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Abstract: This paper is focused on the use of satellite Sentinel-2 data for assessing their capability in 
the identification of archaeological buried remains. We selected the “Tavoliere delle Puglie” (Foggia, 
Italy) as a test area because it is characterized by a long human frequentation and is very rich in 
archaeological remains. The investigations were performed using multi-temporal Sentinel-2 data 
and spectral indices, commonly used in satellite-based archaeology, and herein analyzed in known 
archaeological areas to capture the spectral signatures of soil and crop marks and characterize their 
temporal behavior using Time Series Analysis and Spectral Un-mixing. Tasseled Cap 
Transformation and Principal Component Analysis have been also adopted to enhance 
archaeological features. Results from investigations were compared with independent data sources 
and enabled us to (i) characterize the spectral signatures of soil and crop marks, (ii) assess the 
performance of the diverse spectral channels and indices, and (iii) identify the best period of the 
year to capture the archaeological proxy indicators. Additional very important results of our 
investigations were (i) the discovery of unknown archaeological areas and (ii) the setup of a 
database of archaeological features devised ad hoc to characterize and categorize the diverse 
typologies of archaeological remains detected using Sentinel-2 Data. 

Keywords: big data; Sentinel-2; multispectral data; features enhancement; landscape archaeology; 
archaeological proxy indicators; Apulia; Neolithic settlements 

 

1. Introduction 

Earth observation (EO) technologies are increasingly recognized as extremely effective for the 
documentation, preservation, and management of cultural heritage (CH), and today considered a 
priority at European and international level with important cultural, social, and economic 
repercussions. This is clearly highlighted by the increasing number of papers, dedicated conferences, 
and special issues published in international scientific journals (see for example [1–3] and references 
therein quoted); so that, in 2017, the European Commission (EC) organized a specific workshop “to 
assess the potential of Copernicus in support of cultural heritage preservation and management, and 
to provide inputs for further research and/or operational implementation”. So that subsequently, a 
“Copernicus Cultural Heritage Task Force” was established to support the development and use of 
Earth observation techniques in the field of cultural heritage for knowledge improvements, 
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documentation and enhancement, risk monitoring, and disaster management. The current challenge 
is not only to preserve cultural heritage for future generations for its uniqueness, historical value, and 
cultural importance but also to make cultural heritage properties accessible and usable in a 
sustainable way (SDG agenda 2030). In this context, remote sensing (RS) data can be very useful and 
supportive, so that Earth observation techniques for cultural heritage is now moving from a highly 
specialized niche sector to a consolidated reality ready to enter into a new period, characterized by 
the exploitation of new resources that space has to offer, as in the case of Copernicus satellite data [4].  

Archaeological research can particularly benefit from remote sensing tools that already proved 
to be extremely useful, at diverse scale of analysis from single site up to a landscape level including 
Landscape Archaeology. The development of big data analysis and the availability of open data and 
source software has further pushed the use of Earth observation techniques as useful tools for cultural 
heritage, with particular reference to archaeology, in the discovery, protection, and preservation 
activities [1–3]. In this context, Copernicus satellite data (available free of charge), as those provided 
by Sentinel-2, can open new strategic challenges addressed to the exploitation, as much as possible, 
of the available open data [4–6].  

Recently, a few studies assessed the potentiality of Sentinel-2 data in cultural heritage domain, 
including archaeological heritage monitoring, landscape archaeology, and the detection of 
archaeological proxy indicators, as in: 

1. Agapiou et al. 2014, who evaluated their potential for the detection of archaeological crop 
marks in Paphos (Cyprus) [7];  

2. Zanni and De Rosa (2019) who identified and reconstructed the ancient viability between 
the Roman cities of Aquileia (Aquileia, Italy) and Singidunum (Belgrade, Serbia), by means 
vegetation indices derived from Sentinel-2 data [8]; 

3. Khalaf and Insol (2019) who explored open source satellite imagery, including Sentinel-2 for 
the monitoring and protection of Islamic archaeological landscapes in Ethiopia [9]; 

4. Agapiou et al. 2019 evaluated the potential of the synergic use of multitemporal Sentinel-1 
and Sentinel-2 dataset to image and semi-automatically extract archaeological features of 
Neolithic landscape in Thessalian plain [10]; 

5. Kalayci et al. 2019 performed a quantitative assessment of spectral responses of hollow ways 
in Upper Mesopotamia using a remote sensing date set including Sentinel-2 imagery [11]; 

6. Abate et al. 2019 evaluated the potential of Sentinel-2 data for preventive archaeology on 
two test areas in Southern Italy comparing diverse approaches to data enhancement, and 
semiautomatic and automatic feature extractions [12]. 

Today, the main scientific challenges to face are linked to the following questions, related to the 
general use of satellite Earth observation in archaeology and, more specifically, to issues related to 
the use of Sentinel-2 for archaeological investigations: (i) Is it possible to capture the spectral 
signatures of archaeological proxy indicators as soil and crop marks considering that the 
identification of archaeological features is a very complex issue because they are (a) very subtle 
anomalies linked to presence of buried remains and, moreover, (b) not permanent signal but only 
visible in specific observational conditions? (ii) Is the spatial resolution of Sentinel-2 a critical 
limitation being that, except for a few examples [1–3], the majority of archaeological investigations 
have been performed using very high-resolution satellite data?  

To provide a contribution in this context, this paper focuses on the use of satellite Sentinel-2 data 
for assessing their capability at diverse scales of analyses from single site up to a landscape level, i.e., 
Landscape Archaeology. For the purposes of our investigations, the “Tavoliere delle Puglie”, a plain 
in northern Apulia (Southern Italy), was selected as a test area due to its long human frequentation 
and, consequently, its high archaeological potential and variety of cultural heritage features, along 
with a huge amount of ancillary data and information also available in a GIS environment. In the past 
the area herein investigated has been widely studied also using very high resolution satellite data as 
QuickBird, World View [13], geophysical prospection [14,15], along with manned [16–20] and 
unmanned aerial archaeology prospection [21]. Archaeological recorders along with previous 
knowledge and information already available in GIS environment are herein adopted as ground truth 
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[22–27] to assess the potentiality of Sentinel-2 data in known archaeological sites related to different 
periods and civilizations, from Neolithic era to Greek-Roman and Middle Ages [28–33]. A 
multitemporal (2016-2019) Sentinel-2 data set is herein analyzed to characterize the spectral 
signatures of soil and crop marks and capture their temporal behavior, being that they are not 
permanent but only visible in specific observational conditions. 

The paper is organized as follows, we described in Section 1 (1.1) the study area and (1.2) the 
Sentinel-2 data; in Section 2 the methodological approach adopted to (2.1) extract the spectral 
signatures from region of interest (ROIs), known archaeological areas and identify the best spectral 
indices along with the enhancement techniques to (2.2) further highlight the archaeological features; 
in Section 3 the results obtained for the whole study area the “Tavoliere delle Puglie” covering 
approximately 224 km2 (in the Foggia province), and, finally, in Section 4 and 5 discussion and 
conclusion, respectively. 

1.1. Study Area 

The investigations were carried out (Figure 1) in “Tavoliere delle Puglie”, corresponding to the 
current Foggia province, in Northern Apulia (Southern Italy), well known for its archaeological sites 
from prehistoric to industrial period. It is a plain area largely cultivated (olive trees and vines) since 
prehistorical times, being one of the areas where agriculture developed in Europe [22]. 

 
Figure 1. Study Area location. 

The Tavoliere was selected as a test area for a huge amount of ancillary data and archaeological 
records available in GIS environment and, therefore, represents an excellent starting point for the 
analysis and validation of outputs from satellite Sentinel-2 data. The WebGIS of the Italian Ministry 
of the Environment, along with the CartApulia WebGIS, and the WebGIS data of the Ministry and 
the Region of Puglia, provided: (i) high-resolution aerial images; (ii) high-resolution satellite images; 
(iii) LiDAR 1x1m; (iv) historical cartography; (v) modern and ancient toponymy; (vi) geo-localized 
points with references to well-known archaeological sites from archives, surveys and excavation, etc. 
[20,23,25,27,34–37]. Moreover, the flat morphology of the area along with its agricultural vocation 
and, therefore, the availability of large spaces free by buildings, made it an ideal place to test satellite 
Sentinel-2 capability for landscape archaeology. 

The area is widely recognized as one the most important regions in the world for the presence 
of Neolithic settlements, dated between the 6th and 4th millennium BC. In Italy the spread of farming 
is traditionally associated with Tavoliere where, since their discovery between the late 1940s and 1950s 
through aerial photographs, a great number of studies have been conducted [16]. These settlements 
are medium to large sized ditched villages, characterized by circular shape, composed of huts 
surrounded by circular ditches (small compounds). They are often found along the rivers which were 
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a source of food (being rich of fish and other edible aquatic resources) and of course, a major source 
of fresh water (for drinking and irrigation), and also an effective communication system [23,25,34]. 

The Tavoliere is also very rich in archaeological remains not only related to the Neolithic period 
but also to other important periods from Bronze Age onwards. As an example, near the town of Arpi 
Nova, north-west of Foggia, there is the archaeological site of Arpi, datable to the 2nd millennium 
BC (Bronze Age) [38]. 

In this period, this area was inhabited by the Daunians, hence the eponymous region of Daunia, 
which extended from the Ofanto river in the southeast to the Gargano peninsula in the northwest. 
Daunia underwent the influences of Greek civilization and Magna Graecia from the end of the 5th 
century BC. During the Roman period, the most important town was Lucera which still preserves an 
amphitheatre of the Augustan period [39]. Later on, a rich cultural variety followed during the 
medieval period with the contribution of Byzantines, Longobards, and Saracens (8-11th century AD). 
[40]. The Tavoliere conserved its importance with the Normans (12th century) and reached its peak 
with the Emperor Frederick II of Swabia (1194-1250), who built new castles and fortified existing 
settlements, among which was Lucera [24]. 

The long and complex history of the Tavoliere is reflected in the very rich archaeological 
evidences found across the area, studied by means of numerous archaeological excavations and 
investigations also based on the use of aerial archaeology. In fact, shortly after World War II, John 
Bradford, of the British Royal Air Force (RAF), observing some anomalies in the vegetation (the so-
called crop-marks) [16–18] from aerial photos of the Foggia territory, discovered one of the largest 
Neolithic settlements in Europe known as “Passo di Corvo”. In the case of Neolithic settlements, they 
are circular or sub-circular features of different sizes, from a few meters to one kilometer diameter 
[41] and linked to traces of buried structures or anthropogenic transformations of landscape. 

In more recent times, the area of Foggia has been investigated also using advanced remote 
sensing techniques as very high-resolution satellite data, drones, and geophysical prospection [13–
15]. Over the years, past archaeological studies along with the interest of the Italian and worldwide 
scientific community for the Tavoliere area produced numerous papers and bibliographic references, 
very useful to define and date the archaeological features. In the last twenty years, in the whole region 
thanks to the activity of Soprintendenza and universities, over 1000 sites of archaeological interest 
were surveyed, and in some cases also excavated, and further investigated using Earth observation 
techniques [42,43]. So that in addition to the prehistoric remains (characterized by the circular 
features herein typical of the Neolithic settlements), studies based on aerial archaeology identified 
other geometric features, potentially linked to archaeological remains of different historical periods. 
For example, quadrangular shapes or parallel linear traces were refereed, on the basis of metric 
analysis, to the Roman period as confirmed by excavations which unearthed Roman rural farms, 
villas, and centuriations [44,45]. Moreover, complex subcircular shaped features, extended near 
ancient farmland and ruins dated to the medieval period were identified as abandoned villages or 
fortified settlements (“motte and bailey”) in coherence with other studies conducted in other areas 
[24]. 

1.2. Sentinel-2 Data 

Sentinel-2 satellite constellations have been developed in the framework of the European 
Commission Copernicus Programme for security and risk monitoring [4–6] and are managed by the 
European Space Agency (ESA). 

In particular, the strengths points of Sentinel-2 are multiple: (i) the twin satellites (A and B) have 
a regular time acquisition of the Earth’s surface and the same area is (on average) taken every five 
days; (ii) the data collected are free and made available to the user on the Copernicus Open Access 
Hub platform (https://scihub.copernicus.eu/dhus/#/home); (iii) the sensor resolution is very high and 
reaches a maximum of 10 meter; (iv) the sensor is multispectral and acquires in 12 separate bands 
(Table 1) [46,47]. 

Table 1. Sentinel-2 bands [46,47]. 
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Bands Central Wavelength (nm) Spatial Resolution (m) 
Band 1 0.443 60 
Band 2 0.490 10 
Band 3 0.560 10 
Band 4 0.665 10 
Band 5 0.705 20 
Band 6 0.740 20 
Band 7 0.783 20 
Band 8 0.842 10 

Band 8A 0.865 20 
Band 9 0.945 60 

Band 10 1.375 60 
Band 11 1.610 20 
Band 12 2.190 20 

Blue (B2), Green (B3), Red (B4), and Near Infrared (B8) bands have a resolution of 10m, while 
the others have a spatial resolution of 20m (Vegetation Red Edge and Short Wave Infra-Red) and 60m 
(Coastal Aerosol, Water Vapour, and Cirrus). 

Multispectral images are very useful for archaeologists to identify ancient buried structures or 
anthropogenic transformation of landscape. The most useful bands for the identification of 
archaeological markers are: visible (0.4 - 0.7 µm), Near Infrared (0.7 - 1.4 µm), and Short-Wave 
Infrared (1.4 - 3 µm). 

The usefulness of medium and high-resolution satellite data is well established and the 
procedures for the identification of buried structures are well described in Earth observation studies 
applied to cultural heritage and aerial archaeology [7,41,48]. In particular, the presence of buried 
structures or anthropogenic transformation with high impact on the landscape (ditches, trenches, 
etc.) causes spatial and spectral anomalies and, in turn, differences in reflectance between the pixels 
related to archaeological features and their background, called crop-/soil-/weed-marks. In the 
presence of crop, these anomalies are evident from above as differences in the growth or health of the 
vegetation, or, for bare soil as differences in soil moisture and surface temperature dynamics (thermal 
gradient) [49]. Previous studies suggested that NIR (Near Infrared) channels and red generally 
increase the visibility of crop- and soil-marks, respectively [50]. Moreover, to enhance archaeological 
features and make their identification easier, the use of “spectral indices”, i.e., mathematical 
combination of different bands is quite commonly adopted [11,51–53]. 

Therefore, in the current study, along with the single spectral channels, spectral indices were 
also adopted, as listed following and detailed in Section 2.1 (i) NDVI (Normalized Difference 
Vegetation Index), (ii) SR (Simple Ratio), (iii) Albedo, (iv) GNDVI (Green Normalized Difference 
Vegetation Index), (v) SAVI (Soil Adjusted Vegetation Index), etc. [52,54–64]. 

2. Materials and Methods 

2.1. Sentine-2 data Processing to Characterize the Spectral Signatures of Soil and Crop Marks in 
Mediterranen Areas Using Region of Interest (ROIs) 

The investigation was performed using multi-temporal (2016-2018) Sentinel-2 multispectral 
dataset, already used in the field of remote sensing-based archaeology [11,12]. They have been herein 
analyzed using Time Series Analysis and Spectral Un-mixing tools (available in SNAP: 
https://step.esa.int/main/doc/tutorials/snap-tutorials/) to cope with the main challenges to face: (i) the 
fact that the archaeological features linked to buried remains are generally not permanent but only 
visible in specific observational conditions, and (ii) the need to identify sub-pixel anomalies linked to 
features of potential archaeological interest. These were further enhanced using (iii) Tasseled Cap 
Transformation and (iv) Principal Component Analysis which were selected because these were 
already used in Earth observation for archaeology [50]. All Sentinel-2 images were selected with a 
cloud coverage less than 5% and, above all, the clouds did not affect the area of interest (covering 
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approximately 224 km2) where most of the currently known archaeological sites were located. 
Unfortunately, very few data in spring season (during which generally the crop-marks are well 
visible), could be fruitfully used due to the high cloud coverage. The data were pre-processed using 
SNAP v.6 (software freely provided by ESA), which allows an XML script to automate the processes 
though a series of operations as re-sampling, subset, band math to combine different bands, etc. 
Subsequently, additional analyses were performed also using tools available in ENVI 5.3 and ArcMap 
10.4. In particular, on the basis of know archaeological features, the data processing chain was made 
up of analyses addressed to the identification of: (i) the best indices for the recognition of 
archaeological features; (ii) the optimal season in which the phenomenon of soil, crop-marks are 
visible; (iii) the most effective approach to reduce the amount of data size preserving the information. 
All of these operations were followed by the identification of features and validation based on 
independent ancillary data (see flowchart in Figure 2). 

 
Figure 2. Flowchart of the study. 

The XML script was applied as batch-process to all Sentinel-2 files automatically. The resampling 
function is a native function implemented in SNAP and allows pixel resolution re-scaling to benefit 
from all Sentinel-2 bands. Bands 2, 3, 4, and 8 (blue, green, red and NIR) were re-sampled at a 10m 
spatial resolution [64–66]. 

The subset function was then used to reduce both data size and processing time focusing on the 
area of interest (224 km2). SNAP software allows the combination of the different bands and, for this 
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study, bands 4-3-2, 8-4-3, and 8-11-2 (Table 1) were used to obtain the following three compositions: 
(i) RGB, (ii) a False Infrared Color (FCIR), and (iii) Healthy Vegetation (HV) image, as showed in 
Figure 3. The RGB is similar to the human eye view and shows the visible spectrum, False Infrared 
Color, and Healthy Vegetation are useful to improve the identification of areas with different 
reflectance response to enhance the visibility of vegetation anomalies and their neighboring areas 
(Figure 3) [67]. 

 
Figure 3. Outputs produced using Sentinel-2 bands: (a) RGB; (b) False Colour Infrared; (c) Healthy 
Vegetation (HV). 

Subsequently, several indices (mathematical operations between bands) were calculated (using 
the function “Band Maths”), as suggested by the most recent papers on the subject [15,68], for all the 
images under investigation. The spectral indices herein considered are mainly of two types: (i) 
analysis of vegetation health status, and (ii) monitoring of soil and moisture level (Table 2). 

Table 2. Sentinel-2 indices. 

Index Equation Reference 
Difference Vegetation Index (DVI) 𝐵8− 𝐵4 [57] 

Enhanced Vegetation Index (EVI) 2.5 × (𝐵8− 𝐵4)(𝐵8 + 6 × 𝐵4− 7.5 × 𝐵2 + 1) [58] 

Green Difference Vegetation Index 
(GDVI) 

𝐵8− 𝐵3 [59] 
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Green Normalized Difference Vegetation 
Index (GNDVI) 

(𝐵8− 𝐵3)(𝐵8 + 𝐵3) [59] 

Green Ratio Vegetation Index (GRVI) 
𝐵8𝐵3 [60,61] 

Normalized Difference VegetationIndex 
(NDVI) 

(𝐵8− 𝐵4)(𝐵8 + 𝐵4) [61] 

Modified Chlorophyll Absorption in 
Reflectance Index ((𝐵5− 𝐵4)− 0.2 × (𝐵5− 𝐵3)) × 𝐵5𝐵4  [61] 

Normalized Difference Water Index 
(NDWI) 

(𝐵8− 𝐵11)(𝐵8 + 𝐵11) [61] 

   

Soil Band 0.09 × 𝐵2 + 0.27 × 𝐵3− 0.71 × 𝐵4− 0.65 × 𝐵8 [69,70] 

Crop Band −0.38 × 𝐵3− 0.71 × 𝐵2 + 0.2 × 𝐵4− 0.56 × 𝐵8 [69,70] 

Normalized Difference Moisture Index 
(NDMI) 

𝐵8− 𝐵11𝐵8 + 𝐵11 [69,70] 

Soil Adjusted Vegetation Index (SAVI) 1.5 × (𝐵8− 𝐵4)𝐵8 + 𝐵4 + 0.5  [71–76] 

Moisture Stress Index (MSI) 
𝐵11𝐵8  [71–76] 

Simple Ratio Nir/Red 𝐵8𝐵4 [71–76] 

These spectral combinations are useful for the enhancement of crop-marks, soil-marks, and 
anomalies generated by the presence of buried structures of potential archaeological interest [60–
62,76–78]. The NDVI (Normalised Difference Vegetation Index) is one of the most widely used indices 
also in archaeological applications. NDVI values range from -1 to +1 where negative values or close 
to 0 correspond to water or soil, whereas higher values correspond to vegetation, with increasing 
values from sparsely to dense vegetation as well as from stressed to healthy vegetation also 
depending on vegetation type, plant phenology, and season. 

NDVI is sensitive to the absorption of radiation in the Red band, caused by chlorophyll, and the 
reflection of light in the Near Infrared [49,50,64,76]. Recently, several other indices have been also 
used for the identification of archaeological features, allowing the discrimination of pixels according 
to their spectral signature [76,77]. For example: (i) Albedo is an indicator of some surface features, 
such as brightness [50]; (ii) SR is useful for bare soil analysis; (iii) Green NDVI is a variant of the NDVI 
index but more sensitive to chlorophyll concentration [55,56]; (iv) SAVI and EVI indices, calculated 
using the blue, red, and near infrared bands, are useful to reduce background influence [49,50]; (v) 
GEMI index reduces the influence of the atmosphere [79,80]; (vi) SWIR (NDWI, NVMI) band-based 
indices are useful to assess the moisture content of soil and vegetation [81,82]; (vii) NAI and RN 
indices, as well as crop- and soil-indices, use wavelengths from 0.6 to 0.9 to enhance archaeological 
proxy indicators [82,83]. 

In order to capture and characterize the trend of the archaeological features within the different 
bands/indices over the time, the single channels and spectral index maps were further processed 
using “Time Series Analysis” (TSA). Moreover, in order to identify the best period of the features 
visibility, TSA was coupled with the Spectral Unmixing analysis, carried out (using the ENVI 5.3 
software). Of course, the best period/season in which the phenomenon of soil and crop marks are 
evident can be different from one index to another and from one features to another even in the same 
image due effect of local factors [21,51]. Spectral Un-mixing is used to show single pixels values in 
the images as: (i) minimum value; (ii) maximum value; (iii) average; iv) standard deviation. 

The discrimination between regions of archaeological interest and regions of non-archaeological 
interest for TSA and Spectral Un-mixing analysis were carried out starting from the data of the 
WebGis CartApulia. CartApulia was produced by a multidisciplinary group involving: the four 
Apulian Universities, the Regional Directorate for Cultural Heritage and Activities of MiBACT 
(Ministero per i Beni e le Attività Culturali e per il Turismo), with the competent Soprintendenza, 
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with the coordination and scientific validation of Prof. Giuliano Volpe. The data in CartApulia are 
reported as shapes that in some cases follow the contours of the archaeological remains, while in 
others are approximate. In addition, WebGis reports references to archaeological sites and if they 
have been verified or not by the public institutions. For this study we used only verified sites for the 
creation of regions of interest (ROIs) useful for spectral analysis, checking the presence of the selected 
sites also in other sources (bibliography, aerial photographs, Google, etc.). Archaeological sites to be 
used as a sample for the definition of ROIs were chosen on the basis of their visibility within the 
available sources, including Sentinel-2 images (Figure 4). 4000 pixels (2000 for each class) were 
selected as “positive” and “negative” within Sentinel-2 images. We have considered as “positive” the 
area occupied by archaeological remains and as “negative” the area immediately outside the 
“positive” one. This can be seen in Figure 3, as the separation between the archaeological features 
and its surrounding. The area occupied by the selected pixels corresponds to 0.4 km2. The ROIs were 
chosen in the area between Lucera and Foggia, which corresponds to Masseria Palmori and Masseria 
Melillo, and in the area of Arpi. These areas were already known for the presence of Neolithic 
settlements, Roman and Medieval remains, which are visible in aerial images and satellite data 
(Figure 4) [16–19,45,84–87]. 

 
Figure 4. (a) Sentinel-2 RGB (2017-03-29); (b) Sentinel-2 RGB (2018-07-02); (c) Sentinel-2 RGB (2018-
12-09); (d) e.g., region of interest (ROIs). 

Figure 5 shows the spectral signature and the reflectance value of the pixels as a function of time, 
which was useful also to obtain the values that characterize the features of archaeological interest and 
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the difference between the features and their neighboring pixels [21,51,64,76,88]. The analysis of the 
spectral signatures put in evidence a significant difference in reflectance value between 
archaeological features and their surroundings, from the band 6, 7, 8, 8A, and 11, covering the interval 
between Red edge and NIR bands, and SWIR band central wave length at 1.610 nm. 

 

Figure 5. Spectral Signature (average) of individual Sentinel-2 bands based on identified ROIs: (a) 
2016-06-12; (b) 2016-07-22; (c) 2017-03-29; (d) 2017-07-07; (e) 2017-07-12; (f) 2017-08-01; (g) 2017-08-16; 
(h) 2018-07-02; (i) 2018-08-11; (j) 2018-08-31; (k) 2018-09-30; (l) 2018-09-11; (m) 2018-12-09. 

The same process was subsequently applied to the different indices produced from the band 
maths operation (Table 2) (Figure 6). 
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Figure 6. Time Series Analysis and Spectral Un-mixing results on indices. 

The multitemporal analysis has been also carried out on the single calculated indices, with the 
aim to identify the best period of the year (i) to observe the archaeological markers, and, (ii) within 
the different indices, the highest discriminability of the archaeological features from the background 
constituted by cultivated fields or bare soils (Figure 6). The multi temporal analysis put in evidence 
the best results in diverse periods of Summer (first half of July) and autumn (November and 
December). 

Finally, due to the huge amount of data under investigation (single channels and spectral 
indices), additional improvements in data analysis were addressed at the (i) reduction of 
multispectral indices/data (one of the main issues in the case of big data analysis) to leave out the less 
informative multispectral data/indices (ii) further enhancement of the subtle features of interest. To 
this aim, in this study, Tasseled Cap Transformation (TCTs) and Principal Component Analysis 
(PCAs) were used, as detailed in Section 2.2 and 2.3. 

2.2. Data Processing to Enhance Features of Archaeological Interest: Tasseled Cap Trasformation (TCT) 

Tasseled Cap Transformation (TCT) is one of the most used methods for the extraction of 
features of archaeological interest is [41,50,89–92]. 
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TCT is a conversion of the original images into a new data set obtained by “linear combinations” 
of the original bands (1) [41]: 

TC = WTCDN + B (1) 

Where (i) WTC depends on the sensor (the coefficients used to create the bands are statistically 
derived from images and empirical observations, and are sensor-specific) and the number of bands, 
(ii) DN Digital Number, and (iii) B Bias [41]. 

The first band of the TCT is related to “brightness”. The second is related to “greenness” and is 
used as an index of healthy vegetation. The third is ‘wetness’ or ‘yellowness’ and is relevant to soil 
or canopy moisture. 

The original formula was empirically defined by Kauth and Thomas for the Landsat MSS sensor, 
for the spectral analysis of wheat growth in fields based on Landsat TM [93–95]. Currently, TCT is a 
technique used in land cover mapping and classification today empirically defined for numerous 
sensor as Landsat TM, ETM, ASTER, MODIS, and IKONOS sensors [96–101]. Two different 
procedures were used for Sentinel-2 images, using the formulas described in the Index Data Base 
(IDB) portal (2-4), database for remote sensing indices (https://www.indexdatabase.de), and Nedkov 
2017 (5-7), respectively [102]: 

TCTb1=0.3037 BLU + 0.2793 GREEN + 0.4743 RED + 0.5585 NIR + 0.5082 SWIR 
(Cirrus) + 0.1863 SWIR (12) (2) 

TCTg1=- 0.2848 BLU - 0.2435 GREEN - 0.5436 RED + 0.7243 NIR + 0.0840 SWIR 
(11) - 0.1800 SWIR (12) (3) 

TCTw1=0.1509 BLU + 0.1973 GREEN + 0.3279 RED + 0.3406 NIR - 0.7112 SWIR 
(11)- 0.4572 SWIR (12) 

(4) 

TCTb2=0.0822 BLU + 0.1360 GREEN + 0.2611 RED + 0.3895 NIR + 0.0009 SWIR 
(Cirrus)+ 0.1366 SWIR (12) 

(5) 

TCTg2=- 0.1128 BLU - 0.1680 GREEN - 0.3480 RED + 0.3165 NIR - 0.4578 SWIR (11) 
- 0.4064 SWIR (12) (6) 

TCTw2=0.1363 BLU + 0.2802 GREEN + 0.3072 RED - 0.0807 NIR - 0.4064 SWIR 
(11)- 0.5602 SWIR (12) (7) 

TCT components were computed using both the six bands described in the formulas and only 
the components of Blue, Green, Red, and NIR. 

The TCT components were then analysed individually and combined in RGB (R: brightness, G: 
greenness, B: wetness) (Figure 7). 
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Figure 7. RGB produced using Tasseled Cap Transformation (TCTs) equations: (a) R: TCT brightness 
(2), G: TCT greenness (3), B: TCT wetness (4); (b) R: TCT brightness (5), G: TCT greenness (6), B: TCT 
wetness (7). 

2.3. Data Processing to Enhance Features of Archaeological Interest: Principal Component Analysis (PCA) 

PCA is a transformation already used in the past to better enhance features of archaeological 
interest or assess the change over time for cultural heritage monitoring [92,103–106]. Moreover, PCA 
is particularly useful to reduce redundant information and, in turn, the amount of data [41]. 
Therefore, PCA was herein adopted to reduce the data and facilitate the identification of individual 
features. To this aim, we analyzed both (i) the data produced during the first phase of image 
processing and (ii) their transformation as PCA components. 

From the computational point of view, PCA, also known as Karhunen-Loéve transformation or 
Hotelling transformation, is an orthogonal decomposition widely used in multivariate statistics. PCA 
can be considered as a rotation of the cartesian axes of a new orthogonal system of variables, where 
the variables are represented without correlation [41]. The PCA operation consists of the following 
main steps: (i) averaging the pixels of the input images to calculate an average image, and subtracting 
the calculated average image from each input image; (ii) calculating the covariance (or variance) 
matrix on all input bands; (iii) decomposing the covariance matrix’s own eigenvalue to obtain new 
images [41] called components. 

As a whole, PCA is a linear transformation that transforms a number of related variables into a 
(smaller) number of unrelated variables, called main components, which still contains much of the 
information present in the input dataset. 

PCA was applied to both of the two different data sets: (i) the single spectral images and indices; 
(ii) a selection of indices based on Spectral Unmixing usefulness (Figures 5 and 6). 
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Datasets of 364 images (spectral bands and indices) and 40 images were used, respectively, for 
the first and second processes. 

The analysis of the PCAs components was based on RGB composition considering the three RGB 
images, (i) RGB with R: 1st component, G: 2nd component, and B: 3rd component, resulting from the 
first process (Figure 8a); (ii) RGB with R: 2nd component, G: 10th component, and B: 11th component, 
resulting from the first process, following an autopsy analysis of the most performing components 
for this study (Figure 8b); (iii) RGB with R: 1st component, G: 2nd component, and B: 3rd component, 
resulting from the second process (Figure 8c). 

 
Figure 8. RGB produced using Principal Component Analysis (PCAs) components: (a) PCA obtained 
from the first process with R: 1st component, G: 2nd component, B: 3rd component; (b) PCA obtained 
from the first process with R: 2nd component, G: 10th component, B: 11th component; (c) PCA obtained 
from the second method with R: 1st component, G: 2nd component, B: 3rd component. 

The set of outputs produced by the described methodologies has been analyzed in a GIS 
platform together with ancillary data from other sources. 



Remote Sens. 2020, 12, 1309 15 of 29 

 

3. Results 

As detailed above, in Section 2 the first results, obtained from the analyses of the region of 
interests, were the characterization of the spectral signature of soil and crop marks (see Figures 5 and 
6). 

In this section we present the results, obtained for the whole study area related to the “Tavoliere 
delle Puglie” covering approximately 224 km2 (in the Foggia Province), and successfully compared 
with independent data sources, so that this enabled the: (i) identification of the best indices to 
highlight the archaeological features and the best period of the year to capture soil and crop marks; 
(ii) discovery of unknown archaeological areas. 

The high number of detected features characterized by possible archaeological interest were 
compared with ancillary data available from independent data sources as described in 1.1. Different 
tools were used for the validation (i) match with bibliography related to the investigated area [20–
27,34–37,107,108]; (ii) comparison with Google Earth multi-temporal high-resolution images [109–
111]; (iii) comparison with data of the National GeoPortal of the Italian Ministry of the Environment 
(http://www.pcn.minambiente.it/viewer/), and iv) the data on the WebGis CartApulia 
(http://www.cartapulia.it/). 

In particular, the data derived from WebGis CartApulia have been of great utility for the 
research as it is a GIS produced by the Region of Puglia, containing an “Archaeological Map of the 
Cultural Heritage of the Region of Puglia” based on the archives of the Soprintendenza, the Italian 
authority responsible for protecting and safeguarding of cultural heritage. 

The GIS contains all the sites currently known from archaeological excavations, aerial photo 
analysis, and field reconnaissance activities, and proposes hypotheses of dating and characterization 
of contexts. 

The ancillary data were of fundamental importance to understand the usefulness of the images 
produced by processing Sentinel-2 data. 

The first outputs from analysis based on known archaeological features were the identification 
of (i) the indices that better enhance the archaeological proxy indicators, (ii) the period when the 
archaeological proxy indicators exhibited the best visibility, and in turn the discriminability. RGB 
and FCIR images show (see Figure 3) a complex pattern of overlapped traces related to settlements, 
roads, canals, and other buried structures belonging to different historical periods and, therefore, are 
quite difficult to characterize correctly. 

In addition, the differences that indicate the presence of possible structures or effects of 
anthropogenic transformation of landscape were well delineated using the spectral separability (see 
figures 5 and 6) applied to the ROIs within the individual bands and the spectral indices. The most 
performing indices are those involving the Green, Red, and NIR bands, such as (i) crop-band, (ii) soil-
band, (iii) RN, (iv) NDVI (Table 2), as expected according to the past investigations [7,8,11–14,70–76]. 
This is certainly due to the high resolution that the Sentinel-2 satellites have in these bands (10m). 

The analysis of spectral signatures, obtained on the basis of the Sentinel-2 bands, shows an 
irregular trend over time in the spectral separability between the archaeological and non-
archaeological ROIs. In accordance with Figures 5 and 6, the analysis of ROIs in the same months of 
the year, one year later (e.g., July 2016 - July 2017), shows totally different data, probably related to 
weather conditions, soil moisture and land use. Features are clearly visible in single bands, as well as 
in RGB and FCIR compositions (Figure 9). However, some types of features are more visible in some 
images (compositions or single bands) than others. 
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Figure 9. E.g. RGB composition and bands (Località Palmori). 

The comparison of the diverse spectral indices, showed that the archaeological features were 
well highlighted in the TCT first (brightness), and second (greenness) component, along with the 
RGB from the first three TCT components (as follow: R: 1st TCT, G: 2nd TCT, B: 3rd TCT). 

It is important to highlight that the features were more visible from the individual products, in 
particular from the TCT brightness and greenness as obtained from formulas 2, 3, an example (a zoom 
of a subset of the study area) is shown in Figure 10. 
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Figure 10. TCT detail of a Neolithic Settlement near Lucera: (a) TCT Brightness (2), (b) TCT Brightness 
(5), (c) TCT Greenness (3), (d) TCT Greenness (6). 

The image produced from the components of the PCA is definitely the one that provides the 
most information about the possible presence of buried remains and allows an easy identification 
and interpretation thanks to the sharp contrast between the features and the background. Inside the 
image, many archaeological features were clearly visible (i) traces of settlements and defensive moats, 
characterized by the circular or sub-circular shape typical of Neolithic settlements (Figure 11) in the 
region; (ii) traces of roads, communication routes and defensive complex of diverse ages (Figure 12); 
(iii) traces of paleo-channels, and other evidence of archaeological interest for the reconstruction of 
the ancient landscape. Of course, as expected, not all the images produced by PCA are useful for 
features analysis. The RGB image produced from the first three components (Figure 8a) is probably 
the worst for archaeological research because it shows a flattening of “ephemeral” elements such as 
archaeological features, in favor of persistent elements in all images such as buildings, modern roads 
and field boundaries. The RGBs (Figure 8b,c) are more suitable for archaeological studies as the two 
images can be defined as complementary: in each of them some elements are highlighted (Figures 11 
and 12). 
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Figure 11. Identification of the features of archaeological interest, in the Palmori area, within the PCA: 
(a) PCA obtained with all the bands and indices produced, R: 2nd component, G: 10th component, B: 
11th component; (b) PCA obtained with the images in which Spectral Unmixing has shown greater 
separability, R: 1st component, G: 2nd component, B: 3rd component. In the images there are 
archaeological sites already known from the bibliography/survey and archaeological sites not 
included in the national archaeological maps. 
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Figure 12. Archaeological Site of Masseria Petrullo (Medieval Castrum): (a) Aerial photo [112], Figure 
6; (b) PCA obtained with all the bands and indices produced, R: 2nd component, G: 10th component, 
B: 11th component; (c) PCA obtained with the images in which Spectral Unmixing has shown greater 
separability, R: 1st component, G: 2nd component, B: 3rd component. 

The analysis of the images allowed the identification of several features of possible 
archaeological interest. In many cases the hypotheses have been confirmed using the tools and the 
data sources described above (e.g., Masseria Palmori, Masseria Schifata, Masseria Villano, or Località 
Masseria Petrullo), whereas other hypotheses are not confirmed with the documentation currently 
available because they show unknown sites not yet identified or surveyed and therefore, not yet 
included into the CartApulia Database. The discovery of new sites appears to be one of the strengths 
of the elaborated PCAs. The validation of the data, however, plays a fundamental role in the analysis 
of the images and in the evaluation of their real potential. In fact, starting from the recognition of 
known sites, it is possible to understand the different types of features, and to attribute a specific 
connotation to most of them, creating a training database for the identification and characterization 
even of sites not yet discovered (Figure 13). 
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Figure 13. Some examples of features of archaeological interest identified in the study area: (a) circular 
or sub-circular shapes of Neolithic settlements; (b) geometrical shapes organized in regular complexes 
of the Classical period (Arpi); (c) Rectangular farmhouses of the medieval period (Torretta di Sezze); 
(d) paleochannels, roads, and traces of centuriation of different ages. 

4. Discussions 

In this paper, the capability of satellite Sentinel-2 data in the identification of archaeological 
proxy indicators (soil and crop marks) has been assessed in the Mediterranean area of “Tavoliere 
delle Puglie”, selected because it is characterized by a long human frequentation and, therefore, is 
very rich in archaeological remains, from the Neolithic Era to Bronze, Greek-Roman, and Middle 
Ages. 

Results from the investigations performed using a multi-temporal 2016-2019 dataset of Sentinel-
2 imagery enabled us to extract the spectral signatures of soil and crop marks thus highlighting the 
capability of Sentinel-2 for the detection of archaeological features. Moreover, outputs from our 
analyses enabled us to identify the spectral indices that performed better in the detection of soil and 
crop mark and the best period of the year to capture them. 

The spectral separability of the archaeological evidence was analyzed considering both single 
channel and spectral indices. The single channels (i.e., spectral bands) perform better than the spectral 
indices for the identification of the archaeological features. The contrast of archaeological features 
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and their surrounding is significant, as is well-defined in the spectral signatures obtained and shown 
in Figures 5, 6 and 9. 

Related to the spectral indices, the highest discrimination capability was observed from TCT 
(brightness and greenness component) and PCA outputs, and the best period of the year to capture 
soil and crop mark, was April and the autumn September and even December in the case of good 
quality image (i.e., no cloud cover). Of course, it is important to consider that the period of the best 
visibility is influenced by several factors that in the case of Foggia (that is an agricultural area) are 
mainly: (i) meteorological conditions; (ii) crop rotation; (iii) type of features. As a general approach, 
the characterization of the best period of the visibility of the archaeological features can be identified 
from investigations conducted in known sites using a multitemporal data set to assess the inter and 
intra year visibility. In particular, in the current case, the multitemporal 2016-2018 Sentinel-2 data 
was analyzed because the years considered were characterized by meteorological conditions 
significantly different from one year to another. As an example, the 2017 was a drought year with 
low rain compared to average rainfall, whereas the 2018 was characterized by abundant rain 
precipitation, which also occurred even during the summer period, which therein is generally a quite 
dry period. Data acquired by the Italian Civil Protection weather stations report for the period June-
September: (i) 2016: 203 mm; (ii) 2017: 72.4 mm; (iii) 2018: 126 mm, (iv) 2019: 86 mm [113]. 

However, the visibility of the archaeological features inside the multi-temporal images is 
variable and related to phenomena that, as already mentioned, concern weather and land use, as well 
as the type of soils and buried archaeological remains. 

4.1. Notes on the Multitemporal Analysis of Single Channels 

The analysis of the individual channels and their combinations RGB and FCIR showed that 
Sentinel-2 data were very effective in the identification of large anthropogenic archaeological remains 
such as: trenches, ditches, holes, channels, etc., which tend to retain moisture as clearly visible in the 
spectral bands and images [41]. Clear evidence of this was observed in the images of July and August 
2017 (see spectral signatures in Figure 5d–f), due to the rainfall occurred at the end of July in Apulia 
(http://www.arpa.puglia.it/web/guest/serviziometeo). 

Another important conclusion of this study is that the features of archaeological interest are 
more visible on bare soil than in cultivated fields (in the case of the Tavoliere delle Puglie), or when 
the vegetation has an irregular growth/heath due to the weather conditions. However, some remains 
are visible due to anomalies in vegetation, as changes due to a higher or lower health status. This 
phenomenon is mainly visible during the winter months in dry and rainless conditions (November 
2018, Figures 5m, 6 and 9). 

As a whole, we can suggest that, as expected on the basis of the relationship between vegetation 
health and type of archaeological remains [7,14,50–53], the visual analysis of each individual channel 
and of each Sentinel-2 image (of the multi-temporal data set) can provide a huge amount of useful 
information but of course is time consuming. Therefore, the use of spectral signature and the expected 
spectral separability is strongly recommended to reduce the data sets and further enhance 
archaeological features using TCT or PCA. 

The TCTs were suitable for the identification of features of archaeological interest and very 
useful both individually (Figure 10) and in RGB combination. However, the use of TCTs was also 
time consuming and did require the analysis of a large amount of data in the final phase of features 
detection. Therefore, in the case of big data processing, the PCA method was the one with the best 
quality/time value. However, as expected, not all PCAs were useful for the study. In the first case 
(Figure 8a) the RGB image produced was lacking features that may indicate buried remains, in favor 
of elements in which the redundant information were concentrated (buildings, fields, roads etc.). The 
second case (Figure 8b) was more complex and derives from the use of the 2nd component in the Red 
channel and the 10th and 11th components as Green and Blue channels. The components produced 
by the PCA using all the data as input (see 2.3) had a useful content in terms of archaeological 
information from the 2nd component to the 15th, while the following ones showed excessive noise. 
This data was obtained after several output tests and may be different in other studies, being as 
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known the interpretation of the PCAs dataset dependent. Nevertheless, as a general rule, we can 
argue that the best outputs from PCAs method were obtained only using as inputs the indices that 
had the highest separability (Figures 5 and 6), as described in 2.3. 

4.2. Notes on the Multitemporal Analysis of Spectral Indices 

Indices were used to reduce the number of input data: they represent an enhancement of the 
differences in terms of spectral response of some elements in relation to the reflectance of Green, Red 
and NIR, which are the most suitable channels for the study of crop- and soil-marks. This method 
was evaluated as the most suitable for the purposes of the study: (i) the analysis was focused on the 
reduced to a single image; (ii) the image was of good quality; (iii) the archaeological ROIs are in sharp 
contrast to the surroundings, and both large shapes and smaller elements are visible (e.g., small 
circular compounds, rectangular-shaped farms, traces of ploughing etc.). 

Of course, it is important to consider that we have in any case small features (< 10m) and there 
can be still additional problems to cope as the need: (i) to distinguish archaeological features from 
noise; (ii) to understand the nature of the features observed in order to identify and characterize new 
ones. 

In both cases (TCTs and PCAs), the problem has been partly solved by using the knowledge 
acquired from archaeological investigations carried out in the past (drawings, aerial photos, GIS, etc.) 
which have proved to be a fundamental and essential tool for archaeological research. 

However, one of the issues is precisely the correct interpretation of the large mass of data. This 
represents a challenge in the field of cultural heritage and the use of remote sensing for the 
identification, preservation and study of archaeological artefacts, where the data available from RS 
tools are relatively new and are based on sensors and physical parameters different from those used 
in the past (e.g., multispectral, hyperspectral, radar, LiDAR, GPR, etc.). Therefore, it is of fundamental 
importance for the research itself to couple the interpretation of the outputs of the data analysis with 
the archaeological documentation. 

5. Conclusion 

Today, in the era of big and open data, the large amount of data and information, available even 
for free to the scientific community, offers big opportunities and big challenges, also in the field of 
Earth observation techniques for cultural heritage. Big data and big challenges are particularly 
relevant for multi- and inter-disciplinary studies generally quite complex to be approached as in the 
case of archaeology [114–116]. 

Sentinel-2 data are certainly among the big data (available from 2014) that can offer big 
opportunities in many research fields and operational applications including cultural heritage. The 
use of high resolution multispectral data from the Sentinel-2 satellites of the Copernicus Program has 
shown all the strengths of this platform and the outputs from the current investigation clearly 
highlighted that these data can be fruitfully used in the future, for studies of the ancient landscape 
and the reconstruction of an extremely complex multi-layered context. 

As a whole, one of main outputs of this research, based on open data and software (SNAP), was 
the methodological approach herein proposed that can be promptly replicate in other areas of the 
world. Moreover, the results obtained from the study of the Foggia province, along with the process 
carried out to obtain them, can be a good basis for some general considerations regarding the 
importance of Sentinel-2. 

1. For the province of Foggia, the use of Sentinel-2 satellite data coupled with the ancillary data 
from other sources has proved extremely effective for the quick identification, on a 
landscape scale, of dozens of archaeological sites, some already known, others unknown 
and herein discovered. 

2. The use of data enhancement and data reduction techniques applied to remote sensing data 
has proved to be extremely useful in the archaeological study. General considerations are 
related to the choice of multitemporal based analysis in a Mediterranean environment to 
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cope with the different inter/intra annual visibility of soil and crops markers due to the 
vegetation phenology, meteorological conditions, etc. 

Of course, as discussed, the main issue is to optimize the data to have a good compromise 
between processing and analysis in terms of effort, time, and results. To address this point, the PCA 
technique combined with previous use of ROIs discrimination and Spectral Un-mixing over time has 
proved to be very useful. The approach and the data processing chain herein proposed is an example 
of a perfect synthesis of the synergy needed between archaeology and remote sensing based on a 
virtuous circle of multidisciplinary skills that work together to address critical issues. In particular, 
the use of free data such as Sentinel-2 and those free available in the framework of the Copernicus 
initiatives, combined with archaeological knowledge of the area and ancillary data collected from 
other sources can produce remarkable results. 

On the other hand, the use of remote sensing tools and Earth observation techniques based on 
Sentinel-2 images has proved to be useful in the identification of archaeological remains on a 
landscape scale, in the reconstruction of road systems and communication routes, and in the analysis 
of watercourses and their evolution over time. In particular, the identification of already known 
archaeological sites allows understanding of the shapes of features linked to a specific context within 
the images (e.g., concentric circles are linked to settlements of the Neolithic period). This is important 
because it allows the identification of new areas of archaeological interest (Figures 10 and 12) and 
their attribution to a specific historical period. The archaeological analysis on landscape scale 
(structures, communication routes, and watercourses) allows to reconstruct the network of 
settlements and to carry out new historical/archaeological considerations. At the same time, the 
identified areas can be investigated on a “site scale”, with the normal practices of archaeology 
(excavation, survey) or close-range remote sensing (geophysics survey, drones, etc.) for a deep 
knowledge of the contexts, essential in the field of archaeological research. The use of Sentinel-2 
images could also be included in the practices for the creation of the archaeological risk assessment 
map to be handed over to the Soprintendenza, for the protection of cultural heritage in the case of 
urban sprawl and land use change processes [117–122]. 
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