position, and were reported by the same person or Institution in the same date.

The motivations leading to this similarity comparison are: (i) as demon-
strated by Vanden Berghe et al. (2014), the Levenshtein distance for lexico-
graphic comparisons is a reliable measure to estimate the lexical similarity be-
tween two species scientific names. In particular, it is more indicated than other

6The term “recordedBy” refers to the Darwin Core specification. It indicates a list of
names of people, groups, or organizations responsible for recording the original occurrence
point.
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Figure 3: The setup phase of the “Occurrences Duplicates Deleter” procedure. On the left
side a set of procedures is highlighted which can be applied to occurrence records.

approaches when no assumption can be made on the misspelling errors that are
present in the transcriptions of species scientific names. Domain oriented mea-
sures gain better performance when names are written by taxonomists. Since
our system addresses heterogeneous data providers, we assume that entries can
contain a large variety of misspelling errors. Thus, we chose to adopt the most
flexible, effective and domain independent measure; (ii) a strict comparison be-
tween dates has been adopted because dates carry very delicate information.
Dates differing for even one day or one hour could indicate completely different
records. Occurrence reports, in fact, are usually very precise about the recording
dates and times of the occurrences.

At the end of the described comparison, two occurrence records are declared
to be the same if (i) they are closer than TSp, (ii) they are similar over TSy,
and (iii) the recording dates check is successful or does not apply. Between two
similar records, the most recently modified is taken because it is assumed that
the editing activity improved the record. It is obvious that when TSp = 0.0 and
TSy = 1.0 the comparison reduces to a pure equality check. When TSy = 0.0
the system ignores the lexical comparisons.

The ODM algebraic operations rely on the above similarity evaluation. In
the union procedure the service joins two occurrences sets A and B, excluding
all the elements in B which are “similar to” elements in A. In the intersection,
the system takes only the elements in A which are “similar to” elements in B.
In the subtraction, it takes all the elements in A which are not “similar to” any
element in B. Finally, in the duplicates deletion the service only takes the most
recent records of A, excluding “similar” records in A itself.
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2.2.2. Clustering and Outliers Detection

Clustering techniques allow to group real valued vectors by relying on their
density or distance in an N–dimensional space. In the biodiversity context vec-
tors usually refer to coordinates pairs or to environmental features. A side effect
of clustering is that outliers can be identified as those points that are far from
all the other groups. Thus, clustering also simulates a similarity measure for
the vectors. Applications of such techniques range from automatic classification
and characterization of information spaces to grouping and outliers detection.
Examples of clustering procedures are density based algorithms like DBScan
(Ester et al., 1996) and OPTICS (Ankerst et al., 1999), or distance based vec-
tor quantizations like K-means (MacQueen et al., 1967) and X-means (Pelleg
and Moore, 2000). Clustering is also used to address the classification of out-
liers directly, for example in the case of the Local Outlier Factor (LOF) (Breunig
et al., 2000).

D4Science hosts the DBScan, K-means, X-means and LOF algorithms, with
a general purpose approach which can be applied to any table containing vec-
tors of real values. The output of these procedures is a table were each row
reports the elements of one vector along with two additional columns. These
report information about the belonging cluster of each row and a boolean value
indicating if the vector is an outlier. In the case of LOF, the algorithm reports
the local deviation of a vector with respect to its neighbours.

Clustering algorithms in D4Science can be used in combination with the
cleaning procedures described in the previous subsection. For example, after
having deleted the duplicates from a dataset, the DBScan algorithm can high-
light the presence of outliers, which could correspond, for example, to specimens
stored in a museum or to reporting errors. Different clustering algorithms can
detect different kinds of outliers. In the case clustering is applied to the en-
vironmental features attached to some occurrence points, it can detect precise
locations that share similar habitat. If clustering is applied to biodiversity indi-
cators, like frequency of observation, marginality, specialization or widespread-
ness, the grouping can highlight similar characteristics of species, for example
their commonness or their threatening status.

2.2.3. Occurrence Points Representativeness

In the case environmental characteristics were attached to occurrence points,
several techniques allow to discover similarity between such points. This is of
particular interest for those scientists that want to investigate the similarities
between the locations in which a species has been observed, but also to evaluate
if the coverage given by a survey for a species is sufficient to describe its habitat.
From the point of view of niche modellers, preliminary processing of features
vectors can highlight useless features or can evaluate the potential robustness
of the models to produce. One of the best known techniques in this context is
the Principal Component Analysis (PCA) (Jolliffe, 2005), a mathematical pro-
cedure that aims to reduce the dimensionality of the features space. PCA uses
an orthogonal transformation in the features space for producing independent
variables called principal components. This transformation can be useful for
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investigating the correlations among the environmental features used in niche
models. Adding more dependent variables, in fact, usually does not result in
better models.

A specific technique for occurrence points is the Habitat Representativeness
Score (HRS) (MacLeod, 2010), which extends PCA by directly addressing bio-
diversity data. It was originally created to measure the degree to which sampled
habitats are representative for a certain area of study. For example, HRS has
been used for assessing the minimum number of surveys on a study area that are
needed to cover a good heterogeneity of species habitat variables. HRS can be
applied to two datasets of environmental features, one representing a sampled
area and the other a geographical region of interest. A score is produced for each
feature, ranging from 0 to 2, with 2 representing completely non-overlapping dis-
tributions of values. The lower the HRS the more similar data obtained from
a survey are to the study area. Thus, HRS can be also used to assess how
much the features associated to species occurrences are representative for the
environmental characteristics of a certain area of study.

D4Science provides an implementation of the HRS algorithm applicable to
two sets of environmental features: on one side those associated to the occur-
rence points of a species, on the other side those associated to locations that
cover a certain area of study. An example of usage of such technique to assess
the potential quality of a niche model can be found in Coro et al. (2013).

3. Experiments

The goal of the facilities discussed so far is to simplify the data acquisition
and preparation phases as to enhance the availability of potential occurrence
data. In this section we demonstrate their use by means of concrete examples.
These experiments occur in many typical use cases identified by the D4Science
community. In particular, we acquired data from diverse databases and then
processed these data to highlight duplicates, differences between the datasets
and possible outliers.

In the following, we present three experiments. In the first, we investigate
complementarity between two big datasets referring to a well known list of
species names. The datasets are not fully overlapping, and the experiment
demonstrates how our facilities help to evaluate such overlap. In the second,
we scale down to one single species, having a large amount of observations. We
use this species to give a qualitative insight of the complementarity between the
datasets hosted by diverse providers. The aim is to further demonstrate that the
datasets contain complementary information and that our method is applicable
also to single species investigation. In the third experiment, we used clustering
to qualitatively demonstrate how a user can simply detect outliers by means of
D4Science facilities. The meaning of the term outlier is here dependent on the
parameters of the algorithm. Basic outliers (0 coordinate points) are discovered
in the experiment and others are suggested by the system.

Table 1 reports the number of observations and data providers involved in
each experiment. Overall, the experiments highlight the possible usefulness
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Data Provider N. of Obs. Distinct Obs. Benchmark

Exp.1
GBIF 2,805,784 1,102,158

FAO
Fact Sheets spp.

speciesLink 8942 6576
FAO
Fact Sheets spp.

Exp.2
GBIF 8791 6737

Cynodon
dactylon

speciesLink 288 165
Cynodon
dactylon

Exp.3 GBIF+OBIS 2278 2104
Cetorhinus
maximus

Table 1: Observation records involved in the experiments, with indication about the belonging
benchmark dataset.

of our approach even from the perspective of data providers. A provider like
speciesLink, for example, could use the D4Science facilities to understand the
amount of its owned records that are complementary with respects to homol-
ogous data published by other providers. In other cases, applying clustering
can automatically detect outliers and thus possible errors. This can lighten the
cleaning effort that the data providers may manually apply.

Species name
Average Data Acquisition Time

GBIF OBIS speciesLink SPD

Cynodon dactylon 378 (s) n.a. 455 (s) 357 (s)
Cetorhinus maximus 113 (s) 101 (s) n.a. 67 (s)

Table 2: Comparison of average times for accessing and retrieving occurrence records datasets.
We compare SPD to a “manual” interaction, where the user accesses the website of a single
data provider, searches for occurrence records using the scientific name of a species and asks
for producing one dataset containing all the records. We stopped the time calculation when
the production of the dataset is complete. Time has been calculated as an average on 5
interactions.

Table 2 reports an indication of the average data acquisition time for Exper-
iments 2 and 3. Although this is not a systematic study, it gives a flavour of the
enhancements introduced by SPD. The table reports the time a user needs for
“manually” interacting with the website of each data provider compared with
the time when using SPD. In particular, it reports the duration of the search
for the occurrence records of a species, plus the time required to produce a
dataset containing all the occurrence records. In the case of SPD this is done
in one single step dealing with both the data providers in parallel. The table
reports the average time on 5 repetitions of the same interaction. From this it
emerges that the time required by SPD is less than the one required by each
single data provider website interaction. This is due to the fact that SPD sends
simultaneous requests to each provider and collects data using parallel threads.
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Furthermore, since the invoked web services are the same as those of GBIF
and specieLink, this means that SPD provides a more lightweight web interface
and a faster production process for occurrence records lists after the retrieval
process.

Experiment 1

As first experiment, we report about the effectiveness of our procedures in
highlighting the diversity between two datasets. To such aim, we selected the
GBIF and speciesLink data providers, which are likely to be disjoint (to some
extent) because of their different contributors and spatial coverages, i.e., global
and regional respectively. We show how our procedure allows a user to eval-
uate such complementarity. In particular, we calculated the intersection on a
large amount of species observations under different configurations of our proce-
dures. In this experiment, intersection is reported as the percentage of matching
observations with respect to the total observations in the speciesLink dataset
(the smaller dataset). For such reason, we used the percentage of agreement as
quantitative quality measure.

For the selected datasets, the coverage of speciesLink by GBIF was expected
to be only partial, and we wanted to confirm this by means of our procedures.
We used an evaluation benchmark made by a well known list of species, i.e.,
the FAO Fact Sheets list 7. This list includes 548 aquatic species of commercial
interest. Via the SPD service, we discovered that for such list (a) GBIF contains
2,805,784 observation records, of which 1,102,158 are different according to a
pure equality check, and (b) speciesLink, contains 8942 observation records, of
which 6576 records are strictly distinct.

Figure 4 reports on the effect of the variation of TSp (with TSy fixed to 1) on
the intersection amount between these two datasets. In other words, the chart
reports the portion of the speciesLink observations covered by GBIF when the
spatial resolution for the comparison gets coarser, considering an exact match
between the names in the records. The chart shows that the datasets have
partial superposition, as we expected.

Figure 5 reports on how much the missing superposition is due to lexico-
graphic distances. Thus, records corresponding to the same species were com-
pared without considering their lexical distances (TSy = 0). The chart shows
that the percentages slightly increase but the superposition is still partial. This
effect confirms the complementarity between the datasets.

Figure 6 reports on the effects of variations of the TSy parameter. We fixed a
coarse resolution for the occurrence records (TSp = 1) and changed the syntactic
threshold. The figure highlights the fall of the similarity between records when
the lexical threshold becomes more restrictive.

A similar effect is reported by Figure 7, which reports on the variation of
the TSy parameter when the observations are required to be exactly at the same

7http://www.fao.org/fishery/species/search/en
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Figure 4: Effect of the variation of
TSp on the intersection between the
GBIF and the speciesLink records for
the FAO Fact Sheets species. The
chart keeps TSy fixed to 1 (pure
equality check for scientific names and
recorders).
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Figure 5: Effect of the variation of TSp

on the intersection between the GBIF
and the speciesLink records for the
FAO Fact Sheets species. The chart
keeps TSy fixed to 0 (no lexical checks
for corresponding species).

place (TSp = 0). The trend is similar to the previous one, and this means that
the intersection points are likely to be the exactly the same in both the datasets.

Overall, the charts highlight that the complementary points remain distinct
even when a coarser spatial granularity and a more flexible lexical similarity are
used. This highlights the importance of the disjoint observations in speciesLink,
which are related to complementary information about the species.

Experiment 2

As second experiment, we report a deeper analysis on a particular case, taken
from the data providers involved in experiment 1. We selected a specific and
representative use case to verify the general behaviour detected by the charts
in the previous experiment. The aim of this experiment is to confirm that
GBIF and speciesLink contain complementary information for a species with
a large number of observations associated. This experiment also demonstrates
the effectiveness of our solution in scaling down to one single use case, other
than in analysing large datasets.

In particular, we compared the occurrence points ofCynodon dactylon (bermuda
grass) coming from the GBIF and the speciesLink data providers separately. As
the bermuda grass is a very common plant it has a large number of records, thus
it was likely to be reported several times in both the datasets. On the other
side, the speciesLink dataset was smaller than the GBIF one, and we explored
their complementarity in details. Via the SPD service, we retrieved 8791 records
from GBIF and 288 records from speciesLink. By applying a duplicate deletion

with pure equality check (TSy = 1) to each dataset, we obtained 6737 distinct
records for GBIF and 165 for speciesLink.

In order to assess if the two sets were disjoint we performed 3 intersection

operations of speciesLink with respect to GBIF, varying the thresholds config-
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Figure 6: Effect of the variation of
TSpy on the intersection between the
GBIF and the speciesLink records for
the FAO Fact Sheets species. The
chart keeps TSp fixed to 1 degree.
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Figure 7: Effect of the variation of
TSpy on the intersection between the
GBIF and the speciesLink records for
the FAO Fact Sheets species. The
chart keeps TSp fixed to 0 degrees.

urations. In all the cases the intersection set was empty, thus there were no
overlaps. In the first comparison we set TSp = 0.0 and TSy = 1. In the second
we removed the lexical comparisons (TSy = 0.0) and applied a pure equality
check to the coordinates (TSp = 0.0). In the third comparison we used more
spatial tolerance (TSp = 0.01 and TSy = 0.0) and again the intersection set was
empty. Increasing the spatial tolerance would have been not significant to our
use, then we did not go forward with the experiment. This experiment demon-
strated that GBIF did not contain the speciesLink records at all, at 0.01 degree
resolution. Thus, this is in line with the general behaviour highlighted by the
charts in the previous experiment.

Experiment 3

In the third experiment, we demonstrate the effectiveness of outliers detec-
tion. The concept of outlier observation is dependent on the user’s definition.
Scientists could define as outliers some points well separated from other points.
In other cases, they could decide that points on which they do not agree with the
reporters are outliers. Thus, the definition of outlier can be subjective. Here
we report a qualitative evaluation of our outliers detection procedure, which
shows how to simply detect common 0 coordinate outliers. Furthermore, we
also show how the output of the clustering changes when using different input
parameters. This allows scientists to tune our system for better grouping points
or for defining outliers.

We used the SPD service to acquire occurrence records for Cetorhinus max-

imus (basking shark) from GBIF and OBIS. The discovered data were auto-
matically saved in one dataset, containing records from both the datasets. For
this experiment, we took occurrences coming from the collections of the Univer-
sity of Oslo, as well as from FishBase and from the Northeast Fisheries Science
Center (NEFSC). We kept the intersections between the OBIS and the GBIF
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Figure 8: The distribution of the basking shark occurrence records coming from the collections
of the University of Oslo, of FishBase and of the Northeast Fisheries Science Center, coming
from a query to SPD on the OBIS and GBIF datasets.

datasets under control. In particular, we took the complete FishBase collection
from OBIS, while from GBIF we took only the FishBase occurrences hosted by
GBIF-Sweden. Furthermore, we took the collections from the University of Oslo
from GBIF only, and the NEFSC datasets from OBIS only. The total number
of occurrences from both the datasets was 2278, which contained duplicate oc-
currences only for a subset of FishBase. As first cleaning step, we applied the
duplicates deletion operation using TSp = 0.5 and TSy = 0.8. Thus, we admitted
half degree spatial tolerance and low lexical mismatching on the species name
and authorships transcriptions.

Figure 8 depicts the distribution of the occurrence points we used for this
experiment. The dataset resulting from the duplicate deletion process contained
2104 elements, which resulted just from the deletion of the FishBase duplicates.
As it can be visually noticed from Fig. 8, some points having (0,0) coordinates
are present among the occurrences, along with isolated points. The (0,0) co-
ordinate records are common errors. They are uninformative records that are
likely to be deleted in most of the analyses. In order to automatically highlight
the presence of such points and of other possible outliers, we applied clustering
techniques.

Figure 9 depicts the result of the application of the DBScan algorithm to our
basking shark dataset without duplicates, while Figure 10 reports the output of
X-means. In this experiment DBScan was run using the following parameters
configuration (Ester et al., 1996): epsilon = 10 and minimum number of points

required to form a cluster = 2. On the other side, X-means was run using the
following parameters (Pelleg and Moore, 2000): max iterations = 100, mini-

mum number of clusters = 1, maximum number of clusters = 50 and minimum

number of points required to form an outlier set = 2. DBscan automatically
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Figure 9: Representation of the application of the DBScan (density based) algorithm to the
occurrence points of the basking shark. The algorithm was applied to the collections of the
University of Oslo, of FishBase and of the Northeast Fisheries Science Center, coming from
a query to SPD on the OBIS and GBIF datasets and after duplicates deletion. Each colour
indicates a different cluster.

detected 5 clusters, while X-means detected 3 clusters. Both the algorithms in-
dicated that the (0,0) coordinate points were outliers, which demonstrates the
effectiveness of the procedure in detecting common errors. When we configured
the algorithm by setting to 1 the minimum number of points required to form
an outlier, then DBScan detected that the points in the West coast of USA, and
the ones in France and Spain were other possible outliers. In this case X-means
did not detect outliers. By looking at the maps, it is possible to notice that
DBScan considered the points near France and Spain as not belonging to the
same density cluster of the points in North Europe, while X-means was more
coarse from this point of view. X-means calculated that all the points in Europe
belong to the same cluster because it only considered their relative distance with
respect to the points in USA. As result of this analysis, users are able to obtain
a dataset without duplicates, from which they could cut the outliers off. Fur-
thermore, they could concentrate on some of the clusters, which contain clean
information coming from the two data sources, and possibly decide to identify
also these as outliers.

4. Discussion and Conclusion

Peterson et al. (2010) well highlighted the benefits for biodiversity-related
tasks resulting from information infrastructures and approaches improving data
and analytical software availability.

This paper has introduced an innovative infrastructure-based approach aim-
ing at offering data acquisition and data preparation facilities on species oc-
currences data. In particular, it has presented a data acquisition facility that
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Figure 10: Representation of the application of the X–Means (distance based) algorithm to
the occurrence points of the basking shark. The algorithm was applied to the collections of
the University of Oslo, of FishBase and of the Northeast Fisheries Science Center, coming
from a query to SPD on the OBIS and GBIF datasets and after duplicates deletion. Each
colour indicates a different cluster. The difference with respect to DBScan is that X–Means
identifies all the points in Europe as belonging to the same cluster.

simplifies the discovering of and access to relevant data by abstracting over
the peculiarities of the data owners/publishers while guaranteeing provenance
and attribution. Moreover, it has illustrated a set of data preparation facilities
that empowers scientists to deeply analyse the collected data in order to iden-
tify potential duplications and discrepancies that depends on scientist’s specific
needs.

The implementation of these facilities is nicely integrated with existing ef-
forts on databases and information systems development by following an ap-
proach that supplements these initiatives contributing to enlarge the visibility
and use of the published data.

The described facilities have been developed and used in two projects dealing
with species data: the iMarine project8 focusing on marine species and the
EUBrazilOpenBio project9 focusing on plants. These facilities are currently
made publicly available via the portals operated by these projects and can be
used by any scientist willing to exploit them. The feedback received in these
contexts10 is positive, the facilities offered are simplifying scientists practices in
accessing data and managing them.

Besides the facilities illustrated in this paper, the D4Science infrastructure
offers a large variety of other facilities to support also the management of other

8iMarine project website http://www.i-marine.eu
9EUBrazilOpenBio project website www.eubrazilopenbio.eu/

10Dedicated meeting and events have been organised to collect this feedback. Moreover,
community members are using the system to produce periodic validation reports, e.g., Ellen-
broek and Pagano (2012).
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biodiversity related data like taxonomic items. For instance, it is possible to
easily build checklists of species names from diverse databases via the SPD
and then compare these checklists with the aim to identify discrepancies across
diverse taxonomies (Amaral et al., 2014).

The following enhancements for the so described facilities are planned. The
lexical similarity supporting data preparation will be enhanced in order to take
into account more information associated with occurrence records. Moreover,
an appropriate weighing scheme will be defined. Moreover, facilities aiming at
integrating and enriching occurrence records with environmental information
are under development.
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