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Abstract

Nowadays, cyber threats are considered among the most dangerous risks by top
management of enterprises. One way to deal with these risks is to insure them,
but cyber insurance is still quite expensive. The insurance fee can be reduced if
organisations improve their cyber security protection, i.e., reducing the insured
risk. In other words, organisations need an investment strategy to decide the
optimal amount of investments into cyber insurance and self-protection.

In this work, we propose an approach to help a risk-averse organisation to
distribute its cyber security investments in a cost-efficient way. What makes
our approach unique is that next to defining the amount of investments in
cyber insurance and self-protection, our proposal also explicitly defines how
these investments should be spent by selecting the most cost-efficient security
controls. Moreover, we provide an exact algorithm for the control selection
problem considering several threats at the same time and compare this algorithm
with other approximate algorithmic solutions.

Keywords: cyber insurance, security investment, risk management, risk
treatment, dynamic programming, genetic algorithm

1. Introduction

Cyber security losses due to successful cyber attacks grow every year [1,
2]. This increase can be explained by a number of factors, such as increasing
reliance of business and society on IT systems, fast growth of the number of
interconnected end devices, lack of security awareness, maturation of the cyber
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crime world [3, 4], etc. These losses have already spurred top management of
companies to consider cyber security risks among the most significant ones.

Typically, organisations have 4 basic options to treat risks: avoid it by aban-
doning risky business, reduce it by implementing security controls, transfer it
to another entity (e.g., buy insurance), accept it if there is no other suitable
choice [5, 6, 7]. The decision about treating cyber risks must be taken after
careful analysis of the available options and ensuring that the selected strat-
egy is cost-effective. Among the four risk treatment options, risk reduction
and risk transferring require particular attention, because both of them require
additional investments. Thus, organisations need an instrument which helps
them to identify the required investments in different risk treatment strategies
to minimise the expected losses.

Cyber insurance has received a lot of attention recently as more and more
insurance companies enter the cyber market and their products become more
mature. Also, numerous research papers devote significant attention to this
topic [8, 9, 10, 11]. For instance, [8, 11] systematically reviewed the problems
related to cyber insurance, where [11] points out that the area needs more
technical-oriented solutions to replace qualitative analysis. Some researchers
further investigated the relation between cyber insurance and security invest-
ment. For instance, Massacci et al., [12] highlighted that cyber insurance might
trigger the drop of security investment when attackers are fully informed about
the security posture of an organisation. On the other hand, several works are
devoted to making cyber insurance market profitable and encouraging organi-
sation to invest in self-protection [33, 34, 8]. The models used in the literature
help to identify the most appropriate amount of investments in insurance and
self-protection. These investment models simply assume that the probability of
an attack is dependent on the amount of investment. In other words, the models
do not tell how the organisation should spend these investments, i.e., how to
select the required security configuration. Moreover, these models consider one
threat (and one investment to probability dependency) while in reality organi-
sation faces several cyber threats of a different kind which may cause different
losses (e.g., see examples of threats from the ISO27005 standard [18]).

Risk reduction requires definition and implementation of a security configu-
ration by the installation of various security controls to reduce the risk. Thus,
an optimisation problem should be solved here, to select the most cost-efficient
controls. For instance, in [7, 16, 17], the authors defined potential threats and
controls in different systems, while an organisation may find it difficult to im-
plement all required controls.

A typical mathematical problem to address the variety of choices is the fam-
ily of knapsack problems [19, 20, 21, 22]. A direct formulation for selection of
cyber security configuration [23] has several limitations. First, the knapsack
problem will always use as much of the budget as the limit allows (taking into
account the discrete costs for security controls), even if the application of secu-
rity controls provide fewer benefits (in the reduction of cyber risks) than their
costs. Naturally, this approach is not the most cost-effective.

Second, usage of risk as the utility function makes the solution computa-
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tionally ineffective (i.e., existing pseudo-polynomial solutions, like dynamic pro-
gramming, cannot be applied). In some specific cases, if just one threat is
considered ([1, 24] efficient solutions are possible, but for a comprehensive case
the computation is not trivial. Therefore, many researchers apply approximate
solutions (e.g., Genetic Algorithms (GA) [25, 26]), accepting the risk of receiv-
ing the only near-optimal answer. We look for a satisfying solution in the sense
of Simon [27].

1.1. Main contributions

The core contribution of this paper is an approach for risk-averse organi-
sations to determine security investments in various risk treatment options (in
particular for risk reduction and cyber insurance) and determine specific security
controls to be applied. In particular, this article provides

� a theoretical analysis of the distribution of the cost-efficient investments
if cyber insurance is available,

� an explicit model to link investments with selected security controls, as-
suming that some initially selected controls could be not optimal,

� an exact solution for solving the optimisation problem (based on multi-
objective knapsack problem),

� analysis of the proposed algorithms and approximate solutions (Greedy
and GA), considering the effect of quantity and quality of inputs on the
results.

The theoretical analysis is based on the utility theory and assumes a com-
petitive insurance market in place. The resulting optimisation problem is rep-
resented as a multi-objective knapsack problem where minimisation of risks for
every threat is a separate objective. The algorithmic solutions for the problem
are based on the dynamic programming [23]. Moreover, we enhance the algo-
rithm by applying our projection idea and compare the results by conducting
several experiments.

This paper is organised as follows. We start with the analysis of the related
literature in Section 2. Section 3 is dedicated to the formal problem statement
definition and detailed discussion on its applicability. Section 4 is devoted to
the adaptation of the existing algorithmic solutions for our problem. Section 5
provides experimental results comparing the proposed algorithms with some
approximate solutions (i.e., Greedy and Genetic Algorithms) and analyse their
applicability. Section 6 systematically discusses the assumptions we consider in
the paper and proposes further directions to extend our work. Finally, conclu-
sion and achieved results are outlined in Section 7.

2. Related work

To properly manage cyber risks, organisations should assess their risks [28,
29] and define an efficient risk investment strategy for treating them [7, 16]. In
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this work, we assume an organisation to be risk-averse and consider the option
of insuring some of its risks. To minimise the insurance premium, the organisa-
tion should invest in self-protection and optimise these security investments by
selecting the most cost-efficient security controls. In contrast to many existing
papers, not only do we (prove and) formulate the problem for optimisation, but
also propose our algorithmic solution which is adapted for our concrete problem
(rather than being generic) and returns the optimal (exact) answer.

2.1. Cyber insurance

In most surveys and annual reports [9, 30], cyber insurance market is gradu-
ally growing and positively impacting on cyber security, although it faces some
challenges [8, 31]. Also, Savino Dambra et al., [11] underlined that current ap-
proaches for risk assessment are mostly qualitative and do not provide monetary
information required for the cyber insurance underwriting process. The authors
argue that the situation can be improved by applying data-driven methodolo-
gies and development of automatic tools. Scientific studies are largely focused
on the problem of incentivising organisations to increase their cyber security
investments if cyber insurance option is available [13, 14, 15, 32, 33]. Some
researchers [32, 35, 12] claim that an organisation may invest less once the cy-
ber insurance option becomes available. On the other hand, others [33, 34],
i.e., Ruperto P.Majuca et al., found out that organisations are encouraged to
invest for the self-protection to obtain a lower premium. Mukhopadhyay et al.,
[36] highlights that basic and concrete security investments for security controls
are mapped to the affordable insurance premium. In contrast to the existing
work on cyber insurance, we provide a cost-efficient approach for selecting con-
crete security controls and define how to map it with investment-probability
correlation. To best of our knowledge, this problem has been often avoided by
researchers and has not been investigated thoroughly.

2.2. Optimisation of security configuration

The problem of selecting the best security controls received a lot of attention
from various researchers. For example, Chung et al., [37] considered selecting
the optimal security controls based on their Return on Investment (RoI) metric.
This approach is similar to our Greedy algorithm and, as our experiments show,
it often leads to only near-optimal answers.

Several authors [21, 38, 39, 40] focused on formulating the problem of opti-
mising best controls selection where they applied the basic knapsack problem
[19]. Even though the main concept is similar, the authors assumed various lim-
itations and modifications of the knapsack problem. In particular, T. Sawik [38]
considered minimization of expected worst-case cost using Value at Risk (VaR)
and Conditional Value-at-Risk (CVaR) values. Lee at al., [41, 42] considered
the return on investment, expected losses and required resources as additional
constraints. Dewri et al., [39] and Viduto et al., [43, 44] formulated a problem
considering both residual risk and cost of security controls as separate objec-
tives to be minimised. Smeraldi and Malacaria [21] considered different assets to
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protect and binary interdependency of control. Fielder et al., [20] and Dewry et
al., [39] merged a knapsack representation of the problem with a game-theoretic
approach to decide which strategy is better for protecting against an attacker.
Rees et al., [25] considered uncertainty in the optimisation problem and used
fuzzy values for risk computation.

Many of these formulated problems are considered as multi-objective prob-
lems [21, 38, 39, 43]. We should underline that objectives considered by the
authors (minimisation of losses, minimisation of costs, maximisation of return
of investments, etc.) differ from our vision of objectives (i.e., minimising the
risks caused by each threat). In this article, we prove that to optimise invest-
ments in self-protection and insurance we must consider total expenditure (i.e.,
minimise the sum of insured risk and total cost of controls).

The core difference of our paper from these works is that we propose an
exact algorithmic solution based on dynamic programming and adapt it for our
problem, while the authors of the mentioned papers simply apply existing off
the shelves solutions. For example, [38] applied mixed-integer programming ap-
proach to analyse a simple example with 10 threats and 10 controls (something,
our algorithm can easily cope with). Smeraldi [21] considered classic dynamic
programming and greedy algorithms. Other authors [25, 39, 40, 44] used various
evolutionary algorithms. Our experiments prove that GA is faster and reliable
enough (with high settings), although it still may fail to produce the optimal
answer. Viduto et al., [43] provided their solution called Multi-objective Tabu
Search (MOTS), but their solution solves a slightly different problem which
considers residual risk and security controls objectives separately.

2.3. Algorithmic solutions for optimisation problems

Dynamic programming [45, 46] is one of the main solutions for the knapsack
problem as it finds the optimal answer through iterations until a certain con-
dition meets. In the work of Bazgan et al., [23], 0-1 multi-objective knapsack
problem (considered 3 objectives for the experiment) has been solved by propos-
ing dynamic programming, where the authors used several complementary dom-
inance relations at different states and conducted experimental validation. In
our paper, we improved the algorithm taking into account the peculiarities of
our concrete problem (i.e., projection idea). On the other hand, evolutionary
algorithms, i.e., Genetic Algorithm, are often considered in both literature and
applications due to its capability of finding the optimal or near-optimal solutions
in a much shorter time [47, 48].

There is several attempts to improve the performance of GA by many re-
searchers [22, 26, 44, 49, 50]. Maya Hristakeva and Dipti Shrestha [22] proposed
a GA-based solution for 0-1 knapsack problem and compared two selection meth-
ods, roulette-wheel and group selection (they devised a name for their approach).
As an outcome, they claim that the group selection with elitism (copying some
chromosomes without doing crossover technique) outperforms the roulette-wheel
selection in different cases, i.e., increasing the number of population. Another
work to improve the accuracy of GA, Gupta et al., [26] proposed a hybrid so-
lution to create a better first population. They applied ”fcheck” function to
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W 0 - initial wealth ~π - probability of a threat survival

x - security investment ~F - expected number of threats attempts
c - cost of a control ~p - probability of a threat occurrence
P - premium ~z - number of threat occurrences

K - a set of available controls ~L - loss

Ks - a set of selected controls ~I - indemnity

Table 1: Notations adopted in this work

the initialization step to check whether the created population meets the cri-
teria they set. The idea results in more good chromosomes in the population,
which eventually improved the accuracy of the outcome. Also, Ahmad et al.,
[49] proposed a linear regression analysis for creating the most efficient and fit
population, yet this work is dedicated to another problem, travelling salesman
problem (TSP). We have adapted some ideas of the aforementioned works to
initialize the first population and improved them to fit into our work.

Also, GA has been applied to various applications, including cyber security.
For instance, Suhail Owais et al., [51] surveyed to apply GA to Intrusion De-
tection Systems (IDS) techniques and Goranin et al., [50] adapted GA to find
the controls to mitigate the propagation of worms through the Internet.

3. Problem specification

In this section, we formalise our main problem gradually adding the re-
quired features. First, the optimisation problem for the security of a system is
described, then the insurance option is added and the whole model is consid-
ered from the point of view of utility theory in the usual way for analysis in
the insurance literature [8, 32, 35]. The main parameters used in this paper are
listed in Table 1.

3.1. No insurance case

Consider an organisation which has conducted risk identification phase of
risk assessment and has identified nt (nt ∈ N+) relevant threats. For each

threat, a corresponding expected loss has been defined ~L = 〈L1, L2, ..., Lnt〉,
where ~L is a vector and Li(1 ≤ i ≤ nt) is its i-th member. To decrease the
amount of losses, the organisation invests x in self-protection. This investment
will be spent for installation and application of a set of security controls Ks,
which can be seen as a subset of the set of all possible security controls K
(e.g., the ones that could be found in ISO27002 [52] or NIST 800-53 [7]). Let
the cost of a control be a function and its result be a finite non-negative value
c : K 7→ N+ (i.e. thousands of Euro). The overall cost of installed controls
Ks ⊆ K (c(Ks)) is computed as:

c(Ks) =
∑
∀k∈Ks

c(k). (1)
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The probability of threat i successfully passing through all installed security
controls is denoted as pi(Ks), which eventually can be seen as a vector for all nt
threats, ~p(Ks) = 〈p1(Ks), p

2(Ks), ..., p
nt(Ks)〉. Now, if we know the frequency

of threats occurrences ~F = 〈F 1, F 2, ..., Fnt〉, the overall risk for the organisation
can be found as follows.

Risk(Ks, x, ~L) = (~F � ~p(Ks))× ~L, (2)

where ~a × ~b is a usual matrix multiplication of two vectors given as ~a × ~b =∑nt

i=1 a
i · bi and the Hadamard product of two vectors ~a and ~b is a vector

~c = ~a � ~b = 〈a1 · b1, a2 · b2, ..., ant · bnt〉. In this paper, we omit the symbol
for the transposition of vectors, required for proper representation of matrix
multiplication, to simplify the formalisation since this precision is not crucial
for the understanding of the paper.

Since a threat may occur more times than once in an observed period, and
harm the organisation more than once, we need to take into account the distri-
bution of probabilities with respect to the number of threat occurrences. Let
~z = 〈z1, z2, ..., znt〉 be a random vector of numbers of threat occurrences (one
per threat) and p(~z|Ks) be the probability that the considered organisation will
face ~z incidents for some period of time conditional on the implemented controls
Ks. If the organisation has W 0 as an initial wealth (or expected benefit from
its core business), the wealth after occurrence of ~z threats can be defined as:

W (~z,Ks, x) = W 0 − x− ~z × ~L (3)

The goal of the organisation is to maximise its expected wealth, i.e.,

E[W (~z,Ks, x)] =
∑
∀~z

(W 0 − x− ~z × ~L) · p(~z|Ks) =

W 0 − x−
∑
∀~z

(~z · p(~z|Ks)× ~L (4)

We note that
∑
∀z(~z · p(~z|Ks)

1 is the mean number of occurrences, previously

defined as ~F � ~p(Ks). Finally, our optimisation problem can be seen as

max
x,Ks

E[W (~z,Ks, x)] = W 0 − x− (~F � ~p(Ks))× ~L = W 0 − x−Risk(Ks, x, ~L)

(5)

or

min
x,Ks

[x+ (~F � ~p(Ks))× ~L] (6)

3.2. Insurance case

If an organisation buys insurance, it pays some premium P regularly and
expects some coverage of a loss if a threat occurs (called indemnity ~I). Indemnity

1”·” is the scalar multiplication defined as ~a · b = 〈a1 · b, a2 · b, ..., ant · b〉
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is also a vector of size nt, since depending on the purchased insurance product,
different threats may get different coverage. The coverage is always lower than
the loss itself, i.e., ∀i, Ii ≤ Li. In cyber insurance, a premium is usually
computed through the estimated risk. A usual assumption is to consider a
competitive insurance market [8] for which the premium is equal to risk for

the insurer (i.e., P = Risk(Ks, x, ~I)). In case of purchased insurance, the
resulting wealth for the organisation after occurrence of ~z threats (i.e., similar
to Equation 4) can be found as:

W (~z,Ks, x, ~I) = W 0 − (~F � ~p(Ks))× ~I − x− ~z × (~L− ~I), (7)

where ~I − ~L = 〈I1 − L1, I2 − L2, ..., Int − Lnt〉.

Similar to other economic models [8, 32, 35], we assume an organisation to be
risk-averse and use utility of possessing a certain amount of wealth U(W ) instead
of the wealth W itself. The utility function is considered to be continuous, non-
decreasing, and concave, i.e., U ′(W ) > 0 and U ′′(W ) < 0.

U(W (~z,Ks, x, ~I)) = U(W 0 − (~F � ~p(Ks))× ~I − x− ~z × (~L− ~I)). (8)

Finally, the expected utility is equal to:

E[U ] =
∑
∀~z

p(~z|Ks) · U(W 0 − (~F � ~p(Ks))× ~I − x+ ~z × (~I − ~L)). (9)

Our goal transforms into maximisation of the expected utility (E[U ]) by select-

ing the optimal x, ~I and Ks.
In these settings, it is possible to prove that the optimal ~I for an organisation

is equal to ~L (see the proof in the Appendix A). In other words, a risk-averse
organisation insures all risks left after reduction if insurance option is available.
This allows us to reduce Equation 9 to:

max
x,Ks

U(W 0 − x− (~F � ~p(Ks))× ~L). (10)

Since the utility function is non-decreasing, we need to maximise its argument,
or simply minimise the following part, which we call expenditure in the following:

min
x,Ks

(x+ (~F � ~p(Ks))× ~L). (11)

At this point we need to note, that our problem becomes equivalent to the
risk-neutral approach, i.e., if U(W ) = W as in Section 3.1, for selecting security
budget distribution and controls selection if no insurance is available (in this
case, the premium becomes the accepted residual risk). The organisation should
simply minimise its investments in self-protection and residual risk. Thus, our
further contribution could be applied if one of the conditions (Equations 6 and
11) described above is found to be applicable.
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3.3. Selection of security controls

Let Ks|x denotes a set Ks which minimises Equation 11 for some fixed
investment x. To minimise Equation 11 (as well as the minimisation condition
in Equation 6), we need to compute p(Ks|x) and determine the procedure for
selection of Ks in a way to minimise this component and ensure that we do this
with investments less or equal to x.

Let πj(k) ∈ [0; 1] be the probability that a threat j passes through (survives)
control k ∈ Ks; control k completely eliminates threat j if πj(k) = 0, and is
entirely powerless against the threat if πj(k) = 1. Let ~π(k) be a vector of all
probabilities of survival if control k is installed, and the overall probability of
survival ~p(Ks) can be computed as2:

~p(Ks) =
∏
∀k∈Ks

~π(k), (12)

where
∏
∀k∈Ks

stands for the Hadamard product.
Now, we say that ~p(Ks|x) = ~p(Ks) if Ks minimises Equation 11 and its

overall cost is below x. Finally, the optimisation problem considered in this
paper can be seen as:

min
∀Ks⊂K

(~F �

[ ∏
∀k∈Ks

~π(k)

]
)× ~L+ x and

∑
∀k∈Ks

c(k) ≤ x. (13)

Equation 13 is the core problem we are tackling with in this paper.
Our goal in this article is to find the efficient distribution of investments,

i.e., self-investments, insurance and accepted risk. Furthermore, we go further
and explicitly show how these investments should be used by selecting the best
set of security controls to achieve this efficient budget distribution. Considering
the efficient distribution of investments and selection of controls helps us to
achieve the desired cost-effectiveness, in contrast to efficient threat mitigation
only considered in many of the related works [20, 21, 38, 39].

4. Algorithmic solutions

Equation 13 reminds of a 0-1 Knapsack problem, but uses multiplication
(rather than summation) for aggregation of items (i.e., security controls) and
has a complex utility function (multiplications and summations). This utility
function is not order-preserving (i.e., if we add the same control to one set that
was riskier than another one, the resulting set may become less risky). Moreover,
we see that the budget limit is also a parameter of the utility function itself.
This fact complicates the search for the solution.

In other words, although we see some obvious similarities between our prob-
lem and the 0-1 knapsack problem family, we need some modifications to the

2We assume effects of controls to be independent from each other.
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available solutions to find the optimal budget distribution and select cost-
efficient security controls.

First, we see our problem as the 0-1 multi-objective knapsack problem [23],
i.e., a 0-1 knapsack problem with many utilities to maximise (i.e., threats to
reduce, in our case). In our previous work [53], we adapted a dynamic program-
ming solution into our problem. Although this solution was able to solve the
problem, in theory, it is not very time- and resource-efficient. Therefore, in this
paper we

� provide an improved version of the algorithm (e.g., embedding the projec-
tion idea),

� adapt a couple of approximate solutions (e.g., greedy and genetic algo-
rithms) to our problem,

� conduct an analysis of the applicability of the three solutions.

4.1. Dynamic Programming

We start with the dynamic programming for solving 0-1 multi-objective
knapsack problem proposed by Bazgan et al., [23]. In general, dynamic program-
ming could be applied if the main problem can be decomposed as recursively
nested sub-problems.

First, we enumerate all the elements of K as j = 0, 1, ..., nK (where nK is
the size of K). We will sequentially try security controls, deciding whether to
add the latest one into the selected set or reject it. In short, once we reach
a control kq, we will have all controls j = 0, ..., q checked and continue with
j = q + 1, ..., nk.

Costs of controls can be represented as positive integer values, such that
∀k ∈ K (c(j) = C ·mj), where C is the greatest common divisor for all costs
and mj is just some positive natural value (∀j,mj ∈ N+). Similarly to controls,
we will check the solutions for our problem gradually increasing the limit by C
(i.e., x = C ·m, where m = 0, 1, ...,mmax).

To advance in two directions (i.e. considering controls and budget limit) we
need an auxiliary matrix T . Every cell T [j][m] contains a solution of a sub-
problem considering the first j controls and budget limit x = m ·C (the overall
survival probability ~p(Ks|x), x = m ·C computed with Equation 12). Our goal
is to consider all security controls and find the optimal budget x∗ = C · m∗
which leads to the minimal value of the first part in Equation 13. In other
words, we are looking for the value (and associated selection of controls) of
the cell T [nt][m

∗]. This will be our solution for the main problem, while every
T [j][m] (for j < nt and m < m∗) are the sub-problems.

Since the different combination of controls could fit into the budget limit,
there could be several alternatives contributing to one cell in T. In the traditional
method for solving 0-1 knapsack problem, every sub-problem (i.e., a selection of
alternatives for T [j][m] j < nt and m < m∗) could be solved, because the utility
function used is order-preserving. Working with a multi-objective optimisation

10



problem, we have no definitive criteria to select the best solution for a sub-
problem.

Nevertheless, we may find some criteria which could help us to identify
the solutions which are definitely worse than others, to minimise the number
of alternatives. We call these solutions as dominated, and those solutions for
which such a decision cannot be made are called non-dominated. Naturally, we
should remove all dominated vectors to simplify the computation.

Basically, the core of our algorithm for 0-1 multi-objective knapsack problem
could be seen as the following recursive algorithm:

Figure 1: Recursive algorithm

In our problem, we consider that security budget limit is not a given value,
but is also a value to be optimised (x∗) by solving Equation 13.

It is worth noting that the recursive algorithm does not require the presence
of the security investment bound. This fact allows us to start the investment
from 0 and rise it until we find our solution (also extending matrix T for new
x to check). In this regard, we should aim to minimise the number of required
iterations and ensure that the solution to Equation 11 will be found.

We can re-write Equation 11 as follows, denoting the optimal premium (or
residual risk) if x amount is invested in self-protection as P ∗(x):

min
∀x

(P ∗(x) + x). (14)

Consider some amount of investments xr ∈ [0,W 0] to be evaluated at step
r ∈ [0;W 0/C]. We are interested only in the following future steps y:

xr + P ∗(xr) > xr+y + P ∗(xr+y); (15)

xr+y < P ∗(xr) + xr − P ∗min, (16)

where P ∗min = ~F �

[ ∏
∀k∈K

~π(k)

]
) · ~L. (17)

The aforementioned two equations (Equations 15 and 16) enable us to have
the following observations. First, Equation 15, shows how to select the optimal

11



value by comparing the current best value (i.e., up to step r) with the next ones
(y > 0). The latter, Equation 16, defines the stopping point for the algorithm
since there will be no more efficient solution if the condition fails. We also may
find the first limit, which is: xlimit

0 = P ∗(0) − P ∗min, considering that P ∗min is
the minimal possible premium/risk that is computed with all possible controls
Ks = K installed. Naturally, if the company sets a limit for its investments
xlim and P ∗(xr) + xr − P ∗min > xlim, we should bound our further steps with
xr+y < xlim. Note that in this case we are not going to use all invested money,
but look for a cost-effective solution within this budget.

We further note that the limit is reset for each better x, since it will be less
than the previous one. This observation can be easily proved as follows. Let xr
be the previous best value (i.e., for all r+ y− 1 steps) and xr+y be even better
than xr, i.e.,:

P ∗(xr) + xr > P ∗(xr+y) + xr+y. (18)

The limits defined at steps r and step r + y are xlimit
r and xlimit

r+y consequently:

P ∗(xr) + xr − P ∗min = xlimit
r ; P ∗(xr+y) + xr+y − P ∗min = xlimit

r+y . (19)

We conclude that xlimit
r > xlimit

r+y .

Algorithm. Now, we may write an algorithm, based on our ideas described above
(Algorithm 1), which a) finds the optimal investments in self-protection x∗; b)

ensures the lowest expenditure ((~F �~p(K∗s |x∗)) ·~L+x∗). The algorithm is based
on the dynamic programming approach to solve the 0-1 multi-objective knapsack
problem [23]. Although the core part of the algorithm has been re-used, we
have adapted it for our problem and make it return the optimal investment as
an output, instead of taking it as an input.

At the initial phase, the algorithm requires all variables and functions for
the input. One of the advantages of this algorithm is that it allows taking into
account already invested funds xinit, spent for installation of some initial set
of controls Kinit and reducing the probability of attack with ~pinit. The initial
controls are not used in our further analysis: Kinit ∩K = ∅.

The algorithm starts (9 and 16) with setting up initial values and computing
the minimal premium Pmin at this point. GCD(∪∀k∈Kc(k)) function returns
the Greatest Common Divisor3.

We gradually increase the limit x (and its counter m) until the procedure
reaches the limit exp− Pmin, as Equation 16 states (line 17). For every limit x
we consider all controls one by one (line 19). For every control, we compare: 1)
a set of previously selected controls with kj (

⋃
∀l
~π(kj)�T [j−1][m− c(kj)/C][l]),

2) and the best selection of controls without kj (T [j− 1][m])(line 21). We leave
only non-dominated elements sets of controls.

3The algorithm for finding GCD is well known and is not included in the paper.
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Algorithm 1: Selecting the best set of controls

1 Function(searchForOptimalInvesments)

Input: K, c, π, ~F , ~L, xinit, pinit, C
Require:

2 K // a set of controls

3 c : K 7→ N // cost function

4 π : K 7→ 2[0;1] // survival probability per threat function

5 ~F // frequency vector of R+ values

6 ~L // single loss expectency vector of N+ values

7 xinit ∈ N // initial investments

8 ~pinit // initial probability of survival vector of values from [0; 1]

Ensure: min(~F � ~p(Ks|x))× ~L+ x) for optimal security investment x∗

9 exp := (~F � ~pinit)× ~L+ xinit // Initial expenditure as optimal

10 P ∗min := ~F �
[∏
∀k∈K ~π(k)

]
)× ~L

11 x∗ := xinit // Optimal Investment starts with xinit

12 ∀j T [j][0] := {~pinit} // a dynamic matrix of optimal probabilities. Add

new (and the first) column x = xinit, with one vector ~pinit

13 C := GCD(∪∀k∈Kc(k)) // the greatest common divisor for costs

14 x := C // first increase of investments

15 m := 1 // investment counter starts with 1

16 nk := |K| // the size of set K

17 while x+ xinit ≤ exp− P ∗min do
// Do while x is below the optimal expenditure

18 ∀j T [j][m] := {~pinit} // new column is set with vector ~pinit

19 for j := 1 to nk do
// for all controls

20 if (c(kj) ≤ x ) then
// check the cost limit

21 T [j][m] :=

non− dominant

{ ⋃
∀l
~π(kj)� T [j − 1][m− c(kj)/C][l]

T [j − 1][m]
// store all non-dominant vectors comparing two sets: with

new control and without.

22 else
23 T [j][m] := T [j − 1][m]

// continue without adding new control j

24 for l := 0 to |T [nk][m]| do
// for all vectors stored in T [nk][m]

25 if (~F � T [nk][m][l])× ~L+ x+ xinit < exp then
// reduced the expenditure?

26 exp := (~F � T [nk][m][l])× ~L+ x+ xinit
// Store this expenditure as optimal

27 x∗ := x // Remember these investments as optimal

28 x := x+ C
29 m := m+ 1

Return: exp, x∗
13



As we mentioned earlier, our solution is derived from classic dynamic pro-
gramming yet, instead of summing the values, we multiply them and look for-
ward to ensuring the lowest overreaching to the maximum. Furthermore, when
we set an additional investment for the next column, the overall probability of
survival should be computed considering the changes. In particular, if the cost
of a control kj (c(kj)) is higher than the additional investments x, we keep the
previously selected controls as well as the corresponding survival probabilities
T [j − 1][m] (line 23).

After considering all controls for current security investment x, we check
whether the total expenditure computed by Equation 15 is lower than the pre-
viously computed one (line 25). If this condition is met by some vector from
T [nk][m], we reset our optimal security investment to the new one (line 27) and,
more importantly, in line 26, we further replace the expenditure with the new
one for further computations (according to the condition in Equation 16).

We find the lowest possible expenditure and the optimal security investment
at the last iteration before the condition in line 17 fails. To find the selected con-
trols, a simple backward algorithm should be applied as we have in Algorithm 3
(see Appendix B).

Dominance criteria. The last part of our algorithm is the criteria for dominance.
In our previous work [53], we used Pareto optimality, i.e., we checked that every
element of one vector is better or equal (in our case, lower or equal) than the
corresponding element from another vector. We studied further possible ways
to improve our DP algorithm since the number of non-dominated vectors grows
fast and this slows the algorithm, especially as the number of considered controls
grows.

We have found two possible improvements, i) Projection and ii) Sorting.
Projection aims to strengthen the dominance criteria, by looking to the remain-
ing controls and assuming the worst case for a vector with lower risk. If the
vector under these conditions still results in a lower risk than its opponent,
we discard the second vector. Sorting security controls by their cost, leaving
the costlier ones for later consideration, tends to reduce the number of possible
alternatives (and non-dominated vectors) at the end.

To implement the projection idea, we first compute the best case values for
all controls by multiplying values for threats starting from the latest control.
We use a table Best[][] to store these values, which are computed as:

Best[j][i] =

j∏
q=nK−1

π(kq)[i] (20)

Next, for every set of already considered controls (e.g., by j-th one) we know
the lowest survival probability if all remaining controls will be installed. Now,
let us compare two vectors ~p and ~p′ after considering only j-th control and see
that risk for the first one is lower than for the second one, i.e.,

~F � (~p− ~p′))× ~L < 0. (21)
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Let I be a set of all indexes for threats (|I| = nt) and for some i ∈ Î ⊂ I
p[i] > p′[i] and for others i ∈ I\Î p[i] ≤ p′[i]. We form a vector ~D with nt values,
as follows:

D[i] =

{
Best[j][i] if i ∈ Î

1 if i ∈ I\Î
(22)

We make the situation worse for the first vector by reducing the probabilities of
survival for the threats from Î and check if the first vector still results in lower
risk:

~F � ( ~D � (~p− ~p′)))× ~L < 0. (23)

If that is the case, we can remove the second vector from the further considera-
tion, since no matter what we apply in the future the risk computed using the
first set of controls will always be lower. Note that this definition of dominance
supersedes the former Pareto optimal approach. Algorithm 2 encodes this idea.

4.2. Greedy

Our DP based solutions accurately find the optimal answer for our main
problem, however, they require a lot of time to find the solution when there is
a large number of input parameters. Alternatively, approximate solutions could
be applied to find nearly optimal answers.

One of such approaches is the Greedy approach [54]. The idea behind the
greedy approach is to add (or remove) the elements which separately contribute
the most (or the least) to the overall goal. Such an approach does not guarantee
to find the optimal value but is fast and easy to implement.

Our version of a Greedy algorithm (see Appendix B) starts with all controls
to be selected and gradually remove the ones which removal reduces the overall
expenditure more than the removal of others. We do this until we are not able
to remove any control without increasing the expenditure.

4.3. Genetic Algorithm

One of the most used optimisation approaches is the Genetic Algorithm (GA)
[22, 25, 39, 40, 44], which provides the optimal or nearest optimal solutions in
a short time. We basically keep the foundation of GA [22, 25], but make some
changes to fit it into our problem (see the Algorithm 7 in Appendix B).

First, we randomly generate an initial population of chromosomes (every
chromosome is an example of a security configuration with every gene repre-
senting a security control). This population is further used for generation of the
new population which will be compared with the initial one with respect to the
main criteria (i.e., Equation 11).

The most important part of GA is the creation of a new population (algo-
rithm 9), where it comprises crossover and mutation procedures with a merge
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Algorithm 2: Projection Function of the DP

1 Function(newDominanceCheck) // Checking new dominance using

projection idea

Input: V ectorsA, V ectorsB,Best[j], ~F , ~L, nt
Require:

2 V ectorsA, V ectorsB // two sets of vectors to check for dominance

3 Best[j] // A vector with corrective values for the current step j

4 ~F // frequency vector of R+ values

5 ~L // single loss expectency vector of N+ values

6 nt // number of threats

Ensure: A set of non-dominated vectors
7 for q < |V ectorsA| do
8 for l < |V ectorsB| do
9 v1 := 0 // vector q is dominating

10 v2 := 0 // vector l is dominating

11 for k < nt do
12 if (V ectorsA[q][i]− V ectorsB[l][i]) < 0 then
13 v2 := v2 + (V ectorsA[q][i]− V ectorsB[l][i]) · F [k] · L[i]
14 v1 :=

v1+(V ectorsA[q][i]−V ectorsB[l][i]) ·Best[j][i] ·F [k] ·L[i]

15 else
16 v2 :=

v2+(V ectorsA[q][i]−V ectorsB[l][i]) ·Best[j][i] ·F [k] ·L[i]
17 v1 := v1 + (V ectorsA[q][i]− V ectorsB[l][i]) · F [k] · L[i]

// new vector is dominating

18 if v2 > 0 then
19 remove vector q from V ectorsA

// old vector is dominating or the same

20 if v1 <= 0 then
21 remove vector l from V ectorsB

22 result := V ectorsA ∪ V ectorsB

function. We have improved the techniques for crossover by adapting both two-
point and single-point methods as are shown in Figure 2. Then, the rest of the
population is added to a new population list. Now, the new list of chromosomes
will be used for crossover by using three different combinations – good with
good, good with bad and bad with bad.
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Figure 2: Crossover techniques

After that, the algorithm sorts the chromosomes and checks if the best chro-
mosome found after the crossover procedure is greater than the one found before.
In GA, mutation helps to overcome local minimum solutions and find global op-
tima. We use the basic technique of mutation, selecting random bits (number
of random bits is defined in prior) based on a defined number, with elitism tech-
nique, and reverse those bits as is shown in the Figure 3. This process should be
done for the offsprings after crossover procedure, and sort them by their weights
to find the best one.

Figure 3: Mutation process

5. Experiments

In this section, we compare our solution with Greedy and GA in different
scenarios.

The first experiment is to ensure whether the approximate algorithmic so-
lutions and the improved DP yield the same result that we had in our previous
work [53].

Furthermore, what we are interested in is the execution time of the solutions
and its dependence on various input parameters. The second parameter which
we would like to investigate is accuracy of the approximate solutions (Greedy
and GA). We may expect the approximate solutions to perform better than our
DP algorithms, but we would like to test the limits of the algorithms and verify
that the version of the DP algorithms with projection idea is indeed beneficial.

To evaluate the accuracy of the approximate solutions, we need to know the
exact answer, and therefore we compare the results of the approximate solutions
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with the result of the DP algorithm. If the computation becomes too slow for
the DP-based algorithms to produce the result, we run the GA algorithm several
times (e.g., high settings) and assume that the result which we receive most often
is the correct one. The last assumption does not provide a 100 percent guarantee
that the found result is the exact answer, but this is the best reasonable check
we can do. Moreover, for this reason, we do not experiment with the values of
the input parameters showing a high dispersion of results.

For the sake of testing, we have created a simple supporting program which
randomly generates inputs for our problem. This generation is not fully ran-
dom, but controlled, i.e., it depends on some quantitative and qualitative input
parameters.

For more complicated cases, we start investigating how the quantity of the
input parameters, i.e., the number of considered controls and threats, affects the
execution time and accuracy of the considered solution. Then, we move to the
analysis of the effect of quality of input, i.e., how the input is formed.

We consider the following qualitative input parameters. The Greatest Com-
mon Divisor (GCD) C determines the granularity of the search for a suitable
solution (the higher the GCD is, the easier should be for the algorithms to com-
pare the control costs). Range of the control costs, i.e., how different the costs
are from each other, could make the solution look too much alike for the algo-
rithms to find a global optimum. The number of threats affected by a control
shows how many threats could be reduced by installing one control and thus,
potentially, could have an impact on the projection idea.

All experiments have been run on a machine (Intel(R) Core(TM) i7-8550U
CPU @ 1.80GHz (8 CPUs), 2.0GHz) with Windows 10 operating system. We
acknowledge that usage of another (e.g., more powerful) computing system will
result in different speed of the proposed solutions, but we are more interested
in studying the existing dependencies, than finding the exact time of execution
for the algorithms.

5.1. Basic and Simple scenario

We use a simple example to demonstrate the work of the proposed solutions.
We consider an organisation which has identified five main threats and the
corresponding single loss expectancy (~L = 〈3000, 1800, 2800, 4000, 3800〉). Eight
available controls have been proposed (|K| = nk = 8) to install with costs as
(c(k1) = 480; c(k2) = 240; c(k3) = 120; c(k4) = 80; c(k5) = 200; c(k6) =
120; c(k7) = 280; c(k8) = 200). Finally, the initial probability of survival ~pinit
(caused by already installed controls), expected frequency of threats ~F and the
probabilities of survival for every proposed controls ~πj are found as shown in
Table 2.

As a result of applying all approaches, we obtain the best controls to keep the
security expenditure at minimum. Our DP algorithm (see Figure 4) successfully
passes the local minimums (i.e. for x = 80, x = 320 or x = 560) for expenditure
and finds the global one (i.e., for x = 760). We refer the readers to see equations
18 and 19 for ensuring how the algorithm finds the global minimum and stops
after some steps.
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~pinit ~F ~πk1 ~πk2 ~πk3 ~πk4 ~πk5 ~πk6 ~πk7 ~πk8
0.6 0.8 0.3 0.9 0.5 0.8 0.9 0.8 0.8 0.6
0.7 0.5 0.2 0.8 0.7 0.6 0.5 0.7 0.1 0.7
0.8 0.4 0.5 0.9 0.9 0.9 0.8 0.5 0.4 0.5
0.6 0.7 0.7 0.2 0.8 0.8 0.6 0.8 0.9 0.8
0.6 0.5 0.3 0.7 0.6 0.2 0.5 0.6 0.8 0.5

Table 2: Input vectors

Figure 4: (Exp) expenditure for security self-investments x

If an organisation selects {k2, k3, k4, k6, k8} and invests 760, the expenditure
is 1642 which is the global minimum so far. Figure 4 also shows that the overall
expenditure slowly increases after the optimal value (with some occasional small
drops), which confirms that further investments in self-protection are not cost-
efficient (even though they reduce the overall risk). Moreover, in order to avoid
spending unnecessary resources for the computation, DP based algorithms stop
running at x = 1280.

Both Greedy and GA algorithms find the same optimal answer in a shorter
time than DP (as expected). We should underline that the inputs for this toy
example are simple, but in the following experiments, we will consider larger
and more complex examples in which these algorithms will have difficulty to
find the right answer.

5.2. Quantitative input parameters

To conduct more complicated experiments, we start with the analysis of the
effect of the number of threats nt. The inputs are generated randomly with 20
security controls, 40 GCD, the cost ranging from 80 up to 400, and each control
affecting every threat. Since for GA various settings are possible, in order to
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limit the number of experiments and focus on the main outcomes, we set “high4”
values for the GA settings (see Table 3) during this set of experiments. We will
vary some of these settings investigating qualitative input parameters.

chromosomes combination

Mutation Limit
Population

size

Two point
crossover

percentage

Elitism
percentage

Good & Good Good & Bad Bad & Bad

1 bit 1000 1000 80% 15% 50% 45% 5%

Table 3: Constants for GA execution

Table 4 shows the results of our experiments.

Number of threats 5 10 15 20 25 30 35 40 50

20 controls
and up to
50 threats

DP
Execution time (sec) 0.3s 1.6s 16.7s 80.5s 323s 756.5s
Overall loss 800.2 825.4 963.6 1140.5 1213.8 1306.5

Projection
Execution time (sec) 0.1s 0.2s 0.7s 6.8s 8.9s 18.1s 27.4s 58.5s 271.9s
Overall loss 800.2 825.4 963.6 1140.5 1213.8 1306.5 1479 1617.8 1638.9

Greedy
Execution time (sec) 0.01s 0.014s 0.021s 0.015s 0.008s 0.009s 0.0156s 0.016s 0.015s
Overall loss 914.3 825.4 1045.2 1140.5 1213.8 1317.1 1560.1 1617.8 1638.9

GA
Execution time (sec) 2.8s 3.7s 5.1s 6.9s 8.5s 9.7s 10.9s 14.1s 16.4s
Overall loss 800.2 825.4 963.6 1140.5 1213.8 1306.5 1479 1617.8 1638.9

Table 4: Both Time&Accuracy of the solutions for increasing number of threats

First, we analyse the dependency of the execution time on the number of
considered threats nt (see Figure 5). We see that the Greedy algorithm is not
affected very much by the number of threats, the time for execution for others
grows with the increase of the number of threats. DP is affected the most and
its time of execution rises quickly. Our improved DP algorithm with projection
performs better, but still, its time of execution grows faster than the one for
GA.

4“High Settings” for GA represents a larger number of population size and a round of
iteration (limit)
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Figure 5: Comparison of execution time for 4 solutions in case of increasing number of threats
with 20 control cases

Although the Greedy solution is the fastest among the four solutions and at
the same time it fails more often (highlighted as bold in see Table 3) to find
the optimal answer. GA with our settings performs well and always finds the
optimal answer.

Next, we conduct 4 series of experiments, to analyse the dependency of the
execution time on the number of controls. The number of threats considered is
fixed in every experiment nt = 5, 10, 15 and 20. The four graphs in Figure 6
represent the results of the time dependency while the Table 5 indicates both
time and accuracy of the solutions.
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Figure 6: Comparison of execution time for 4 solutions in case of increasing number of controls
with 5, 10, 15, 20 threats cases

The Greedy solution in all cases performs faster than others for a lower
number of controls, but then its execution time increases. For instance, its
execution time grows faster than GA, which outperforms the Greedy solution
as the number of controls rises larger than about 200. Moreover, we see that
GA is affected by the number of controls only slightly, and, thus, we may expect
that its performance continues to stay the best and the execution time relatively
fast.

DP algorithms, as was expected, are the slowest and are the most affected
by the number of controls. Their execution time grows as nK grows especially
when the number of considered threats is large. DP with projection outperforms
the ordinary DP algorithm, but this difference is much lower than the difference
with approximate algorithms.

Analysing accuracy, we can see that the Greedy solution often fails to yield
the optimal answer whereas GA always finds the best ones. We admit that, at
some points, it is complicated to say whether GA provides the optimal answer,
however, we are confident because of the several times of running the GA.

Thus, we may conclude that the projection idea helps to improve the DP
algorithm, but its effect is reducing with the increase of the input parameters.
Also, Greedy and GA outperform the DP solutions and are able to provide the
result in a reasonable time even for a high number of threats and controls. GA
algorithm is less affected by the grows of parameters, although the Greedy one
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Number of Controls 20 50 100 150 200 250 300 350 400

5 threats case with
increasing number

of controls

DP
Execution time (sec) 0.04s 0.09s 0.57s 2.8s 6.5s 12.6s 21.4s 28.9s 48.3s

Overall loss 510.6 359.6 356.9 329.3 322.3 322.3 322.3 322.3 322.3

Projection
Execution time (sec) 0.01s 0.07s 0.59s 2.1s 2.9s 6.2s 16.9s 32.1s 77.4s

Overall loss 510.6 359.6 356.9 329.3 322.3 322.3 322.3 322.3 322.3

Greedy
Execution time (sec) 0.01s 0.04s 0.36s 1.2s 2.8s 6.1s 9.3s 14.7s 22.6s

Overall loss 510.6 413 356.9 353.7 337.9 337.9 337.9 342.8 363.7

GA
Execution time (sec) 2.7s 3.2s 4.5s 6.2s 7s 7.69s 9.4s 9.5s 10s

Overall loss 510.6 359.6 356.9 329.3 322.3 322.3 322.3 322.3 322.3

10 threats case with
increasing number

of controls

DP
Execution time (sec) 0.6s 31.9s 331.4s

Overall loss 850.1 553.7 468.1

Projection
Execution time (sec) 0.2s 8.7s 101s 220.7s

Overall loss 850.1 553.7 468.1 428.6

Greedy
Execution time (sec) 0.01s 0.06s 0.51s 1.7s 3.9s 7.9s 14.3s 22.5s 34.8s

Overall loss 850.1 562.7 488.3 428.6 416.5 385.1 422.3 422.3 455.3

GA
Execution time (sec) 3.77s 4.48s 5.6s 7.4s 8.2s 8.5s 9.5s 10.1s 11.5s

Overall loss 850.1 553.7 468.1 428.6 416.5 385.1 385.1 385.1 385.1

15 threats case with
increasing number

of controls

DP
Execution time (sec) 7.6s

Overall loss 977

Projection
Execution time (sec) 1.24s

Overall loss 977

Greedy
Execution time (sec) 0.01s 0.15s 1.06s 3.31s 6.7s 12.8s 22.7s 37.8s 74s

Overall loss 977 834.2 598.8 599.2 466.4 478.4 488.5 471.9 441.9

GA
Execution time (sec) 4.9s 6.7s 7.4s 8s 8.6s 9.4s 10.5s 11.6s 12.2s

Overall loss 977 789.7 598.8 576.2 466.4 466.4 468.5 465.2 434

20 threats case with
increasing number

of controls

DP
Execution time (sec) 36.7s

Overall loss 1236.2

Projection
Execution time (sec) 4.6s

Overall loss 1236.2

Greedy
Execution time (sec) 0.01s 0.17s 1.1s 4.9s 8.3s 18.1s 26.6s 42.3s 87.5s

Overall loss 1236.2 850.9 774.2 699.2 678.6 645.3 653.8 667.7 577.9

GA
Execution time (sec) 6.7s 8.2s 8.7s 10.2s 10.8s 11.7s 12.4s 14s 14.3s

Overall loss 1236.2 850.9 714.2 659.1 642 619.2 619.2 612.1 577.9

Table 5: Both Time&Accuracy comparison for increasing number of controls

is faster for smaller numbers. But, the Greedy algorithm usually provides an
only nearly optimal answer.

5.3. Qualitative parameters

We further analyse the parameters which measure how the input is formed.
For every of the three selected qualitative input parameters, we conduct at least
3 experiments with different values of these parameters, keeping the others
constant. The results of the experiments can be found in Table 6.
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Algorithms DP Projection Greedy GA

Changing GCD
(30 controls and
10 threats with
80 to 160 cost range)

40 GCD
Execution time (sec) 418s 74.6s 0.03s 3.8s

Overall loss 627.1 627.1 700.6 627.1

20 GCD
Execution time (sec) 496s 75.5s 0.03s 4.2s

Overall loss 543.9 543.9 567.8 543.9

10 GCD
Execution time (sec) 1369.6s 92.1s 0.03s 4.8s

Overall loss 576.9 576.9 613.2 576.9

Different range
of cost
(30 controls and
10 threats with
40 GCD)

80 - 400 range
Execution time (sec) 6s 1.2s 0.01s 3.6s

Overall loss 706.6 706.6 706.6 706.6

80 - 160 range
Execution time (sec) 418s 74.6s 0.03s 3.8s

Overall loss 627.1 627.1 700.6 627.1

80 - 120 range
Execution time (sec) 1741.7s 132.5s 0.03s 4.2s

Overall loss 495.3 495.3 544.2 495.3

Affected threats
(30 controls and
10 threats with
40 GCD and 80 to
400 cost range)

1 threat
Execution time (sec) >600s 0.2s 0.01s 4.7s

Overall loss 10277 10277 10277

4 threats
Execution time (sec) >600s 3.3s 0.01s 3.8s

Overall loss 2411.5 2411.5 2411.5

7 threats
Execution time (sec) 339.9s 1.7s 0.01s 3.6s

Overall loss 947.2 947.2 947.2 947.2

10 threats
Execution time (sec) 6s 1.2s 0.01s 3.6s

Overall loss 706.6 706.6 706.6 706.6

Table 6: Both time and accuracy of the solutions for different scenarios

We run the experiment with 30 controls and 10 threats, varying GCD (40, 20,
and 10) used for the input (cost, in this case) generation. The cost of controls
varies between 80 and 160. We see that GA is only slightly affected by the
variation of GCD, but DP algorithms slow down quickly with the decrease of
this parameter. The greedy algorithm does not change the time of its execution,
as it does not depend on GCD. With these settings, we also see that the Greedy
algorithm is not able to find the optimal answer.

We also analysed how the execution time depends on the variation of the
control costs (see Table 6. Again, we see that DP-based algorithms significantly
slow down as the variance decreases (the variant with projection slows down
more slowly). GA also takes slightly more time once the variance becomes
lower. Also, the Greedy algorithm slows slightly down, but its precision drops
with a lower variance in control costs.

Finally, we let every control affect only a certain number of threats (e.g., 1,
4, 7, and 10). The original DP solution requires significantly more time if fewer
threats affected, while GA and DP with projection solutions’ time gradually
drops. An interesting observation we have got for DP with projection: it finds
the solution much faster for 1 threat affected case and immediately increases for
4 threats affected case. This can be concluded that 1 threat affected scenario is
much simpler for the projection idea since it has more non-dominating vectors
to project. For Greedy, it is almost constant around 0.01 seconds for all cases.
In this experiment, we see that the input parameters are good enough for the
Greedy algorithm to find the optimal answer.

5.4. Precision of GA and Greedy algorithms

We see that GA and Greedy algorithms are faster than DP ones but they
are imprecise. In other words, we cannot be sure that the result they produce

24



is the optimal answer to the problem. Therefore, we would like to harden the
input parameters for the approximate solutions to test their limits. Moreover,
we are going to lower the settings for GA (limit number and population size) to
test them.

Genetic Algorithm Greedy
Limit number 100 500 1000
Population size 100 500 1000 100 500 1000 100 500 1000

Increasing number
of controls
(20 threats
40 gcd with range
of 80 to 400 costs)

20
Execution time (sec) 0.1 0.3s 0.5s 0.2s 1.1s 2s 0.5s 1.8s 3.8s 0.03s
Overall loss 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 Success

50
Execution time (sec) 0.1s 0.3s 0.6s 0.3s 1.2s 2.3s 0.5s 2.2s 4.2s 0.2s
Overall loss 8/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 Failure

100
Execution time (sec) 0.2s 0.7s 1.2s 0.7s 2.4s 4.6s 1.1s 4.5s 9s 1.3s
Overall loss 7/10 7/10 10/10 8/10 10/10 10/10 9/10 10/10 10/10 Failure

Increasing number
of threats
(50 controls 40 GCD
with range of
80 to 400 costs)

20
Execution time (sec) 0.1s 0.3s 0.6s 0.3s 1.2s 2.3s 0.5s 2.2s 4.2s 0.2s
Overall loss 8/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 Failure

30
Execution time (sec) 0.2s 0.8s 1.4s 0.7s 2.6s 5.4s 1.2s 5.9s 10s 0.31s
Overall loss 5/10 10/10 10/10 8/10 10/10 10/10 10/10 10/10 10/10 Failure

40
Execution time (sec) 0.2s 1.1s 1.8s 0.9s 3.7s 7.2s 1.7s 7.3s 14s 0.38s
Overall loss 2/10 5/10 8/10 3/10 9/10 10/10 8/10 10/10 10/10 Failure

Different GCD
(50 controls and
20 threats with
range of 80 to
400 costs)

40 GCD
Execution time (sec) 0.1s 0.3s 0.6s 0.3s 1.2s 2.3s 0.5s 2.2s 4.2s 0.2s
Overall loss 8/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 Failure

20 GCD
Execution time (sec) 0.1s 0.3s 0.6s 0.3s 1.2s 2.3s 0.9s 3.8s 7.4s 0.2s
Overall loss 5/10 10/10 10/10 7/10 10/10 10/10 9/10 10/10 10/10 Success

10 GCD
Execution time (sec) 0.1s 0.3s 0.6s 0.3s 1.2s 2.1s 0.6s 2.2s 4.1s 0.21s
Overall loss 5/10 9/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 Failure

Different range
of cost
(50 controls and
20 threats with
40 GCD)

range of
80 - 400

Execution time (sec) 0.1s 0.3s 0.6s 0.3s 1.2s 2.3s 0.5s 2.2s 4.2s 0.2s
Overall loss 8/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 Failure

range of
80 - 240

Execution time (sec) 0.1s 0.3s 0.6s 0.3s 1.2s 2.2s 0.5s 2.2s 4.3s 0.2s
Overall loss 3/10 8/10 8/10 5/10 7/10 8/10 6/10 10/10 10/10 Failure

range of
80 - 160

Execution time (sec) 0.1s 0.3s 0.6s 0.3s 1.2s 2.2s 0.5s 2.3s 4.2s 0.2s
Overall loss 3/10 4/10 7/10 5/10 5/10 8/10 8/10 10/10 10/10 Failure

Affected threats
(50 controls and
20 threats with
range of 80 to 400
costs and 40 GCD)

1 threat
only

Execution time (sec) 0.2s 0.8s 1.5s 0.7s 3.1s 6s 1.3s 6.1s 22s 0.03s
Overall loss 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 Success

3 threats
affected

Execution time (sec) 0.2s 0.6s 1.3s 0.6s 2.8s 5s 1.1s 5.1s 18s 0.06s
Overall loss 5/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 Failure

7 threats
affected

Execution time (sec) 0.1s 0.5s 0.9s 0.5s 1.9s 3.6s 0.9s 3.5s 7s 0.09s
Overall loss 4/10 7/10 10/10 6/10 10/10 10/10 8/10 10/10 10/10 Failure

Table 7: Different configurations for GA solution and their comparison with Greedy

Table 7 shows the result of different limits and population sizes for GA
solution and their comparison with the Greedy results (binary representation
of either Success or Failure for finding the optimal answer). Every experiment
for GA settings has been conducted 10 times to evaluate the accuracy of the
solution and the average execution time (highlighted and represented in seconds)
is reported.

It is conceivable that with small population size and limit, GA performs
much faster but fails more often. Also, other factors, i.e., GCD and Range of
costs, affect the result of GA. Depending on the limit and population size as
well as other factors, the gap between results is not huge. For instance, when
we have a range of 80 - 160 costs with 100 limit and 100 population size, we
see 4 different outcomes which difference are 29.4 (about 5% difference with the
optimal answer) utmost.

The Greedy solution yields the result in a relatively shorter time as expected,
yet fails to find the optimal solution in almost every experiment.

5.5. Analysis of results

Our experiments show that our DP solution with projection really improves
the speed of searching for the answer. The algorithm produces the results in a
matter of 5-10 minutes for about 10-20 threats and for 50-100 controls. Since
the decisions to be taken are strategic, i.e., will be valid for a long time (e.g.,
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a year) we may see this time as acceptable. Moreover, the usage of a more
powerful computing system will increase the speed of the proposed solutions.
Furthermore, advanced methods for computation (e.g., parallel computations)
will improve the speed even more.

Obviously, the exact algorithm cannot beat the approximate ones (although,
we see that for a smaller quantity of input parameters, DP-based solutions are
even faster than GA algorithms), but this is the price for assurance in the
exact answer the algorithm produces. Naturally, if one considers the full set
of controls from a standard (e.g., NIST [7] or ISO-27002 [52]) and the full
set of threats (e.g., see ISO 27005 [18]) it is better to use GA. On the other
hand, an organisation thinking about improving its self-protection is most likely
to consider a moderate number of possible controls (i.e., 10-20) and be more
focused on a moderate number of relevant threats (i.e., 10-20), thus, making
application of our DP-based solution acceptable. Naturally, if the numbers are
very small, an exhaustive search may be also applicable, but its time of execution
grows too fast comparing to dynamic programming based algorithms.

Last, but not least, not only quantity but also the quality of the input has
a great impact on the algorithms. Once GCD of the costs for security controls
is high enough and their range is large, the DP-based solutions are able to
terminate in a reasonable time. However, the reverse cases lead to much longer
time to terminate. We also see that once only a few controls are affected, our
solution with projection idea significantly outperforms the legacy one.

In sum, we may conclude that once a company has to select controls out of
a limited number of alternatives, our solution is applicable in reality. On the
other hand, with a larger number of controls, GA is more appropriate.

6. Discussion

In this section we would like to discuss some limitations of our work, most
of which relate to its practical application.

Our solution is based on the competitive insurance market model, which is
simple and widely used in theoretical insurance studies [55, 56]. This model al-
lows us to focus on the core problems and simplifies the analysis. On the other
hand, we acknowledge that in reality such a model should be adjusted to take
into account various features deviating the result from the theoretical analysis.
In case of insurance, such deviation is often modelled with additional loading
factors [8], which increases the price to cover insurance expenses, ensures sol-
vency, securing insurance risks, etc. In this paper, we do not consider how much
the non-competitive market aspects affect the results of our analysis and leave
this issue for future studies. We also would like to underline that other factors
(e.g., insurance regulations, deducible, perception of risk, the interdependence
of cyber security, etc.) may affect the results of our study and require specific
analysis to estimate the deviation from our core model.

In this work, we assumed security controls’ costs and probabilities to be
independent of each other. In practice, some controls may require installation
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of others (e.g., security audit may require the presence of monitoring and logging
mechanisms) or even conflict with each other (e.g., cryptography may reduce
the effectiveness of security audit). Some of these issues can be resolved by
pre-processing the input data (e.g., grouping some controls) and others can be
resolved by some adjustments in the core algorithms. We leave these steps for
future work.

Last but not least, we admit that our proposal relies on the knowledge of
survival probabilities and expected losses, the values which are hard to find. The
problem of identifying these values is well-known in the cyber security research
and industrial community and is heavily related to the lack of statistical data
available for research which is only becoming available [57]. On the other hand,
we believe such values can be found by cyber insurers who are collecting data
from their customers and are interested to use them for identification of these
values. We also may see some real steps in this direction as IBM Security and
Ponemon institute’s Data Breach report [58] contains the study (and reports
statistics) for the loss estimation depending on the security controls installed.

7. Conclusion and Future work

In this work, we theoretically analysed the problem of investments distri-
butions for a risk-averse model of an organisation which is considering to buy
cyber insurance. We have found that even in presence of several threats at the
same time a competitive insurance market leads to full insurance coverage as
optimal.

Also, our approach helps the organisation to identify the security controls
required to be installed to optimise investments in self-protection and cyber
insurance. The final problem we were solving aims for a cost-effective set of
controls, in contrast to the usual state of the art approach aiming at selecting
the controls with the total cost fitting the budget (and, thus, which could be
not cost-efficient).

We provided an algorithmic solution which returns the exact answer to the
main problem. The proposed solution proves to be faster than the direct appli-
cation of the legacy approach our solution is based on. The solution is suitable
for analysis of a reasonable set of available alternative controls (about 10-40)
and threats (about 10), but for much larger sets of controls and threats ge-
netic algorithm are more advisable to use. Although GA sometimes returns
near optimal solutions, it is much more reliable than the Greedy algorithm and
reasonably fast even with high settings.
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9. Appendix

A. Indemnity

Although it has already been proven in the literature that for a competitive
market the optimal indemnity is equal to loss [8], we need to prove this also for a
multi-threat scenario. In this regard, we apply Jensen’s inequality for a concave
function (for any concave function φ(t) E[φ(t)] ≤ φ(E[t])) for Equation 9:∑

∀~z

p(~z|Ks, x) · U(W 0 − (~F � ~p(Ks|x))× ~I − x+ ~z × (~I − ~L)) ≤

U(
∑
∀~z

p(~z|Ks, x) ·
[
W 0 − (~F � ~p(Ks|x))× ~I − x+ ~z × (~I − ~L)

]
) =

U(

[∑
∀~z

p(~z|Ks, x)

]
(W 0 − x)−

[∑
∀~z

p(~z|Ks, x)

]
·
[
(~F � ~p(Ks|x))× ~I

]
+[∑

∀~z

p(~z|Ks, x) · ~z

]
× ~I −

[∑
∀~z

p(~z|Ks, x) · ~z

]
× ~L).
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Since
∑
∀~z p(~z|Ks, x) = 1 and ~F � ~p(Ks|x) =

∑
∀~z p(~z|Ks, x) · ~z, we get:

U(W 0 − x−
[
(~F � ~p(Ks|x))× ~I

]
+ (~F � ~p(Ks|x))× ~I − (~F � ~p(Ks|x))× ~L) =

U(W 0 − x− (~F � ~p(Ks|x))× ~L).

The last part (U(W 0− x− (~F � ~p(Ks|x))× ~L)) is the expected utility if ~I = ~L.

In other words, Equation 9 is maximal if ~I = ~L.

B. Algorithms

B.1. Backtracking Algorithm

Algorithm 3: Recover selected controls

1 Function(BackTrack)
Input: x∗, c, T, C
Require:

2 x∗ // optimal investment found by searchForOptimalInvestments algorithm

3 c // cost of controls

4 T // auxiliary matrix T from searchForOptimalInvestments algorithm

5 C // CGD for control cost

Ensure: Optimal Ks

6 Ks := ∅
7 x := x∗ // we start with optimal investment level

8 for i := 0 to n do
// Iteration starts from the end of control’s list

9 if x− c[n− i− 1] < 0 then
10 if T [n− i− 1][x/C] 6= T [n− i][x/C] then
11 Ks.append(k[n - i]) // add n− i -th control the selected

controls list

12 x := x - c[n - i - 1] // Decrease the optimal investment by the

cost of (n-i-1)-th control

Return: Ks

B.2. Greedy Algorithm

Function GreedySelection (lines 1 to 12) in algorithm 4 is the core function of
the algorithm. It starts with an assumption that all controls are to be selected
and gradually remove the ones which removal reduces the overall expenditure
more than others. It stops when there is no control which removal decreases the
expenditure. Auxiliary Function Calc (Algorithm 5) simply computes the over-
all expenditure with a set of currently selected controls; and auxiliary function
FindWorstControl (Algorithm 6) selects the worst control to be removed.
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Algorithm 4: The main function for Greedy approach

1 Function(GreedySelection)

Input: c, π, ~L, ~pinit, ~F
Ensure: lowest minCost and optimalBudget for optimal security

investment x∗

2 minCost, optimalBudget := Calc(c, π, ~L, ~pinit, ~F) // call Calc

function to minCost and optimalBudget

3 index := FindWorstControl(c, π, ~L, ~pinit, ~F)
4 while index 6= -1 do

// iterate until the loop ends

5 delete c[index] // Delete the cost of the worst control

6 delete π[index] // Delete all probabilities of survival related to

the worst control

7 currentCost, currentBudget := Calc(c, π, ~L, ~pinit, ~F) // call

Calc function to currentCost and currentBudget

8 if currentCost < minCost then
// check the condition and replace the minCost with currentCost

if it meets

9 minCost := currentCost

10 optimalBudget := currentBudget

11 index := FindWorstControl(c, π, ~L, ~pinit, ~F)

12 return minCost, optimalBudget

Algorithm 5: Calculation function of Greedy approach

1 Function(Calc) // This function computes the minCost (expenditure)

Input: c, π, ~L, ~pinit, ~F
2 minCost := 0

3 for i := 1 to length(~L) do
4 prob := 1 // expected loss per threat i

5 for j := 1 to length(c) do
6 prob := prob · π[j][i]

7 minCost := ~F [i] · ~L[i] · ~pinit[i] · prob // put the sum of expected

losses to the minCost

8 optimalBudget := sum(c) // put sum of costs to opimalBudget

9 minCost := minCost + optimalBudget // computes the overall

expenditure

10 return minCost, optimalBudget
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Algorithm 6: Removal of the worst control for Greedy approach

1 Function(FindWorstControl) // function for finding worst controls

Input: c, π, ~L, ~pinit, ~F
Ensure: Index of a control with the smallest risk reduction

2 n := length(c) // define the length of costs

3 if n == 1 then
4 return −1

5 h := length(~L) // define the length of probability of survival

6 s := sum(c) // define the length of overall cost

7 minCost, temp := Calc (c, π, ~L, ~pinit, ~F ) // call the Calc() function

8 index := -1
9 for j := 1 to n do

10 val := 0 // the residual risk without j-th control

11 for i := 1 to h do
12 prob := 1 // probability of survival of threat i

13 for l := 1 to n do
14 if l 6= j then
15 prob := prob · π[j][i] // add the relation of π

16 val := val + ~F [i] · ~L[i] · ~pinit[i] · prob

17 currentCost := val + s - c[i] // compute the currentCost

18 if currentCost < minCost then
19 minCost := currentCost // update the minCost

20 index := i // take the i-th control’s index and return

21 return index

B.3. Genetic Algorithm

35



Algorithm 7: The main function of the GA algorithm

1 Function(GASelection)

Input: K, π, ~L, ~F , LIMIT
Require:

2 LIMIT ∈ N // a constant value to run the GA

Ensure: lowest expenditure := (~F �
∏
π(Ks|x))× ~L+ x

3 generateRandomChromosomes(chromosomes, POPNum) // generate

initial population of chromosomes

4 sortByExpenditure(chromosomes) // sort chromosomes by expenditure

from lowest to largest

5 theAnswer := chromosomes[0] // Initializing theAnswer

6 for i := 1 to LIMIT do
7 chromosomes := CrossOver(nextGenChromosomes) // Call

CrossOver

8 if theAnswer.expenditure < chromosomes[0].expenditure then
9 theAnswer := chromosomes[0] // ensuring the best chromosome

10 chromosomes := Mutation(nextGenChromosomes) // Call Mutation

Function

11 if theAnswer.expenditure < chromosomes[0].expenditure then
12 theAnswer := chromosomes[0] // update the best chromosome

Return: theAnswer

Algorithm 8: Merge Function for the GA

1 Function(Merge)
Input: ch1, ch2, Y1, nk
Require:

2 Y 1 ∈ N // percentage of two-point CrossOver technique

3 ch1 // a chromosome in a pair

4 ch2 // another chromosome in a pair

5 nk ∈ N // number of controls/genes in the chromosome

Ensure: Merging two chromosomes ch1 and ch2
6 y = rand.range(0, 100) // some random percentage

7 if y <= Y 1 then
8 l := rand.range(0, length(ch1.genes)-1)
9 r := rand.range(l, length(ch1.genes)-1)

10 for i := l to r do
11 ch1.genes[i] ↔ ch2.genes[i] // swap i-th genes of two chromosomes

12 else
13 for i:=0 to nk/2 do
14 ch1.genes[i] ↔ ch2.genes[i] // swap i-th genes of two chromosomes

15 return ch1, ch2 // Return a pair of chromosomes
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Algorithm 9: CrossOver function for the New Population of the GA

1 Function(Crossover)
Input: chromosomes, x, N , LIMIT , Y 2, Y 3, b1, b2
Require:

2 chromosomes // a list of current chromosomes

3 N ∈ N // number of chromosomes in the population

4 b1 ∈ N // crossover percentage of good and good chromosomes

5 b2 ∈ N // crossover percentage of good and bad chromosomes

6 Y 2 ∈ N // percentage of chromosomes for Elitism techniques

7 Y 3 ∈ N // percentage of good chromosomes of the population

Ensure: next Generation of Chromosomes obtained by CrossOver
8 nextGenChromosomes := [] // Define nextGenChromosomes empty list

9 E := Y 2 ·N/100 // Define the percentage of elitism in integer

10 for i := 1 to E do
11 nextGenChromosomes.append(chromosomes[i]) // Add i-th

chromosome without doing crossover

12 r := Y 3 ·N/100 // turn the percentage of good chromosomes into integer

13 for i := E+1 to N do
14 y := rand.range(0,100) // define a random integer

15 if y <= b1 then
// check if the crossover percentage of good chromosomes is

greater than than a randomly chosen y

16 ii := rand.range(0, r) // Define a random range of good

chromosomes)

17 jj := rand.range(0, r)

18 else if y <= b1 + b2 then
// check if the crossover percentage of good and bad chromosomes

is greater than than a randomly chosen y

19 ii := rand.range(0, r)
20 jj := rand.range(r+1, N-1) // Random range of bad chromosomes

21 else
// check if the crossover percentage of bad and bad chromosomes is

greater than than a randomly chosen y

22 ii := rand.range(r+1, N-1)
23 jj := rand.range(r+1, N-1)

24 ch1, ch2 := Merge(chromosomes[ii], chromosomes[jj])
25 if ch1.cost < x or x = 0 then

// check if cost of ch1 is less than investment or equal to 0

26 nextGenChromsomes.append(ch1)

27 if ch2.cost < x or x = 0 then
// check if cost of ch1 is less than investment or equal to 0

28 nextGenChromsomes.append(ch2)

29 sort(nextGenChromosomes) // Sort the chromosomes by expenditure

Return: nextGenChromosomes
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Algorithm 10: Mutation function for the New Population of the GA

1 Function(Mutation)
Input: chromosomes, Y 2, b3

2 chromosomes // a list of current chromosomes

3 N ∈ N // number of chromosomes in the population

4 Y 2 ∈ N // percentage of chromosomes for Elitism techniques

5 b3 ∈ N // defined number of bits to mutate

Ensure: next Generation of Chromosomes (nextGenChromosomes)
obtained by Mutation

6 nextGenChromosomes := [] // Define nextGenChromosomes empty list

7 E := Y 2 ·N/100 // Define the percentage of elitism as integer

8 for i := 1 to E do
9 nextGenChromosomes.append(chromosomes[i]) // update the list

10 for i := E + 1 to N do
11 ch := chromosomes[i]
12 for j := 1 to b3 do
13 y := rand.range(0, length(ch.genes)-1) // reverse y-th gene in

14 ch[i].genes[y] := (ch[i].genes[y] + 1) mod 2 // i-th chromosome

15 nextGenChromosomes.append(ch) // update the list

16 sort(nextGenChromosomes) // Sort the chromosomes by expenditure

Return: nextGenChromosomes
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