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A B S T R A C T

Deep Learning methods have become state-of-the-art for solving tasks such as Face Recognition (FR).
Unfortunately, despite their success, it has been pointed out that these learning models are exposed to
adversarial inputs – images to which an imperceptible amount of noise for humans is added to maliciously
fool a neural network – thus limiting their adoption in sensitive real-world applications. While it is true that
an enormous effort has been spent to train robust models against this type of threat, adversarial detection
techniques have recently started to draw attention within the scientific community. The advantage of using
a detection approach is that it does not require to re-train any model; thus, it can be added to any system.
In this context, we present our work on adversarial detection in forensics mainly focused on detecting attacks
against FR systems in which the learning model is typically used only as features extractor. Thus, training a
more robust classifier might not be enough to counteract the adversarial threats.

In this frame, the contribution of our work is four-fold: (i) we test our proposed adversarial detection
approach against classification attacks, i.e., adversarial samples crafted to fool an FR neural network acting
as a classifier; (ii) using a k-Nearest Neighbor (k-NN) algorithm as a guide, we generate deep features attacks
against an FR system based on a neural network acting as features extractor, followed by a similarity-based
procedure which returns the query identity; (iii) we use the deep features attacks to fool an FR system on
the 1:1 face verification task, and we show their superior effectiveness with respect to classification attacks in
evading such type of system; (iv) we use the detectors trained on the classification attacks to detect the deep
features attacks, thus showing that such approach is generalizable to different classes of offensives.
. Introduction

Deep Learning (DL) quickly occupied a central role in recent AI-
elated technological breakthroughs covering multiple fields and appli-
ations: vision (e.g., image classification Krizhevsky et al., 2012, object
etection Girshick, 2015), natural language processing (Deng and Liu,
018) and the combination of them (e.g., multi-modal Carrara et al.,
018a, and sentiment analysis Ortis et al., 2019). Despite achieving
tate-of-the-art (SotA) performance in many scenarios, Deep Neural
etwork (DNN) models still suffer from deficiencies that strongly limit

heir adoption in sensitive applications. Among others, the vulnerability
n adversarial settings still poses challenges: it is relatively easy for an
ttacker to manipulate the output of a model by tampering its input
ften in an imperceptible way. The existence of these perturbed inputs –
nown as adversarial examples (Biggio et al., 2013; Szegedy et al., 2013)
constitutes one of the major roadblocks in security-related applica-

ions such as DL-based biometrics systems for surveillance and access
ontrol that, despite performing brilliantly in natural settings (Sun-
ararajan and Woodard, 2018), can be easily evaded by knowledgeable
dversaries.

∗ Corresponding author.
E-mail address: fabio.massoli@isti.cnr.it (F.V. Massoli).

Face Recognition (FR) enabled by DNN is a case in point. Several
successful applications of deep models to FR have been proposed in
the literature (Cao et al., 2018; Amato et al., 2018; Liu et al., 2017).
Indeed, this kind of technology enables AI surveillance programs in
multiple countries (Feldstein, 2019) and has already found its way into
consumers’ products (Sundararajan and Woodard, 2018). However,
researchers already showed how adversarial attacks could jeopardize
this kind of system both in the digital (Dong et al., 2019; Song et al.,
2018) and physical domain (Sharif et al., 2016; Kurakin et al., 2016a).

Defensive approaches for adversarial attacks can be roughly cate-
gorized in two methodologies, namely rectification and adversarial input
detection. In rectification methods, the goal is to recover the intended
output of the model by increasing the robustness of the system, e.g., by
trying to remove adversarial perturbation from the input (Li and Li,
2017; Liao et al., 2018) or by increasing the robustness of the model
itself (Kurakin et al., 2016b; Papernot et al., 2016). On the other
hand, adversarial detection aims at detecting an occurred attack by
analyzing the behavior of the model (without changing it) and signaling
anomalous events (Gong et al., 2017; Grosse et al., 2017; Amirian et al.,
2018; Metzen et al., 2017). Notwithstanding, many of the proposed
https://doi.org/10.1016/j.cviu.2020.103103
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adversarial detection methods fall prey to strong adversaries too (Car-
lini and Wagner, 2017a). Novel techniques exploiting the training data
manifold to ground the predictions of a model (Papernot and McDaniel,
2018; Carrara et al., 2019) exhibit good trade-offs between detection
performance and resilience to attacks (Sitawarin and Wagner, 2019).

Facial recognition systems do not usually implement recognition
based on deep-learning classifiers but rather follow a similarity-based
approach: deep models are used to extract features from visual facial
data, and decisions rely on similarity measurements among them. In-
deed, standard benchmarks for facial recognition, such as IJB-B (White-
lam et al., 2017) and IJB-C (Maze et al., 2018), define two evaluation
protocols, namely 1:1 face verification and 1:N face identification,
based on such similarity procedures.

Sticking to those protocols, we provide an analysis of adversarial
attacks and further detection in facial recognition systems, relying
on SotA DL models acting as features extractors. In particular, we
report the following contributions. First, we test our recently proposed
detection technique (Carrara et al., 2018b) against classification attacks
to a SotA FR system. Second, we generate deep features attacks, also
named deep representations attacks, using a k-Nearest Neighbor (k-
NN) algorithm as guidance, and we study their properties. Third, we
use deep features attacks to fool an FR system on the face verification
task, showing their superior effectiveness to classification attacks in
fooling similarity-based systems. Finally, we use the detectors trained
on classification attacks to detect deep features attacks, thus showing
that our approach is generalizable to diverse types of attacks.

The rest of the paper is organized as follows. In Section 2, we briefly
review some related works. In Section 3, we describe the algorithms
used to craft adversarial examples, while in Section 4, we describe
the adversarial detection technique used in our study. In Section 5,
we present the results from our experimental campaign, and finally,
in Section 6, we report our conclusions.

2. Related work

2.1. Adversarial attacks

After the seminal work of Szegedy et al. (2013), in which the
authors studied adversarial examples against DNN, in the last years,
an exploding growth in studies of adversarial attacks and defenses has
been witnessed. The existence of adversarial examples for DNN was
confirmed by researchers who proposed multiple crafting algorithms to
find them efficiently since the early works. Among the most relevant
attacking algorithms available in the literature, there are the box-
constrained L-BFGS (Szegedy et al., 2013), FGSM (Goodfellow et al.,
2014) and its variants (Kurakin et al., 2016a; Dong et al., 2018), and
CW (Carlini and Wagner, 2017b). We dedicate Section 3 to a more
detailed review of these algorithms, as we adopt them in this work to
generate adversarial examples.

2.2. Face recognition adversarial attacks

FR is among the most relevant topics in computer vision. This field
had drawn the attention of the scientific community since the early 90s
when (Turk and Pentland, 1991) proposed the Eigenfaces approach. DL
models, especially leveraging on the properties of Deep Convolutional
Neural Network (DCNN), started to dominate this field since 2012,
reaching performances up to 99.80% (Wang and Deng, 2018), thus
overcoming human performance on this task. Despite the effort in train-
ing very robust DL models, such systems still show some weaknesses.
For example, it has been shown that state-of-the-art face classifiers
experience a performance drop when tested against cross-resolution
images (Massoli et al., 2019, 2020). Moreover, they are vulnerable
to adversarial attacks considering both the black-box (Dong et al.,
2019) and white-box (Song et al., 2018; Sharif et al., 2016) settings.
Concerning the attacks to face recognition systems, Sharif et al. (2016)
2

demonstrated the feasibility and effectiveness of physical attacks by
dodging recognition and impersonating other identities using eyeglass
frames with a malicious texture. Dong et al. (2019) successfully per-
formed black-box attacks on face recognition models and demonstrated
their effectiveness in a real-world deployed system. Recent attacks on
FR systems either exploit generative models obtaining a more natural
perturbation (Song et al., 2018) or find natural adversarial examples by
modifying identity-independent attributes (Qiu et al., 2019; Kakizaki
and Yoshida, 2019), such as hair color, makeup, or the presence of
glasses.

2.3. Adversarial defenses

Obtaining a system that is robust to adversarial examples turned out
to be a challenging and still open task. The robustness of a model can
be increased via adversarial training (Goodfellow et al., 2014; Huang
et al., 2015), or model distillation (Papernot et al., 2015). In general,
techniques that try to smooth, change, or hide the gradient surface of
the model seen by an attacker called gradient-masking defenses, can
increase the attack effort needed to find an adversarial example, but the
enhanced model is still vulnerable to stronger attacks. Regularization
methods have also been proposed to train robust DL models. As an
example, (Yan et al., 2018) proposed to integrate a perturbation-
based regularizer into the classification objective, thus penalizing the
norm of adversarial perturbations. Another strategical direction in-
volves detecting adversarial examples, which is creating robust systems
composed of a vulnerable model and a detection system that signals
occurring attacks. Detection subsystems are often implemented as bi-
nary detectors that discern authentic and adversarial inputs. Gong
et al. (2017) proposed to train an additional binary classifier that
decides whether an input image is pristine or tampered. Feinman et al.
(2017) exploited Bayesian uncertainty available in dropout models and
density estimates to spot attacks, while Yang et al. (2019) introduced a
detection framework based on thresholding a scale estimate of feature
attribution scores. Grosse et al. (2017) adopted statistical tests in the
pixel space to demonstrate the discernibility of adversarial images and
proposed introducing the ‘‘adversarial’’ class in the original classifier
is contextually trained with the model. Similarly, Metzen et al. (2017)
proposed a detection subnetwork that relies on intermediate represen-
tations constructed by the model at inference time. However, many
detection schemes have been proven to be bypassable (Carlini and
Wagner, 2017a).

Novel detection methods rely on the training data manifold, usu-
ally in the spaces defined by the intermediate representations of the
network, for grounding the model prediction and detect anomalies.
Carrara et al. (2019) and Papernot and McDaniel (2018) showed that
a k-NN scheme based on intermediate representations of the training
set could be used to define a score that measures the confidence of
the classification produced by a deep model: such a score can then
be used to filter out adversarial examples but also authentic errors
occurring. Instead, Sotgiu et al. (2020) trained several RBF-SVMs on top
of specific DNN layers to classify each extracted deep representation.
The class scores generated by each of these shallow classifiers were then
combined by another SVM in charge of the final adversarial detection.
(Lu et al., 2017) propose SafetyNet, a detection framework that also
employed SVM classifiers. Specifically, it leveraged an RBF-SVM that
looked at quantized codes, obtained from ReLUs’ output, to discern nat-
ural images from adversarial examples. Our detection approach exploits
the intermediate representations too. However, differently from the
above methods, it relies on the representations’ evolution throughout
the entire network, also referred to as trajectories, represented by a
sequence of distance embeddings (a detailed description of our method
is reported in Section 4).

To our knowledge, the most relevant work that copes with detecting
tampered facial recognition is Goswami et al. (2019), in which the
authors attacked facial recognition systems in a classification setting
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and devised a detection approach to decide whether to recover the
original input. In the detection part, they proposed to compare inter-
mediate network activations to their average values defined over a
training set, and used layer-wise distances as features in a two-class
SVM adversarial detector. However, their analysis only included the
recognition-by-classification setting, while we covered additional real-
world settings, such as attacks on k-NN identification and verification
systems.

3. Adversarial attacks

In this section, we detail some of the most famous algorithms used
to craft adversarial examples.

3.1. L-Broyden–Fletcher–Goldfarb–Shanno

Szegedy et al. (2013) formalized the adversarial attack as an opti-
mization problem solved using the L-BFGS algorithm, expressed as:

min
𝜹

𝑐 ⋅ ∥ 𝜹 ∥2 +𝐽𝜃(𝐱 + 𝜹, 𝑡)

ubject to 𝐿𝑚 ≤ 𝐱 + 𝜹 ≤ 𝑈𝑚 , (1)

where 𝐱 is the input image, 𝐽𝜃 is the objective function of the model
ith parameters 𝜃, 𝛿 is the adversarial perturbation, 𝑡 is the desired
utput label, [𝐿, 𝑈 ]𝑚 represents the allowed pixel range, and 𝑐(> 0) is
valuated by performing line-search.

.2. Fast gradient sign method

The Fast Gradient Sign Method (Goodfellow et al., 2014) (FGSM) is
one-step method in which the perturbation is found by following the
irection of the gradient ∇𝐱𝐽𝜃 of the objective function used to train the
L model with respect to the input image 𝐱. The adversarial example

s then given by:

𝑎𝑑𝑣 = 𝐱 + 𝜖 ⋅ sign(∇𝐱𝐽𝜃(𝐱, 𝑦)) , (2)

here 𝑦 is the class label for 𝐱 and 𝜖 is the maximum distortion allowed
n the input such that ∥ 𝐱 − 𝐱𝑎𝑑𝑣 ∥∞< 𝜖.

.3. Basic iterative method

The Basic Iterative Method (Kurakin et al., 2016a) (BIM) applies the
GSM (Goodfellow et al., 2014) attack multiple times with small step
ize. It is given by:
𝑎𝑑𝑣
𝑁+1 = 𝐶𝑙𝑖𝑝𝐱,𝜖

{

𝐱𝑎𝑑𝑣𝑁 + 𝛼 ⋅ sign(∇𝐱𝐽𝜃(𝐱𝑎𝑑𝑣𝑁 , 𝑦))
}

, (3)

here 𝐱𝑎𝑑𝑣0 = 𝐱, the 𝐶𝑙𝑖𝑝(⋅) function clips the values of the pixels to
he allowed range, and 𝛼 is the step size. An improved version of the
ttack, named Projected Gradient Descent (Madry et al., 2017) (PGD),
tarts the iteration procedure from an acceptable random perturbation
f 𝐱.

.4. Momentum iterative-FGSM

The MI-FGSM method (Dong et al., 2018) is an iterative procedure
ased on the substitution of the current gradient with the accumulated
nes from all the previous steps. The velocity vector in the gradient
irection is given by:

𝑁+1 = 𝜇 ⋅ 𝐠𝑁 +
𝐽𝜃(𝐱𝑎𝑑𝑣𝑁 , 𝑦)

∥ ∇𝐱𝐽𝜃(𝐱𝑎𝑑𝑣𝑁 , 𝑦) ∥1
, (4)

here 𝐱𝑎𝑑𝑣0 = 𝐱, 𝐠0 = 0, and 𝜇 is the decay factor of the running average.
hus, the adversarial in the 𝜖-vicinity measured by 𝐿2 distance is given
y:

𝑎𝑑𝑣
𝑁+1 = 𝐱𝑎𝑑𝑣𝑁 + 𝛼 ⋅

𝐠𝑁+1
∥ 𝐠𝑁+1 ∥2

, (5)

where 𝛼 = 𝜖∕𝑇 with 𝑇 being the total number of iterations.
3

3.5. Carlini-Wagner

Carlini and Wagner (2017b) (CW) proposed three gradient-based
attacks each based on a different distance metric, namely 𝐿0, 𝐿2 and
𝐿∞ attacks.

Given an input 𝐱 and a target class 𝑡, the 𝐿2 attack is given by:

min
‖

‖

‖

‖

1
2
(tanh(𝐰) + 1) − 𝐱

‖

‖

‖

‖

2

2
+ 𝑐 ⋅ 𝑓

( 1
2
(tanh(𝐰) + 1)

)

with

𝑓 (𝐱𝑎𝑑𝑣) = max(max{𝐙(𝐱𝑎𝑑𝑣)𝑖 ∶ 𝑖 ≠ 𝑡} − 𝐙(𝐱𝑎𝑑𝑣)𝑡,−𝑘) , (6)

where 𝑓 is the objective function, 𝐙(⋅) are the logits before the soft-
max layer, 𝐰 is the variable to optimize over, and 𝑘 is a parameter
that allows controlling the confidence with which the misclassification
occurs.

Concerning the 𝐿∞ attack, it is not fully differentiable, and the
standard gradient descent does not perform well for it. Eq. (7) shows
the 𝐿∞ version of the attack:

min 𝑐 ⋅ 𝑓 (𝐱 + 𝜹) +
∑

𝑖
[(𝛿𝑖 − 𝜏)+] , (7)

here 𝜏 is a threshold value for the adversarial perturbation. Finally,
he 𝐿0 attack is based on the idea of iteratively using 𝐿2 to find a
inimal set of pixels to be modified to generate an adversarial example.

.6. Deep features attack

All the attack algorithms mentioned above focus their attention
owards the classification output. Differently, Sabour et al. (2015)
roposed an approach finalized to find an adversarial perturbation able
o generate a deep representation as close as possible to the natural
ample’s one. The procedure starts by selecting a source and a guide
mages, 𝐈𝑠 and 𝐈𝑔 , respectively. The goal of the adversary is to perturb
𝑠 to generate a new image 𝐈𝛼 which internal representation at a specific
ayer k of the threatened model, 𝜙𝑘(𝐈𝛼), has a small Euclidean distance
rom 𝜙𝑘(𝐈𝑔). At the same time, 𝐈𝛼 has to be close to 𝐈𝑠 in the pixels
pace. Specifically, 𝐈𝛼 is defined to be the solution to the constrained
ptimization problem:

𝛼 = arg min
𝐈

∥ 𝜙𝑘(𝐈) − 𝜙𝑘(𝐈𝑔) ∥22,

ubject to ∥ 𝐈 − 𝐈𝑠 ∥∞< 𝛿 , (8)

where 𝛿 is the maximum allowed perturbation on the source image.

4. Adversarials detection approach

Our work aims at finding a procedure to empower a DL-based sys-
tem to detect adversarial attacks. We posit our approach leveraging the
piece-wise functional structure of DNN models. Specifically, a generic
classifier 𝑓𝜃(⋅) ∶  → , where  ⊆ R𝑑 with 𝑑 being the input
dimensionality and  is the set of allowed labels, can be represented
as a sequence of layers each applying a specific transformation to its
input:

𝑓𝜃(𝐱) = 𝑓 𝑛(𝐨𝑛−1; 𝜃𝑛)◦𝑓 𝑛−1(𝐨𝑛−2; 𝜃𝑛−1)◦...◦𝑓 0(𝐱; 𝜃0) , (9)

where 𝑓 𝑖 represents the 𝑖th layer with parameters 𝜃𝑖, 𝐨𝑖 is the output
the 𝑖th layer, and 𝐱 is the classifier input. Our detection approach
exploits the idea that the evolution of the features maps might differ
between manipulated and not-manipulated samples during the forward
step of the threatened model. To capture the evolution of the features,
we leverage the concept of distance space in which the coordinates
represent the distances of the input from specific reference points,
also called pivots. We embed the features extracted from the input at
intermediate layers into several features distance spaces, one for each

layer, obtaining a sequence that can be interpreted as describing the
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input trajectory. Thus, by tracing the different behavior exhibited by
natural images and manipulated samples, we can discern among them.

As the first step in our approach, we define the features distance
spaces by evaluating the pivots. Given the set of layers  = {𝑙𝑖 | 𝑖 =
1, 2,… , 𝐿} and the set of classes  = {𝑐𝑗 | 𝑗 = 0, 1,… , 𝐶}, we define
the pivots 𝐩𝑗𝑖 as the ‘‘likely’’ position of a natural sample’s features,
belonging to class 𝑗, extracted at layer 𝑖. Once the pivots has been
fixed, we can embed the deep representations of an input image. Given
an output activation map at layer 𝑖, 𝐨𝑖, its pivoted embedding is
given by:

𝐞𝑖 =
(

𝑑
(

𝐨𝑖,𝐩0𝑖

)

, 𝑑
(

𝐨𝑖,𝐩1𝑖

)

, ..., 𝑑
(

𝐨𝑖,𝐩𝐶𝑖

)

)

∈ R , (10)

where 𝐩𝑗𝑖 represents the pivot relative to layer 𝑖 and class 𝑗. The
sequence of the embeddings of each layer, {𝐞𝑖 | 𝑖 = 1, 2,… , 𝐿}, can
e compactly represented as the matrix 𝐄 =

{

𝑑
(

𝐨𝑖,𝐩
𝑗
𝑖

)}

𝑖𝑗
∈ R||×||

hat represents the input to our adversarial detector. As the distance
unction 𝑑(⋅, ⋅), we explore the 𝐿2 distance and the cosine similarity.1

Concerning the pivots, we evaluate them on the training set only,
nd we consider two different choices, namely class centroids and class
edoids. We report the two formulations in Eq. (11):

𝐩𝑗𝑖 = 𝐜𝑗𝑖 =
1

|𝐵𝑐 |
⋅
|𝐵𝑐 |
∑

𝑛
𝐨𝑗𝑖,𝑛 ,

or

𝑗
𝑖 = 𝐦𝑗

𝑖 = arg min
𝐨 ∈ 𝑗

𝑖

|𝐵𝑐 |
∑

𝑛
∥ 𝐨 − 𝐨𝑗𝑖,𝑛 ∥

2
2 , (11)

where 𝐜𝑗𝑖 and 𝐦𝑗
𝑖 are the centroid and medoid, respectively, for class 𝑗

evaluated at the layer 𝑖, |𝐵𝑐 | represents the class cardinality, and 𝐨𝑗𝑖,𝑛 is
the output at layer 𝑖 of class 𝑗 of the 𝑛th training sample. Moreover, to
reduce memory requirements, we applied an average pooling operation
to each features map, thus reducing the size of each deep representation
to 𝑛𝑐 × 1 × 1, where 𝑛𝑐 is the number of channels.

As a source dataset, we use the VGGFace2 (Cao et al., 2018) test set
omprising 500 identities shared among ∼170K images. To train and

test the detector, we randomly extracted 20 images for each class while
we use all the remaining ones to evaluate the class pivots. We split the
20 images into two halves so that we use 10 images as natural samples
and 10 for adversarial generation only. Thus, we end up with 5000
malicious inputs for each adversarial configuration considered and with
5000 natural samples. More details on the adversarial generation are
given in Section 5.

Our threatened model is the SotA Se-Net-50 from (Cao et al., 2018).
Sixteen bottleneck layers characterize the model architecture (He et al.,
2016), and we exploit their outputs to embed the evolution of the fea-
tures. Precisely, considering that our dataset comprises 500 identities,
each corresponding to a different class, we end up with an embedding
𝐄 ∈ R16×500, for each image, that we used as input for our detector.

We examine two different architectures for the adversarial detec-
or: a Multi-Layer Perceptron (MLP) and a Long-Short Term Memory
LSTM) network. For the MLP, we flatten the input matrix to obtain an
nput vector of size 8000, while for the LSTM, we consider the input as
16-length sequence of 500-dimensional features. For both models, we

et their hyperparameters (the number of inner layers and their size for
he MLP and the hidden state size for the LSTM) through grid search.
he optimal architecture for the MLP comprises one hidden layer with
00 units followed by a ReLU activation function and a Dropout, while
he best LSTM is bidirectional and has a hidden state size equals to
00. Concerning both types of detectors, their output is fed into a Fully
onnected (FC) layer, followed by a sigmoid activation function. Fig. 1
hows a schematic view of the entire system.

1 When a similarity function is used to perform the embedding, we are
uilding a feature similarity space instead of a distance space.
4

5. Experimental results

In this section, we report the experimental results we obtained so
far. First, we focus on the detection of the attacks against a SotA FR
model acting as a classifier. We craft adversarial examples employing
known algorithms (Section 3), and then we train and test our detectors
against them (Section 5.1). Afterward, in Section 5.2, we generate deep
features (DF) attacks (Section 3.6) against an FR system based on the
similarity among image descriptors extracted by a DCNN. To generate
DF attacks, we use a k-NN algorithm as guidance in the optimization
procedure simulating the similarity-based mechanism used to recog-
nize people in real-world applications. We study these attacks, and in
particular, we show that they represent a greater threat, compared to
classification attacks, concerning FR systems. We then use DF adversar-
ial examples to evade a face verification protocol (Section 5.3), and we
compare their effectiveness with the CW (Carlini and Wagner, 2017b)
attack. Subsequently, we use our detector, trained on classification
attacks, to detect DF attacks, thus showing the generalization property
of our detection approach. Then, we commit Section 5.4 to the defense-
aware adversary setting, in which we study our detection system’s
resilience against white-box attacks.

Finally, in Section 5.5, we conduct a second experimental campaign
in which we compare our approach against SotA detection algorithms
on the MNIST (LeCun et al., 1998a,a) and CIFAR-10 (Krizhevsky et al.,
2009a,b) datasets. Moreover, concerning the former dataset, we test
our approach against a defense-aware adversary in this case too and
compare our results with others available in the literature.

The code relative to our detection method and experiments is
publicly available on github.2

5.1. Classification attacks detection

As we mentioned above, in this section we focus on classifica-
tion attacks. The threatened model is the SotA facial recognition
model from (Cao et al., 2018) trained on the 8631 classes of the
VGGFace2 (Cao et al., 2018) train set. Instead, in our experiment, we
use the 500 identities contained in its test set. Thus, we replace the
classifier layer with a 500-ways FC layer, and we train it employing
the SGD optimizer with a batch size of 256 and a learning rate of 10−3

alved every time the loss plateaus. As a preprocessing step, we resize
he images so that the shortest side measured 256 pixels. Afterward,
e randomly crop a 224 × 224 region of the image, and we subtracted

he average pixel value channel-wise. For model evaluation, we use the
ame preprocessing except that a central crop substitutes the random
ne.

To craft adversarial examples, we use the foolbox3 implementation
f the MI-FGSM (Dong et al., 2018) (with 𝐿∞ norm), the BIM (Kurakin

et al., 2016b) and the CW (Carlini and Wagner, 2017b), both with
𝐿2 norm, attacks. As far as the first two are concerned, we consider
a maximum perturbation 𝜖 ∈ {0.03, 0.07, 0.1, 0.3} and a number of
maximum iterations ∈ {30, 50}. Instead, for the CW attack, we adopt the
implemented default value of the parameters, i.e., 5 binary search steps
and 1000 iterations. As mentioned in Section 4, to train the detectors,
we select 10K correctly classified images, 20 for each identity, and split
them into two halves. We use one half as natural samples and the other
half to craft adversarial inputs for each attack configuration.

To train the detectors, we run the Adam optimizer (Kingma and Ba,
2014) for 150 epochs, we set the batch size to 256 and the learning rate
to 5×10−3. To balance the sample distribution within mini-batches, we
employ a weighted random sampler, thus avoiding bias towards attacks
with higher cardinality. We train each architecture (Section 4) with all
the four possible combinations of pivot types, centroids or medoids,
and embedding metrics, 𝐿2 distance or cosine similarity. We test the

2 https://github.com/fvmassoli/trj-based-adversarials-detection.
3 https://foolbox.readthedocs.io/en/stable/.

https://github.com/fvmassoli/trj-based-adversarials-detection
https://foolbox.readthedocs.io/en/stable/
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Fig. 1. Schematic view of the proposed detection algorithm. Left: model architecture and embedding procedure. The magenta circle represents a single embedding vector 𝐞𝑖. Right:
representation of the 𝑖th features distance space. Given a features map 𝐨𝐢, we evaluate its embedding 𝐞𝑖 as the vector whose components are the distances between the current
features and the pivots (blue circles), centroids or medoids, of each class. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 2. ROCs for each architecture (LSTM or MLP), class representative (centroids or medoids), and distance metric (𝐿2 distance or cosine similarity) combination. Left: targeted
attacks. Right: untargeted attacks.
Table 1
AUC values for each configuration reported in Fig. 2. The last column is a summary of the single-attacks AUCs. We
emphasize in bold the performance of the best model.

Configuration BIM CW MI-FGSM Macro-AUC

Targ. Untarg. Targ. Untarg. Targ. Untarg. Targ. Untarg.

LSTM + M + 𝐿2 0.977 0.878 0.871 0.615 0.986 0.889 0.944 0.794
LSTM + C + 𝐿2 0.970 0.863 0.857 0.596 0.982 0.869 0.936 0.776
LSTM + M + cos 0.986 0.929 0.904 0.599 0.991 0.930 0.960 0.819
LSTM + C + cos 0.968 0.884 0.895 0.568 0.981 0.886 0.948 0.779
MLP + M + 𝐿2 0.964 0.885 0.793 0.559 0.979 0.882 0.912 0.775
MLP + C + 𝐿2 0.962 0.874 0.808 0.557 0.979 0.874 0.916 0.768
MLP + M + cos 0.890 0.763 0.668 0.460 0.940 0.769 0.832 0.664
MLP + C + cos 0.868 0.730 0.720 0.467 0.915 0.739 0.834 0.645
detectors against targeted and untargeted attacks separately, and we
report the relative Receiving Operating Characteristics (ROC) curves in
Fig. 2 and, as a summary, the Area Under the Curve (AUC) in Table 1.

Table 1 shows promising results, thus proving the effectiveness of
our approach. It is worth to notice that the untargeted attacks are,
on average, more challenging to detect respect to the targeted ones.
A possible explanation is that these attacks typically find the closest
adversarial examples to the input image. Thus, an embedding method
based on the distance between representation may have difficulties in
detecting them. We further this intuition in Section 5.2.
5

5.2. Deep features attacks

We now move our focus onto the main subject of our study, i.e., at-
tacks against real-world FR systems. First, we study the deep features
attacks’ properties showing their suitability to fool similarity-based
systems. Differently from the classification setting, as in Section 5.1,
in typical real-world applications, a DL model does not perform the
recognition of faces by itself. Instead, an FR system exploits the ability
of DNNs to generate discriminative face descriptors that are then
compared, through similarity measurements, to fulfill the recognition
task. Such a procedure is commonly adopted, for example, when testing
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Fig. 3. Schematic view of the adversarial generation procedure considering a state-of-the-art (SotA) model as features extractor and a k-NN to assess the face identity. Left, before
the attack. Right, after the attack.
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FR model performance on the IJB-B (Whitelam et al., 2017) and IJB-
C (Maze et al., 2018) benchmark datasets. Given a similarity-based
setting, adversaries that focus only on the DL output might not succeed
in fooling the whole system. Thus, we need a different approach to
evade it.

As described in Section 3.6, one can use the distance among deep
representations as a guiding principle to craft adversarial examples
instead of the wrong label assignment. Thus, nurturing this idea, we
synthesize malicious inputs by using the distance among deep features
as a guidance (Sabour et al., 2015). To this end, we formulate the
optimization procedure such that the face descriptors generated from
the adversarial can fool the final similarity-based algorithm.

We start our experimental campaign by considering an FR system
that relies on a DCNN to generate face descriptors, and we exploit a
k-NN classifier to play the role of the similarity-based algorithm that
accomplishes the final task of recognizing faces.

To our aim, we use the SotA model from (Cao et al., 2018) as a fea-
tures extractor, and we evaluate the templates for the 500 classes in the
VGGFace2 (Cao et al., 2018) test set to construct the identities database.
Each identity in the database is represented by a template vector, i.e., a
vector of features obtained by averaging several deep representations
extracted from different images of the same person. The adversarial
generation is formulated as an optimization problem (Sabour et al.,
2015) solved using the L-BFGS-B algorithm. The constraint is used to
threshold the maximum perturbation, 𝛿, on the original image’s pixels.
To adapt the generation of the adversarial examples to our needs, we
use a k-NN classifier as guidance through the optimization procedure.
The optimization is then stopped once the targeted or untargeted
attack’s objective is met; that is, the k-NN had classified the adversarial
as belonging to the guide-image class or merely misclassified the face
image, considering targeted and untargeted attacks respectively. A
schematic view of the algorithm is shown in Fig. 3.

In our experiments we consider a maximum allowed perturbation
𝛿 ∈ {5.0, 7.0, 10.0}, and we report an example of adversarial samples in
Fig. 4.

From Fig. 4, we notice that the generated images look equal to the
riginal ones, i.e., there is not an evident trace of the guide image
nto the adversarial one. Considering targeted attacks, we obtained

success rate of 95.6%, 96.2% and 96.3% considering a value for
= 5.0, 7.0, 10.0, respectively. Instead, concerning untargeted attacks
e obtained 96.8% success rate for 𝛿 = 5.0, 7.0, 10.0. For all the attacks,
e set the maximum number of iterations to 700.

Even if already mentioned above, we want to stress again that, in
ontrast to Section 5.1, we ground the current adversarial generation on
imilarities among deep representations. Indeed, since the FR systems
xploit a DNN model to generate face descriptors only, it is not guaran-
eed that even if a model misclassifies a face image, the deep adversarial
epresentation is close enough to the descriptor of the wrong class from
similarity-based perspective.

In Fig. 5 we report an interesting result to justify our intuition.

he figure shows the distribution of the distance among the adversarial h

6

Fig. 4. Adversarial examples for two different values of the threshold applied while
solving the optimization problem. Top: 𝛿 = 5.0. Bottom: 𝛿 = 10.0.

Fig. 5. Euclidean distance among deep features of adversarial examples and the
assigned class centroid considering each targeted attack singularly. The ‘‘𝛿’’ values cor-
espond to the maximum 𝐿∞ perturbation allowed, for each pixel, for the k-NN-guided
ttacks.

xamples and the centroids of their relative classes considering classifi-
ation attacks (BIM Kurakin et al., 2016a, MI-FGSM Dong et al., 2018,
nd CW Carlini and Wagner, 2017b) and DF attacks (Sabour et al.,
015), using a k-NN as guidance.

As we can see from Fig. 5, even though classification attacks can
ool a DCNN, the distance among the representations of adversarial
lassification samples and the centroid of the target classes is larger
han the one obtained by deep representation-based attacks. Thus, the
atter represents a more significant threat than the former types of
ttacks for a real-world FR system. The same behavior is observed for
ntargeted attacks.

Concerning Fig. 5, we can also notice that the average distance
mong the adversarial examples from the class centroid is quite stable
mong the three different values of the threshold 𝛿. We can explain
uch behavior by observing that in most of the cases, we have 𝛿 ≤

even though we set a larger threshold. Thus, a higher threshold
ad the effects that only a small portion of the image is perturbed.
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Specifically, considering the values of 𝛿 ∈ {5.0, 7.0, 10.0}, the percentage
of pixels whose perturbation is within an 𝐿∞ distance of 5.0 is 88.3%,
85.6%, 84.7% respectively. This behavior is shown in Fig. 6 for targeted
attacks. Similar results hold in the untargeted setting.

5.3. Face verification

Having shown the effectiveness of DF attacks in fooling a real-world
FR system, we now directly compare their evasion ability with the one
of classification attacks. Finally, we test our detection approach against
them even though we train the detectors against classification attacks
only. Specifically, we consider an FR system tested against the 1:1 face
verification protocol as the threatened model. In such a scenario, the
goal of the system is to compare two face images to claim if they belong
to the same identity or not.

In the DL context, such a decision is typically based upon similarity
measurements among deep features extracted from the query images.
Especially, given a trained model, its ROC is first evaluated to estimate
the threshold to be used as a reference value for the similarity score
to assess if two faces belong or not to the same identity. A real-world
application example of this kind of protocol is a restricted access area
control system. Since, in this type of application, the False Positives
pose a more significant threat than the False Negatives, it is crucial to
evaluate the ROC curve down to low values of the False Acceptance
Rate. Such a demand translates into the requirement for assessing
the similarity scores among a larger number of negative pairs to the
positive ones.

To our aim, we adopt the SotA DCNN from (Cao et al., 2018), and
we evaluate the cosine similarity among features vectors as similarity
measurement. From our analyses, we obtain a ROC curve with an
AUC value equals to 99.03%. We then used the Equal Error Rate
(EER) threshold, equals to 0.448, as a reference value for the similarity
measurement. Concerning the attacks, we hypothesize two scenarios:

• Impersonation Attack. The attacker tries to fool the system by
leading it to falsely predict that two face images belong to the
same identity. This situation emulates an intruder who tries to
enter a restricted area or, in a more general case, when someone
is made recognizable as a different person.

• Evading Attack. As opposed to the previous case, now the attacker
seeks to fool the system leading it to predict that two face images,
corresponding to the same identity, belong to the different peo-
ple. This circumstance emulates the condition of someone whose
identity is made unrecognizable.

In the former case, two images that belong to different people have
to be ‘‘equal enough’’, i.e., their similarity measurement has to be above
the evaluated threshold, while in the latter case, two images have to be
‘‘distant enough’’, i.e., below the threshold.

To craft adversarial examples, we consider the CW (Carlini and
Wagner, 2017b) and the DF (Sabour et al., 2015) (k-NN guided) attacks
for the targeted and untargeted settings. To evaluate the evasion rate
for the Impersonation Attack, we adopt the following procedure: first,
we randomly select negative matches, and we keep the second image
fix, i.e., we analyze pairs of faces (𝑥, 𝑥−) where 𝑥 and 𝑥− belong
to different classes. Then, we look upon an adversarial image, whose
adversarial class corresponds to the one of 𝑥−, and use it in place of
𝑥, i.e., we account the pairs (𝑥𝑎𝑑𝑣, 𝑥−) where 𝑥𝑎𝑑𝑣 is an adversarial
xample, crafted from 𝑥, whose adversarial class is the same as the 𝑥−

one. Finally, we consider two similarity measurements:

• ‘‘Original’’, which represents the value of the cosine among the
deep features of 𝑥 and 𝑥−;

• ‘‘Adversarial’’, which represents the cosine between the deep
−
features of 𝑥𝑎𝑑𝑣 and 𝑥 .

7

Table 2
Percentage of matches which overcome the EER threshold, before (left column) and
after (right column) the attacks, considering the targeted and untargeted settings. We
highlight in bold the best attack’s results.

Targeted Untargeted

Original Adv. Original Adv.

𝛿 = 5 4.0 92.8 19.9 81.5
𝛿 = 7 4.0 93.9 19.9 81.6
𝛿 = 10 4.4 93.6 19.8 81.1
CWa 50.5 34.9 8.0 9.3

aCarlini and Wagner (2017b).

Table 3
Percentage of matches which are below the EER threshold, before (left column) and
after (right attack) the attacks, considering the targeted and untargeted settings. We
highlight in bold the best attack’s results.

Targeted Untargeted

Original Adv. Original Adv.

𝛿 = 5 5.4 18.9 4.1 9.9
𝛿 = 7 4.3 22.9 4.3 11.4
𝛿 = 10 4.3 26.2 4.1 12.5
CWa 4.0 17.1 4.0 6.2

aCarlini and Wagner (2017b).

We report the results in Fig. 7.
In Table 2, we report the percentage of matches which overcome the

EER threshold, before and after the attacks, considering the targeted
and untargeted settings.

Clearly, from Table 2, the DF attacks (k-NN-guided) are much
more effective than CW (Carlini and Wagner, 2017b) in pushing the
similarity between the adversarials samples and the original images
above the recognition threshold. Such a conclusion holds for targeted
and untargeted attacks. Instead, the behavior of the CW (Carlini and
Wagner, 2017b) is unpredictable in this setup. Thus we conclude that
even though the CW (Carlini and Wagner, 2017b) algorithm is among
the strongest attacks concerning the classification objective, it is not
very effective against a similarity-based procedure such as the face
verification protocol.

We now move to the Evading Attack scenario. Differently from the
previous case, we start by collecting positive matches, i.e., pairs of
images (𝑥, 𝑥+) in which 𝑥 and 𝑥+ belong to the same class, and
then we substitute 𝑥 with one of its adversarial, 𝑥𝑎𝑑𝑣, whose class is
ifferent from the 𝑥+ one. Thus, we obtain the following similarity
easurements:

• ‘‘Original’’ which represents the value of the cosine among the
deep features of 𝑥 and 𝑥+;

• ‘‘Adversarial’’ which represents the cosine between the deep fea-
tures of 𝑥𝑎𝑑𝑣 and 𝑥+.

s mentioned before, the attack’s purpose is to push the similarity
elow the FR system operational level. Fig. 8 and Table 3 show the
esults.

Table 3 shows the percentage of the matches below the EER thresh-
ld, before and after the attacks, considering targeted and untargeted
ettings.

By observing Table 3, it is clear that the DF attacks (k-NN-guided)
re more effective than CW (Carlini and Wagner, 2017b) in this case
oo. We notice that, on average, the targeted attacks perform better
han the untargeted ones, which is expected behavior since an un-
argeted attack ends as soon as the adversarial is associated with a
ifferent identity, therefore it would not have gone any further from
he original image.

.3.1. Detection
Finally, we test our detectors, trained on classification attacks (Sec-

ion 5.1), on the newly generated adversarial examples. Specifically,
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Fig. 6. Maximum Pixel Perturbation (MPP) distribution considering targeted deep representations with different thresholds.
Fig. 7. Cosine similarity distribution for k-NN-guided and CW (Carlini and Wagner, 2017b) attacks in the Impersonation Attack scenario. Left: targeted attacks. Right: untargeted
attacks. ‘‘- Org’’ refers to the cosine among natural images while ‘‘- Adv’’ refers to the cosine between the natural image and the adversarial one. The dash-pointed line represents
the EER threshold.
Fig. 8. Cosine similarity distribution for k-NN-guided and CW (Carlini and Wagner, 2017b) attacks in the Evading Attack scenario. Left: targeted attacks. Right: untargeted attacks.
‘‘- Org’’ refers to the cosine among natural images while ‘‘- Adv’’ refers to the cosine among the natural image and the adversarial one. The dash-pointed line represents the EER
threshold.
Table 4
AUC values for the best performing detector for each threshold value considered in our
experiments for both targeted and untargeted settings.

Configuration AUC 𝛿

Targ. Untarg.

LSTM + 𝐿2 0.969 0.671 5
LSTM + 𝐿2 0.968 0.688 7
LSTM + 𝐿2 0.972 0.700 10

considering Table 1, we exploit the LSTM detector equipped with the
cosine similarity, and we use the class centroids to construct the images’
embedding (Section 4). As a summary of our results, we report the AUC
values in Table 4 for targeted and untargeted attacks.

According to the results shown in Table 4, we see that, even though
the adversarial detector is trained on different attacks, it displays high
performance in detecting k-NN-guided ones too. This is a relevant result
since it means that, despite the different attacks’ objective, adversarial
examples share some common behaviors in the inner layers of a deep
model that can be exploited to defend against them. Moreover, it
highlights the generalization capacity of our detection approach.
8

5.4. Defense-aware adversary

In the previous sections, we have simulated attacks to an FR system
considering an adversary not aware of the detection algorithm. We now
change this paradigm, and we give the attacker access to our detector,
i.e., he or she is now a Perfect-Knowledge Adversary (Biggio et al., 2013;
Carlini and Wagner, 2017a) that can use this knowledge to fool both
the DCNN and the detection scheme simultaneously.

To this aim, we modify the deep features attack algorithm. We focus
our efforts on the targeted scenario: we consider three different values
for the maximum allowed perturbation, 𝛿 = 5.0, 7.0, 10.0, and we run
each attack for 1000 maximum iterations.

To tamper the images, we consider two settings: a former one, in
which the classifier and the detector losses have the same weight, and
a latter one, in which we enhance the weight of the detector loss by
a factor ten. The difference between the two approaches is that in the
second case, the adversarial algorithm focuses more on the detector,
thus producing samples in which the manipulation is, in a few cases,
slightly perceptible at naked eyes, even though it is still respected the
constraint on the maximum perturbation allowed. On the contrary, in

the first case, the adversarial examples are always indistinguishable
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from the authentic images. We report an example of this behavior in
Fig. 9.

In exchange for the loss in imperceptibility, the defense-aware
adversary gains a much higher evasion rate. Indeed, considering a
maximum perturbation 𝛿 ∈ 5.0, 7.0, 10.0 the success rates in fooling
our detection approach are 22.6%, 20.85%, and 18.8% in the former
setting and 98.63%, 99.39%, and 99.42% in the latter one, respec-
tively. Interestingly, in the first setting, the higher the allowed pixel
perturbation 𝛿, the lower the evasion success. Such a trade-off can
be explained, considering how our detection approach works. A more
significant perturbation in the pixel space corresponds to a larger differ-
ence in the deep representations. Since our detection criterion looks for
different behaviors in the features space, it might be the case that more
perturbed images are easily spotted as adversarial from our detection
algorithm compared to less perturbed ones. On the contrary, we did not
observe such behavior in the second setting since the attacker is now
more focused on fooling the detection process.

From our results, it is evident that the defense-aware adversary
setting still poses challenges that will drive future researches. More-
over, we notice a significant resilience of our system against white-box
attacks, compelling the attacker to pay a small price in terms of
imperceptibility in the attempt to fool the detector.

5.5. Benchmark datasets attacks detection

Even though our focus is on FR systems, we dedicate this section to
test our detection algorithm on smaller commonly adopted datasets, to
compare our approach to others available in the literature. To this aim,
we use the MNIST (LeCun et al., 1998a,b) and CIFAR-10 (Krizhevsky
et al., 2009a,b) datasets. Concerning the threatened models, we adopt
a LeNet-like (Madry et al., 2017) architecture for the former set and
the WideResNet (Zagoruyko and Komodakis, 2016) for the latter one.
We train both models with the SGD optimizer and an initial learning
rate of 0.1 that we drop by a factor ten every 50 epochs. We finally
obtain a classification accuracy on the test set of 99.5% and of 95.7%
for the LeNet-like (Madry et al., 2017) and the WideResNet (Zagoruyko
and Komodakis, 2016), respectively.

Concerning the adversarial examples, we use the test set of the
two datasets as data source. To detect the manipulated images, we
use our LSTM detector equipped with the 𝐿2 metric and with medoids
as class reference points. To craft the malicious samples, we use the
PGD (Madry et al., 2017) and the MI-FGSM (Dong et al., 2018) attacks
with the 𝐿∞ norm, and the BIM (Kurakin et al., 2016a) and the CW Car-
lini and Wagner (2017b) attacks with the 𝐿2 norm. To compare with
the results available in the literature, we generate adversarial examples
using the most commonly adopted settings. Specifically, concerning
the first three attacks, we generate samples with 𝜖 ∈ {0.1, 0.3, 0.5} for
MNIST (LeCun et al., 1998a,b) and with 𝜖 ∈ {0.03, 0.07, 0.1} for CIFAR-
10 (Krizhevsky et al., 2009a,b), and we run the attacks for maximum
number of iterations in {10, 40, 50, 100} for both datasets. Concerning
the CW (Carlini and Wagner, 2017b) attack, we run it with binary
search steps in {5, 10, 30, 50} and maximum iterations in {10, 100, 1000}.
For all of the attacks, we manipulate images considering the targeted
and the untargeted settings and then merge them into a unified set.

We report our results in Tables 5 and 6 for the MNIST (LeCun
et al., 1998a,b) and the CIFAR-10 (Krizhevsky et al., 2009a,b) datasets,
respectively. When available, we also report the results from other
detection techniques. Specifically, we report the values relative to the
attacks’ settings that best agree with ours.

As we can appreciate from Tables 5 and 6, our method reaches the
highest performance compared to the other detection approaches in
almost all the cases.

Lastly, we compare the performance of our method with the Deep
Neural Rejection (DNR) approach proposed by Sotgiu et al. (2020). For

this purpose, we use the code that the authors made publicly available
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Table 5
Detection rate on MNIST (LeCun et al., 1998a,b) adversarials. We emphasize in bold
the performance of the best model.

Model PGD BIM CW MI-FGSM

Feinman et al. (2017) – 97.2 97.9 –
Ma et al. (2018)a 90.2 – 100. –
Lee et al. (2018)a 73.6 – 95.7 –
Yang et al. (2019) 100. – 100. –
Our method 100. 99.8 99.7 100.

aValues reported in Yang et al. (2019).

Table 6
Detection rate on CIFAR-10 (Krizhevsky et al., 2009a,b) adversarials. We emphasize in
bold the performance of the best model.

Model PGD BIM CW MI-FGSM

Feinman et al. (2017) – 81.1 92.2 –
Ma et al. (2018)a 81.2 – 44.5 –
Lee et al. (2018)a 81.3 – 64.1 –
Yang et al. (2019) 95.3 – 71.1 –
Our method 99.2 98.5 98.4 99.3

aValues reported in Yang et al. (2019).

Table 7
Detection rate on MNIST (LeCun et al., 1998a,b) adversarials. We emphasize in bold
the performance of the best model.

fpr PGD BIM CW MI-FGSM

DNRa Our DNRa Our DNRa Our DNRa Our

0.01 73.2 99.9 69.7 96.0 91.3 94.5 78.5 99.8
0.03 89.1 99.9 85.1 99.0 99.0 99.9 91.6 99.9
0.05 91.5 99.9 88.5 99.5 99.8 99.9 93.7 99.9
0.10 94.4 99.9 91.6 99.7 100. 99.9 95.1 99.9

aSotgiu et al. (2020).

in the secml.4 library and we train the SVM classifiers on top of the same
DCNN used in Table 5 The DNR technique shares with our approach
the idea of leveraging the features extracted from different layers of
a deep model under attack to reject adversarial instances. Specifically,
we apply the DNR technique considering the last three layers of the
DCNN (we do not observe improvements in terms of performance by
using more layers). Moreover, to evaluate the performance of the two
detection approaches, we consider the same adversarial instances used
for the evaluation in Table 5. Differently from the previous results,
we do not report the AUC for each attack. Instead, we evaluate the
rejection accuracy at a given value of the false positive rejection (fpr)
rate. Thus, we exploit a protocol similar to what Sotgiu et al. (2020)
proposed in their work. We report the results in Table 7.

As shown in Table 7, also in this case our detection technique
reaches the highest performance in terms of adversarial detection at
a given fpr value.

Finally, we conduct defense-aware attacks against our detection
system. To this aim, we employ the CW (Carlini and Wagner, 2017b)
attack with the 𝐿2 norm, and we set 10 binary search steps and 1000
maximum iterations. As we have reported in Section 5.4, to obtain a
higher evasion rate, we use a different weight between the DL model
and the detector losses in this case too. Specifically, we obtain the
highest evasion rates multiplying the latter by a factor 1000 compared
to the former one. We report our results, along with others available in
literature in Table 8.

From Table 8, it is evident that our detection approach is much more
resilient to adversarial attacks in the defense-aware setting than other
proposed procedures.

4 https://gitlab.com/secml/secml/-/tree/master.

https://gitlab.com/secml/secml/-/tree/master
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Fig. 9. Left: source image and adversarial example crafted with similarity and detector losses equally balanced. Right: adversarial example generated with a higher weight for the
detector loss. In the malicious sample, the distortion is slightly perceivable.
Table 8
Defense-aware attacks success rate for the MNIST (LeCun et al., 1998a,a)
dataset. We emphasize in bold the performance of the best model.

Method Evasion rate (%)

Feinman et al. (2017)a 98.0
Gong et al. (2017)a 100.
Grosse et al. (2017)a 100.
Liang et al. (2018) 67.4
Our method (targeted) 8.3
Our method (untargeted) 11.4

aValues reported in Liang et al. (2018)

6. Conclusions

Adversarial examples represent a severe threat to DL models, as they
set a considerable limitation, especially on the use of learning models in
sensitive applications. Despite the scientific community’s effort to train
robust NNs, a knowledgeable attacker usually succeeds in finding ways
to attack a model.

Except for the adversarial training, another approach to enhance the
robustness of AI-based systems to the adversarial threat is detecting
these malicious inputs. In several previous studies, the properties of
the offensive samples are exploited to detect them. Compared to ad-
versarially training a model, the detection of these images has several
advantages, e.g., it does not require to re-train any model, nor does it
not need to specially design new training strategies to flatten the model
loss manifold.

In light of these facts, we proposed our study on the detection of the
adversarial examples. Specifically, we exploit their different behavior in
the inner layers of a DL model concerning natural images.

We conducted our experiments in the context of Face Recognition
(FR), for which we crafted adversarial examples considering wrong-
label assignment and deep representation distance as objectives in the
targeted and untargeted settings. We first consider the DNN acting as
a classifier, and then we conducted our attacks against an FR system
in which the learning model is employed as a features extractor. As far
as the classification attacks are concerned, the best detector reaches an
AUC value of 99% on the adversarial detection task.

The results obtained from the deep features attacks against an
FR system are even more impressive. In this case, we considered a
more realistic application scenario for an FR system in which the
DL model was used as a features extractor, and the final task was
accomplished employing similarity measurements among the descrip-
tors vectors. Specifically, first, we observed that classification attacks
are much less effective in fooling an FR system. Second, the detec-
tors, trained on the first type of attacks, reached an AUC value of
97% and 70% for the deep representation attacks, which they had
never seen before, for targeted and untargeted attacks, respectively.
These last results are of a significant impact considering the idea of
an ‘‘universal’’ adversarial detector. Moreover, this also means that,
despite the different objectives of the various kind of attacks, they share
some common properties that can, or perhaps should, be exploited to
recognize adversarial attacks and build more robust systems without
the need to change the model to increase its robustness periodically.
Third, we observed that our detection algorithm showed a high degree

of resilience against defense-aware adversaries.

10
Finally, we compared our detection approaches with others avail-
able in the literature. Concerning the comparisons, our method reached
the highest detection performance, and it showed itself to be the most
resilient against defense-aware attacks.
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