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Abstract

Semantic segmentation is a widespread image analysis task; in some applications, it

requires such high accuracy that it still has to be done manually, taking a long time.

Deep learning‐based approaches can significantly reduce such times, but current

automated solutions may produce results below expert standards. We propose

agLab, an interactive tool for the rapid labelling and analysis of orthoimages that

speeds up semantic segmentation. TagLab follows a human‐centered artificial in-

telligence approach that, by integrating multiple degrees of automation, empowers

human capabilities. We evaluated TagLab's efficiency in annotation time and accu-

racy through a user study based on a highly challenging task: the semantic seg-

mentation of coral communities in marine ecology. In the assisted labelling of corals,

TagLab increased the annotation speed by approximately 90% for nonexpert an-

notators while preserving the labelling accuracy. Furthermore, human–machine in-

teraction has improved the accuracy of fully automatic predictions by about 7% on

average and by 14% when the model generalizes poorly. Considering the experience

done through the user study, TagLab has been improved, and preliminary in-

vestigations suggest a further significant reduction in annotation times.
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1 | INTRODUCTION

Orthoimages are an essential source of information in many fields, from

landscape ecology to computational archaeology and industrial appli-

cations. Recently, their use and the data extracted from them have

increased, as facilitated by image‐based surveys conducted by autono-

mous vehicles such as drones or UAVs, and through expanding access

to GIS analysis solutions. Large area imaging condenses vast amounts of

information and represents a mass of data that can quickly become

challenging to manage. Machine learning technologies have great po-

tential to expedite image analysis. Deep learning (DL), and convolutional

neural networks (CNNs) in particular, have demonstrated performance

capabilities that are comparable with humans in a variety of image

analysis tasks, such as classification, detection, and segmentation.

However, the optimization of CNN models through a supervised

learning approach requires a huge amount of annotated data. Once the
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data set has been prepared, current GPU performance allow for the

rapid optimization of automatic recognition models. While fully auto-

mated solutions offer dramatic reductions in human effort, their accu-

racy is still lower than human experts can achieve for complex scenarios.

Such general considerations are applicable to the field of underwater

monitoring. Large‐area imaging is an increasingly common solution in the

study of subtidal environments. Coral is a framework‐building species,

and its growth is directly responsible for creating and maintaining coral

reef habitats. Spatio‐temporal analyses of seabed orthoimages increase

the understanding of demographic patterns and the spatial dynamics of

coral reef communities. Images are annotated (i.e., corals are outlined for

the fine‐scale colony mapping) either with standard general‐purpose

photo editing software or special purpose marine image annotation

software (a short review is given in Section 2.2). However, the application

of artificial intelligence (AI)‐based assisted tools remains marginal, as the

required pixel‐wise tracing accuracy is only achievable manually. Manual

tracing is very time‐consuming, as each square meter of imagery demands

up to an hour of human effort. As large volumes of unprocessed imagery

data are already available and new imagery is continually being created,

such human‐driven data extraction efforts limit the rate of productivity

in the analytical process. Reef‐building corals are an incredibly diverse

group of organisms, consisting of around 850 species (Hoeksema &

Cairns, 2019), and thus offer a unique set of challenges to the field of

automatic image processing. Coral biology introduces challenges to the

process of automated segmentation, due to the complexity and asym-

metry of many coral growth forms and the considerable morphological

variability within and among species. Importantly, as corals are relatively

slow‐growing species (linear extension rates can be less than 1 cm/yr), the

level of precision required to accurately document changes and colony

evolution is exceptionally high. Poor visibility and floating particles da-

mage image clarity in underwater data. These factors complicate the

design of fully automatic semantic segmentation models for coral taxa, a

task in which human experience remains central and not replaceable.

We introduce TagLab (https://taglab.isti.cnr.it), an open‐source,

AI‐powered, interactive image segmentation software, for the pixel‐

wise accurate, scale‐aware labelling and analysis of orthoimages.

TagLab implements a human‐centric pipeline that has been proven to

speed up the annotation work, retaining the accuracy of the manual

approach and ensuring experts keep control of the annotation process.

The annotation pipeline comprises three steps: (1) an AI‐assisted/

manual labelling, in which intelligent tools based on CNNs speed up

the annotation from scratch; (2) a learning pipeline to create, test, and

use custom recognition models; (3) an editing/validation final step, in

which the expert can improve automatic predictions. In terms of data

analysis, TagLab integrates ad hoc image‐processing and image‐

analysis tools, supports georeferencing, and interoperates with GIS

software. The software includes the following original resources:

• an AI‐based flexible annotation workflow, which unlike similar

software allows the per‐pixel editing of predictions. More details

are given in Sections 2.2 and 3,

• an Edit Border tool, which facilitates the manual editing of complex

boundaries (Section 3.1.2),

• the support of multichannel images, which enables multimodal

coregistered data to be handled. For example, the loading of digital

elevation models (DEMs) allows users to approximate the 3D

surface area of coral colonies (see Section 4),

• a Multitemporal comparison tool, which automatically tracks the

temporal evolution between segmented regions and allows for

interactive visual inspections of extracted data (see Section 4).

This paper reports a thorough evaluation of the improvements

brought by TagLab both in terms of annotation time (efficiency) and

accuracy. This evaluation was carried out through a comprehensive

user study conducted with the Scripps Institution of Oceanography

(UCSD). Semiautomatic and automatic tools demonstrated their ef-

ficiency in speeding‐up up coral reef large‐image analysis. In addition,

the interactive editing of automatic predictions also proved essential

for achieving the high accuracy levels required in ecological studies.

TagLab is available on GitHub (https://github.com/cnr-isti-vclab/

TagLab). Reducing the time required for postprocessing of coral reef

imagery enables researchers to process increasingly large volumes of

data, thus facilitating a greater capacity to understand and predict

future changes to coral reef ecosystems. We closely collaborate with

several marine research laboratories, continuously updating the

software (see Section 6.4) and developing novel automated/assisted

strategies to support digital underwater monitoring (Figure 1).

2 | RELATED WORK

The widespread use of supervised deep‐learning solutions has re-

cently led to the development of several software applications and

algorithms that speed up the preparation of training data sets. In

terms of the semantic segmentation task, many of these applications

exploit weak supervision. Object areas are rapidly marked using

points, scribbles, bounding boxes, or polygons. Starting from this

partial information, an algorithm then generates segmentation masks.

This section provides a brief description of the most popular weakly

supervised annotation methodologies, followed by an overview of

the current tools developed for marine species annotation.

2.1 | Weakly supervised methods

Drawing a bounding box is a quick and intuitive task. Khoreva et al. (2017)

use bounding boxes to extract an initial proposal of the object mask. The

region outside the box is marked as the background, while an algorithm

(Pont‐Tuset & Van Gool, 2015) evaluates the inside area. A recursive

training frame‐work based on a CNN achieves the final prediction. Deep

Grabcut (Xu et al., 2017) uses the bounding box as a soft constraint,

designing a CNN which takes as its input an image concatenated with a

“distance map” defined as starting from the object bounding box.

One of the first interactive segmentation methods (Boykov &

Jolly, 2001), (Boykov and Jolly, 2001), involves the tracing of the

object's background and foreground scribbles. The segmentation task
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is then formulated and solved as a graph cut problem. Other classic

solutions, such as GrabCut (Rother et al., 2004), are based on energy

minimization. Geodesic Star (Gulshan et al., 2010) exploits a weighted

geodesic distance based on pixel statistics to obtain segmented re-

gions starting from scribbles. ScribbleSup (Lin et al., 2016) uses a

graph‐based model in conjunction with a fully convolutional network

(FCN) (Long et al., 2015) to propagate the scribble information to

entire segmentation regions. The graph is built on a superpixel sub-

division of the input image.

Many interactive methods output semantic regions starting from

point clicks. Xu et al. (2016), integrate positive clicks in the foreground

with negative clicks in the background in a learning scheme. Euclidean

distance transforms the clicked points into two separate maps, which

are later concatenated with the input image to feed a FCN. A graph cut

optimization (Rother et al., 2004) applied on the FCN output leads to

the final segmentation. Le et al. (2018), transform user clicks into an

interaction map by expanding Gaussians centred on them; which then

feed an FCN network (Long et al., 2015) to output a rough predicted

mask. Finally, a standard geodesic path solver (Cohen, 2006), applied

on the boundaries map refines the segmentation. A recent solution

(Forte et al., 2020) builds upon a U‐Net (Ronneberger et al., 2015)

architecture reaches an exceptional accuracy of between 95% and

99% of mean intersection‐over‐union (mIoU), a measure of overlap

between labelled regions, by using an elevated number of user's clicks

(around 20). A solution between bounding boxes and point‐clicks is

represented by clicking the object's extremes (top, left, bottom, and

right). The efficiency of using extremes in terms of the bounding boxes

has been demonstrated by Papadopoulos et al. (2017). They report a

median time for annotating an object of 34.5 s, 25.5 s for drawing the

bounding box, and 9.0 s for confirming annotation's correctness.

Picking extreme points is five times faster then drawing bounding

boxes and requires only 7 s on average, thanks to its small cognitive

workload. Thus, the experimental results of Papadopoulos et al. show

that the performance of automatic recognition models (Fast R‐CNN,

Girshick, 2015, for object detection and the DeepLab for object seg-

mentation) trained by using them is higher. This means that, in general,

humans provide tighter bounding boxes around the objects using this

paradigm. Maninis et al. (2018), propose Deep Extreme Cut (DEXTER),

a CNN for the interactive agnostic segmentation based on the ex-

tremes point paradigm. DEXTER follows technical solutions used in

DeepLabV3+ to achieve high‐res results.

Objects without holes can be precisely annotated using enclosing

polygons, but as drawing a polygon typically requires many clicks

(30–40), this is a high time‐consuming labelling method. Polygon‐

RNN (Castrejón et al., 2017) speed up polygon tracing using a re-

cursive neural network (RNN). As soon as the user starts clicking

points, the Polygon‐RNN network processes the placed clicks and

automatically predicts the next ones. This process has been found to

speed up the generation of segmentations by a factor of 4.7 when

tested on the Cityscapes data set (Cordts et al., 2016). RNN++ (Acuna

et al., 2018) then follows Polygon‐RNN, in which the features are

extracted using a modified version of the ResNet‐50 to increase their

resolution. An Evaluator Network then estimates the accuracy of

predicted polygon via Reinforcement Learning. Finally, the output is

refined using a Graph Neural Network (GNN).

2.2 | Annotation and segmentation solutions
for marine organisms

In this section we review the algorithms and software tools devel-

oped for the annotation and segmentation of marine organisms. The

web platform CoralNet is a widely known AI‐based solutions for

creating manual and assisted point‐based annotations (Beijbom

F IGURE 1 TagLab's main user interface splits into three main components: the central Working View, the Toolbar on the left, and a right area
containing three panels: the Labels, the Region info, and the Map Viewer. TheWorking View covers the central part of the interface and visualizes
the orthoimage with overlaid semantic annotations (colored polygons) [Color figure can be viewed at wileyonlinelibrary.com]
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et al., 2015). Images are annotated directly in the web browser, and

when a sufficient number of data have been annotated, CoralNet

trains a classifier and helps label the remaining images. Squidle+

(Friedman, 2017) is a cloud‐based platform for annotating and geo‐

referencing underwater visual data. This is extremely versatile in

handling image, video, and orthomosaics (as a collection of tiles).

TagLab and Squidle+ follow different approaches. First, Squidle+

handles point‐based annotation while TagLab labels regions.

Generally, point‐based information is not sufficient for identifying the

demographic drivers of change in coral communities (Edmunds &

Riegl, 2020). Second, the AI‐assisted part of Squidle+ implements an

active learning approach; the interactive system asks the user addi-

tional inputs to improve its classification performance. TagLab offers

a nonrigid working pipeline, offering assistive tools for the direct

editing of automatic predictions. In terms of interactive tracing,

DeepSegment (Andrew, 2018) adopts an image segmentation ap-

proach based on GrabCut (Rother et al., 2004) and superpixels

(Achanta et al., 2010). Parameters must be tuned manually for each

colony to achieve high accuracy. DeepSegment segments the entire

image in small subregions. The user must add sematics separately to

each one, which is a time‐consuming process. CoralSeg is another

recent algorithm that exploits superpixels in a hierarchical way to

expand the sparse labelling, thus obtaining a coherent semantic

segmentation (Alonso et al., 2019). This algorithm has been suc-

cessfully applied to repeatable surveys of benthic communities (Yuval

et al., 2021). CoralMe (Blanchet, 2016) adapts the Geodesic star

convexity algorithm (Gulshan et al., 2010) to corals segmentation.

This algorithm takes an internal and an external sketched curve as

input and returns the colony's accurate boundary outlining. The two

initial curves must already be close to the contours to be effective,

making the process accurate but not fast. Biigle (Langenkämper

et al., 2017), is a web‐based image and video annotation software

that allows collaboration between users. It integrates an instance

segmentation CNN, the Mask R‐CNN (He et al., 2017); and like

TagLab, the fine‐tuning of this network follows a human‐in‐the‐loop

approach, as detailed in (Zurowietz et al., 2018). The main differences

between this approach and our method is that the fine‐tuning of the

Mask R‐CNN is achieved by accepting or discarding automatically

generated proposals (yes/no paradigm) while TagLab allows for the

rapid creation of a data set for the fine‐tuning of DeepLab V3+ from

scratch (due to assisted annotation) or by editing the obtained pre-

dictions and reusing them for the training. The complete workflow of

TagLab is described in the next section.

3 | TAGLAB: A HUMAN‐CENTRIC
AI APPROACH

Scientific applications usually involve specific image data containing

uncommon objects and complex recognition tasks, which require

deep field knowledge and a high cognitive effort. Uncommon objects

are usually underrepresented in machine learning benchmark data-

sets (which contain mostly everyday objects), thus affecting the po-

tential of current CNN recognition models. In addition, the

automation of complex recognition tasks following a supervised ap-

proach demands a massive amount of highly targeted training data.

Automatic labelling techniques can then fail to reach the accuracy

levels achieved by experts (over 90%), and AI human‐centric tech-

nologies that empower (rather than replace) human abilities are

usually more successful than fully automated solutions. TagLab fol-

lows this principle by proposing the working pipeline illustrated in

Figure 2. First, TagLab speeds up the manual annotation through a

combination of AI‐assisted tracing algorithms and specialized tools,

thus creating suitable training data sets (Step 1). Next, the user is

guided to a fully automatic custom semantic segmentation model

optimization (Step 2). The process starts with the custom data set

F IGURE 2 TagLab's annotation pipeline consists of three steps. (1) The assisted annotation. (2) The learning pipeline, which guides users to
optimize a custom semantic segmentation model. (3) The AI‐assisted manual editing, where humans re‐enter the annotation loop by correcting
the automatic results using specialized tools. Additionally, TagLab integrates data analysis functionalities (4) accessible from different stages of
the annotation process [Color figure can be viewed at wileyonlinelibrary.com]
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preparation; then the user sets the learning hyperparameters using

the train‐your‐network (TYN) feature and launches the model opti-

mization. Once the optimization ends, the user evaluates the learning

metrics (such as the confusion matrix and the mIoU), visualizes pre-

dictions on the test tiles, and decides whether to save the model. This

model can then be used to infer predictions on new unlabelled or-

thoimages. After the automatic classification, the human expert can

re‐enter the annotation loop (Step 3) and correct the prediction er-

rors with the editing tools, as in Step 1. Finally, TagLab offers several

options for analysing the annotated images (Step 4). In addition,

TagLab supports the import of color‐coded images, allowing for the

refinement of annotations/predictions as inferred outside of TagLab.

TagLab has been implemented in Python using the Pytorch frame-

work for neural networks, and the PyQt (Python version of the Qt

framework) library handles the GUI. All the GUI components have

been implemented as Qt custom widgets to increase modularity and

adaptability. Image processing resources are mainly based on scikit‐

image. GIS‐related functionalities are based on GDAL and GEOPY.

TagLab runs on Linux, Windows, and MacOS. The main requirements

are Python 3.6 or 3.7 and the NVIDIA CUDA Toolkit, versions 9.2,

10.1, or 10.2. To complete the entire learning pipeline, TagLab re-

quires at least 6GB of RAM, and preferably 8 GB. TagLab is an open‐

source project released under the GPL V3 license. We next examine

the design choices behind each step of Figure 2.

3.1 | AI assisted/manual labelling

TagLab handles the pixel‐wise assisted/manual labelling of large or-

thoimages, eventually containing thou‐ sands of labelled regions. All

of the interactive tools work at the orthoimage full resolution, and

segmented regions are approximated and stored as polygons with

subpixel accuracy.

3.1.1 | AI boundaries tracing

AI‐based interactive annotation tools have two major advantages

over standard image processing algorithms for interactive segmen-

tation. First, CNNs are content‐aware, and thus knowing what an

object is, for example, in coral outlining, allows them to distinguish

between the internal and external regions of a colony. Second, no

additional parameters need to be specified (as in DeepSegment).

TagLab integrates two interactive segmentation CNNs that are both

fine‐tuned to work on corals shapes: the 4‐clicks and positive/negative

clicks tools. Below we only detail the 4‐clicks tool, as the second

interactive CNN was introduced after the user study (see

Section 6.4).

The 4‐clicks tool implements a custom version of the DEXTER

(Maninis et al., 2018), which exploits the extreme points paradigm, as

described in Section 2. This CNN was originally trained using two

datasets, PASCAL VOC 2012 and the Semantic Boundaries Data set,

specifically for semantic contour prediction. These data sets mainly

contain everyday objects, so the original CNN tends to trace regular

profiles. The version implemented in TagLab has been optimized to

predict complex, jagged natural shapes after learning from a data set

of 15,000 manually segmented coral instances. The Deep Extreme

Cut network takes as inputs 4‐channel data, the RGB image object,

and a heat map created by centring four Gaussians on the extreme

points, as indicated by the user. To produce the heat maps, we ex-

tracted the extreme points from each segmentation then simulated

the uncertainty induced by human annotation (it is hard for an an-

notator, however accurate, to exactly pick the extreme points with

pixel precision), by adding a random displacement in a range of

10 pixels around each extreme point. All of the network parameters

were unfrozen during the fine‐tuning. To avoid any forgetting effect,

we set a learning rate ten times lower than the first training. The

augmentation included both colour and geometry. The optimized

model achieved an accuracy of 0.967 and a mIoU of 0.853. In Taglab,

the 4‐clicks tool activates a cross cursor which helps the user place

the coral extreme points. The CNN outlines a pixel‐level mask, which

TagLab converts into a dense polygonal line approximating the col-

ony's boundaries at sub‐pixel accuracy.

3.1.2 | Advanced editing tools

The Edit Border and the Refinement are advanced editing options in

TagLab. The Edit Border tool enables the manual pixel‐level editing of

polygon outlines without the need for select‐and‐drag edit points or

for specifying a size for the drawing tool. The user sketches an ar-

bitrary number of curves crossing the polygon boundary. TagLab

snaps them to the initial polygon removing the leftover parts, as

shown in Figure 3. The Edit Border algorithm performs pixel‐level

morphological operations on the binary mask (black background)

rasterized with a subpixel‐accuracy from the selected polygonal label

(Figure 4). The algorithm works as follows:

1. Save and remove the internal holes of the current mask M (if

present).

2. Draw editing curves using white pixels.

3. Fill the black foreground regions with a hole‐filling method.

4. Redraw the curve using black pixels.

5. Use a connected labelling algorithm to obtain the different

regions.

6. Keep only the region with the largest area.

7. Readd the original internal holes.

Inner polygons are created by drawing closed curves that are

then subtracted from the label. Existing internal holes are treated as a

separated mask and readded to the outer mask after confirming the

operation during the editing. After each editing or hole creation, the

corresponding demographic statistics are updated. The Edit Border

uses fast image processing operations on local binary masks working

instantaneously. This solution has proven to be more efficient in

pixel‐wise editing than click‐based interactive refinements solutions,
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particularly when using a graphics tablet, given the high complexity of

coral morphologies.

The Refinement automatically improves the segmentation

accuracy with the constraint that the refined segments must be

close to the originals (Figure 3). This tool implements a custom

version of the graph‐cut segmentation algorithm (Boykov &

Jolly, 2001). In the graph‐cut based approaches, separation

curves are determined by a boundary term (usually related to the

RGB image gradient) and by a regional term. In TagLab, the re-

gional term is computed by exploiting the color histograms of the

foreground Hf , and of the background Hb: image colors are

quantized using 4 bits per component and the histograms are

normalized according to the area values. These normalized his-

tograms, are used to define two per pixel functions H x y( , )f and

H x y( , )b , where the color of the pixel is looked up in the histo-

grams. These functions can be combined to roughly approximate

the probability that a pixel belongs to the foreground or the

background. To force the new boundary to remain close to the

original we compute the signed distance to the original

boundary D x y( , ) and the overall contribution is weighted by two

parameters a and b a H x y H x y bD x y; ( ( , ) − ( , )) + ( , )f b . The default

values are a = 0.1 and b = 0.05. The boundary term is computed

from the RGB values of two neighboring pixels:

∥ ∥RGB x y RGB x yexp(− ( , ) − ( , ) )1 1 2 2
2 . To speed up the computation,

both the distance transform and the graph‐cut algorithm are

calculated only in the original contour neighbourhood. If a poly-

gon is manually edited before activating the refinement opera-

tion, the refinement acts only in the edited parts.

3.1.3 | Basic creation/editing tools

The basic creation and editing tools are based on simple image

processing operations. Manual labelling occurs via the Freehand

drawing tool, which creates a new polygon for each drawn closed

curve. The closed curve can be drawn as different overlapping

segments rather than continuously. Curves can intersect but will

always produce a unique closed polygon without discontinuities

or holes. Thus, there is no need to match the start and end of the

line precisely, and any additional segments, inside or outside the

polygon, are automatically removed. Cut Segmentation splits a

polygon into several independent polygons. This tool works ex-

actly like the Edit Border tool except that the subtended regions

are separated, not removed, from the starting polygon. The Crack

tool (Figure 5) interactively creates empty cracks inside a poly-

gon. It implements a simple colour‐based flood fill algorithm, and

the user can use a slider to threshold unwanted pixels. TagLab

performs simple region‐based morphological operations on the

segmented regions, such as dilation, erosion, and hole filling and

boolean operations, and subtracts or merges overlapped labels.

Divide labels avoid counting pixels belonging to overlapped re-

gions twice, which can invalidate spatial analyses.

3.2 | Learning pipeline

The high specificity of scientific data requires the creation of ad hoc

classifiers tuned to custom data. TagLab, therefore, applies specific

F IGURE 3 From left to right: A Pocillopora colony, the associated labelled polygon, the edit curve, the edited polygon, and the automatically
refined polygon. The editing curves snap to the mask allowing pixel‐level editing operations. The automatic refinement uses a variant of the
graph‐cut algorithm to improve polygon adherence to the coral boundaries [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 The algorithm of the Edit Border tool explained. From left to right: (1) The binary mask and the input edit curves (drawn in blue)
snapped to the mask. (2) Edit curves are first drawn in white. (3) Filling of the subtended regions. (4) Edit curves are redrawn in black. (5) The
largest connected component becomes the final mask. Note that the black and white lines are thin to enable pixel‐level precision during the
mask processing. We thicken the lines to improve the clarity of the figure [Color figure can be viewed at wileyonlinelibrary.com]
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solutions for preparing training datasets, by decomposing large or-

thoimages (much larger than the typical input size of CNNs) and

performing the fully automatic semantic segmentation on them. Once

the labelling of one or more orthoimages has been concluded, users

can create a data set by opening the Export New Training Data set

window, selecting the area of interest, and choosing a strategy for

partitioning the map into training, validation, and test subareas. This

choice can follow different criteria depending on the class distribu-

tion: uniform‐vertical, uniform‐horizontal, random, or ecologically

inspired‐partition (see Pavoni, Corsini, et al., 2020). The rationale is to

prefer a partitioning strategy that distributes the semantic regions as

evenly as possible in the three subareas. The extension of these

subareas is chosen according to the usual data partition in supervised

DL applications. The sub‐areas are then sliced (scan order) into

overlapping squared tiles. The data set preparation algorithm allows

for oversampling of the minority classes to improve the class balance.

The oversampling follows the approach described in Pavoni, Corsini,

et al. (2020). Tiles size consider both the input size of the Deeplab

V3+ (Chen et al., 2018) architecture and the overlap required to

aggregate multiple predictions, thus avoiding tiling artifacts. In some

applications, such as ecological monitoring, the object scale is a dis-

criminant feature for classification. To combine data from multiple

orthoimages uniformly and independently by the pixel sizes of each

map, while avoiding introducing scale inconsistency, users can set an

intermediate target pixel size, and tiles are then exported scaled to

this value.

The Train Your Network function runs the DeepLab V3+ model

optimization (Figure 6) The learning pipeline interface is specifically

designed to guide scientists without a computer science background

through the model optimization process. Thus, we tested several

hyperparameter configurations on different datasets, and for the

TagLab default hyperparameter settings, we chose the configuration

that mainly outputs stable models, mitigating overfitting, and for-

getting. At the end of the optimization, the training results are vi-

sualized through the Training Results window (Figure 7). Some simple

metrics quantify the classification performance, such as the accuracy,

the mIoU, the normalized confusion matrix, and the loss training and

validation graphs. Finally, the Training Results window allows for the

side‐by‐side inspection of test tiles and the corresponding ground

truth labels and predictions before saving the classifier. The Fully

automatic segmentation tool loads one of the classifiers and infers

predictions on the active orthoimage. As for the interactive tools, the

fully automatic segmentation works on subimages at a full resolution.

TagLab calculates multiple predictions on a sliding window and

combines them to avoid inconsistencies between windows.

3.3 | Assisted/manual editing

Automatic predictions may not meet the standards of applications

involving high pixel accuracy. To improve accuracy through human

supervision (Step 3), TagLab visualizes semantic regions as

F IGURE 5 Crack tool. Picking a point
inside an inner crack generates an inner hole.
A manually tunable threshold allows to filter
out unwanted pixels [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 6 The export new training data set window (left); the train your network window (right) [Color figure can be viewed at
wileyonlinelibrary.com]
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transparent polygons with unique IDs, thus enabling rapid regions

checks and further editing at the pixel level using the assisted/manual

labelling resources described in Section 3.1.1.

4 | RESOURCES FOR AUTOMATIC
ANALYSIS

In addition to the advanced labelling functionalities, TagLab offers

several image analysis options involving higher‐level information,

such as DEMs (widely used in spatial/landscape analysis) or the au-

tomatic detection of change in multitemporal surveys. All information

related to the positioning and extent of semantic regions (such areas,

centroids, perimeters) is directly accessible to the user for computing

ecological statistics.

DEM processing. The DEM can be imported together with co‐

registered orthoimages and used to refine labels while considering

depth jumps or approximate the 3D surface areas of labelled regions.

Annotated polygons can then be used as a clipping mask on the depth

raster, to obtain a set of semantically segmented raster objects.

When loading the depth information, TagLab supports the export of

the RGB‐D training data set, thus enabling the training of multi‐modal

networks.

Temporal evolution of coral colonies. InTagLab, multiple annotated

orthoimages can be loaded into the same project, and these semantic

maps (orthoimages plus labels) are navigated in pairs through two

synchronized views (Figure 8) thus enabling changes to be visually

inspected. In addition, when orthoimages are coregistered (coregis-

trations are usually obtained by placing underwater markers), TagLab

automatically tracks morphological changes between segmented re-

gions by analysing polygons overlaps. Other image‐matching solu-

tions are unreliable in underwater scenarios, due to the nonrigid

deformations on seafloors; everything moves and changes under-

water. After the computation, matches are displayed in an interactive

F IGURE 7 The Training Results window (left) displays information regarding the training and the quality of predictions. The Fully Automatic
Classification tool (right) opens a results preview on new data [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 8 On the left we show the synchronized navigation of two coregistered orthoimages acquired at 5 years of distance. The
highlighted row of the table, which contains all of the automatic matches found between colonies, shows the growth of the selected Porite's
colony; the colony is highlighted in both views. On the right we show the evolution of a Pocillopora and a Porite colony exported fromTagLab.
This type of information enables the tracking of genetically unique individuals (genetic tracking) [Color figure can be viewed at
wileyonlinelibrary.com]
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table synchronized with the two comparison views. The user can

interact with the table, receiving visual feedback. By selecting a row,

the views centre the corresponding coral colonies or, vice versa,

selecting a coral in a view highlights the corresponding rows of the

table. The table also contains an automatically assigned tag that

summarizes the region's morphological change (growth, erode, born,

died, split, and fuse). To our knowledge, this last simple but effective

visualization feature is not available in any other marine image ana-

lysis tool. The users can interactively correct eventual mismatches. As

each orthoimage may contain thousands of colonies, this tool greatly

simplifies the temporal evolution analysis of benthos. Although the

user study in this paper does not include this analysis tool, the

functionality has already been adopted in a recent publication (Sandin

et al., 2020).

5 | USER STUDY

This study is aimed at assessing the performance of the TagLab as-

sisted annotation pipeline (Step 1 in Figure 2) and of the automatic

labelling plus editing pipeline (Step 2 and 3 in Figure 2) by evaluating

both the annotation time and the label accuracy. Six ecologists from

the Scripps Institution of Oceanography were involved as annotators,

completing the study in February 2020. All the materials of this user

study (orthoimages, ground truth labels, label maps) are collected in

the Supporting Information Material.

5.1 | Materials

The 10 orthoimages used as the training data set for the model op-

timization and the four orthoimages labelled during the user study

were obtained from the 100 Island Challenge project (http://

100islandchallenge.org), headed by the Scripps Institution of

Oceanography, UC San Diego. The protocol for orthoimage creation

is detailed in Kodera et al. (2020). To summarise, plots were imaged

using a Nikon D7000 camera, which captured highly overlapping

images per plot to create a single contiguous 3D model of each plot

using the structure‐from‐motion software Agisoft Metashape (Agi-

soft, 2019). The dense cloud was then imported into the custom

visualization platform Viscore (Petrovic et al., 2014) to create ortho-

projections. Finally, scale bars and ground control points were de-

ployed in the field to provide scaling and orientation of the 3D model

relative to the ocean surface, which is required for subsequent ortho‐

rectification. The annotated training data set and the ground truth

labelled maps for the user study were created following the con-

solidated Photoshop‐based annotation pipeline used at the Scripps

Institution of Oceanography. The 10 orthoimages used for network

optimization portray 10 × 10m of coral reefs, and more details are

given in Pavoni, Corsini, et al. (2020). The four photogrammetric

surveys for the user study were conducted in 2013 at the Millennium

Atoll (MAL), Vostok Island (VM01 refers to orthoimage 1 of the

Vostok Island and VM03 to orthoimage 3), and Malden Island (SMA)

in the Southern Line Islands. The geographic locations having varying

water conditions. Each orthoimage measures around 3 × 3m and the

average pixel size is around 1mm. Figure 9 displays the MAL ortho-

image and the associated ground truth labels. The colours associated

with each class are black for the Background, light blue for Porites,

green for plating Montipora, olive green for encrusting Montipora and

pink for Pocillopora. The five selected taxa represent a gradient of

morphological complexity, and the coverage and distribution fre-

quencies differ in each orthoimage.

5.2 | Methods

Ground‐truth annotations were generated through mutual agree-

ment by the two ecologists who lead the processing and analysis of

(a) (b)

F IGURE 9 MAL orthoimage (left), the associated ground truth label map (right), and the colour code used. Label colours are black for the
Background, light blue for Porites, green for plating Montipora, olive green for encrusting Montipora and pink for Pocillopora. Note that, in this
orthoimage, no Porites is present [Color figure can be viewed at wileyonlinelibrary.com]
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the image‐based data products at Scripps. Remaining ecologists

formed the two subgroups of “annotation beginners” (indicated with

U1 and U2 in the following) and “annotation experts” (indicated with

U3 and U4 in the following). Beginners had ample experience of coral

taxonomy and ecology but minimal experience with the Photoshop‐

based labelling workflow, while the experts were already comfortable

with manual annotation using Photoshop. Both experts and be-

ginners had no previous experience with TagLab. Before embarking

on the user study, both groups received the same written instructions

about usingTagLab and practiced alone for about one hour. Each user

performed each task on the four orthoimages in a randomly assigned

order, to prevent systematic bias and to avoid, for example, the same

image always occurring in the same task. We logged all the user's

operations to evaluate the interactions with each specific tool and

estimated the annotation time. The annotation tasks assigned to

annotators are:

Task 1: Label the orthoimage following the Scripps' Photoshop pi-

peline and report the annotation times.

Task 2: Label the orthoimage by exploiting only the manual un-

assisted drawing tools of TagLab (the Freehand, Edit Border,

Cut, and Refinement tools). Task 2 aimed at testing the basic,

standard TagLab drawing functionality compared to the

Adobe Photoshop approach (Task 1).

Task 3: Label the orthoimage by using the assisted agnostic seg-

mentation tool. Editing and refinement options are allowed.

The goal of Task 3 is to assess the improvements offered by

the 4‐click based segmentation tool, considering both the

time reductions in labelling (comparing the total time re-

quired to completeTask 3 relative to Tasks 1 and 2) and the

labelling accuracy (of Task 3 in terms of the ground truth

label maps created by the head ecologists).

Task 4: Run the fully automatic classification and correct any out-

liers. This test evaluates if editing the automatic prediction

is more convenient than the assisted labelling. Again, we

evaluate both time and accuracy.

Table 1 reports the combinations between images, tasks, and

users that occurred during the study. The automatic classifier has

been trained using ten annotated orthoimages; the details of the

training are reported in Pavoni, Corsini, et al. (2020). Data set tiles

were exported according to the default settings of the Export New

Training Data set function. By exploiting the Train Your Network

feature, we fine‐tuned the DeepLab V3+ for 80 epochs, using a

learning rate of 0.00005, a weight decay of 0.0005, and a batch size

of 64. The model minimized a Focal Tversky loss function (Abraham &

Khan, 2019) using the Hyperbolic Adam Optimizer (Ma &

Yarats, 2019); scores on the test data set were 0.90 of accuracy and

0.84 of mIoU.

We assessed the labelling quality of each task by calculating the

accuracy and the mIoU of each label map compared to the ground

truth. Additionally, we evaluated the per‐class user agreement

through Cohen's kappa coefficient (Schoening et al., 2016), while at

the end of Section 6.1 we applied a voting scheme with the two

purposes of first, visualising the per‐pixel agreement among different

annotators and second, assessing the reliability of the user study, as

the votes were derived from the labels produced in different tasks.

Finally, we calculate TagLab's efficiency gain by estimating the per‐

pixel contour tracing speedup relative to Task 1. As the orthoimages

can contain from a few to thousands of corals with different shape

complexity, the per‐pixel tracing speed is a reliable and robust

measure.

6 | RESULTS AND DISCUSSION

As a general consideration, the high quality and the consistency of

results confirmed the reliability of the user study and the absence of

systematic errors. In addition, the overall accuracy of each task re-

lative to the ground truth was high and consistent among the users.

Figure 10 gives the four label maps produced by the different an-

notators using different tasks associated with the MAL orthoimage.

6.1 | Accuracy and user agreement

Figure 11 gives the accuracy values calculated for each task, map,

user, and class. Table 2 summarizes the average accuracy values.

VM01 and VM03, the two orthoimages containing all five classes and

showing a denser coverage according to the average accuracy per

orthoimages (a), have a higher proportion of incorrectly classified

pixels. The average accuracy per task is similar although slightly lower

in Task 2; the values for Taglab's manual segmentation without as-

sisted tools are lower than when using Photoshop. However, all users

are more experienced in Photoshop freehand drawing and editing

and less accustomed to using TagLab. In Task 3 and 4, accuracy was

comparable with that of Task 1 on average, thus clearly demon-

strating that the use of TagLab with assisted instruments enables

large reductions in annotation times without any impact on the ac-

curacy of results. The average accuracy per user across the four dif-

ferent tasks shows that the annotators generally performed at the

same skill level. User U3 was slightly less accurate than the others.

The average accuracy per class highlights that coral classes are not

equally detectable. Encrusting Montipora is correctly classified in less

TABLE 1 Orthoimage used for the different combinations of
user and task

U1 U2 U3 U4

Task 1 MAL VM03 VM01 SMA

Task 2 SMA MAL VM03 VM01

Task 3 VM01 SMA MAL VM03

Task 4 VM03 VM01 SMA MAL

Note: Each column represents a single user. U1 and U2 are annotation

beginners, while U3 and U4 experts.
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than half of pixels. Porites, plating Montipora, and Pocillopora

per‐pixel classification show comparable accuracy. The slightly lower

accuracy of Pocillopora segmentation is likely due to the difficultly of

correctly tracing or predicting the jagged perimeters of Pocillopora

colonies.

The difficulty of correctly identifying encrustingMontipora by the

human observers is also evident in the agreement values calculated

using Cohen's Kappa (κ). These values mostly range from poor (below

0.4) to mediocre (values between 0.4 and 0.6) (see Figure 7 in Sup-

porting Information materials). The remaining classes are labelled

with excellent agreement and have Cohen's Kappa values of over 0.8.

The semantic segmentation model was trained on a data set labelled

by different users from the same laboratory. The uncertainty in-

troduced by discordant human annotations explains the network's

poor performance in distinguishing encrusting Montipora. However,

the average of agreement values (reported in the order of

Background, Porites, plating Montipora, encrusting Montipora, and

Pocillopora), between Task 1 and Task 2 (0.89, 0.62, 0.62, 0.36, and

0.88) and between Task 1 and Task 4 (0.88, 0.70, 0.66, 0.38, and

0.87), suggests that automatic classification slightly improves the user

agreement. Comparing the mIoU difference in the fully automatic

annotation with Task 4 quantifies the human effort in refining the

classified polygons. The manual editing tools resulted in an accuracy

gain of 0.9% (see Figure 11) in the MAL label, 1.9% in the SMA

label, 11.5% in the VM01 label, and finally 14.9% in the VM03 label.

These improvements demonstrate the advantages of the human‐in‐

the‐loop approach when model performance suffers from general-

ization issues.

(a) (b) (c) (d)

F IGURE 10 Labels for the orthoimage MAL. MAL contains four of the five classes under investigation and displays a medium level of benthic
coral coverage. User U3 (inTask 3) (c) classified a significant quantity of encrusting Montipora (olive green) not reported in the other labels. User
U1 (in Task 1) (a) created much more complex regions, rich of internal contours and ramifications, especially when compared with User U4 (Task
4) (d) [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 11 The average accuracy and mIoU values and the IoU per class (highlighted with the associated colours) for each experiment.
Orthoimages MAL and SMA have only 4 and 3 coral classes, respectively. The grey‐coloured column contains the accuracy results of the fully
automatic semantic segmentation [Color figure can be viewed at wileyonlinelibrary.com]
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The analysis of the vote maps reveals the classification reliability and

agreement among users. A vote map counts how many times the same

label has been assigned by the four annotators for each pixel, and takes

the maximum of these votes. Table 3 illustrates that for each orthoimage,

between 94% and 98% of pixels have been classified as belonging to the

same class by at least three users. Agreement labels, that is, the labelling

obtained by voting, are built by considering the label that receives the

maximum number of votes for each pixel. Figure 12 displays the vote

map and the corresponding agreement labels for the MAL orthoimage

(see the Supporting Information material for the other orthoimages).

When comparison per‐pixel voting with the ground truth, we find ex-

cellent accuracy, and greater than that obtained by single users (see

Figure 11 and Table 2). The per‐pixel voting maps are derived from

different tasks, demonstrating that the annotators produced highly ac-

curate labelling (close to the ground truth) independently of the tasks and

the tools used. This also demonstrates that the design of the user study

does not suffer from any bias. The others voting maps are included in the

Supporting Information material. The voting maps of VM01 and VM03

confirm that the annotators disagree on entire regions of the encrusting

Montipora.

6.2 | Work time analysis and TagLab efficiency

Figure 13 shows each user's registered time in performing each task.

The overall time demonstrates that there is no advantage of using

TagLab without the automatic or assisted tools when compared to

the Photoshop workflow. However, this perceived lack of advantage

has several caveats, including the users' unfamiliarity with TagLab.

The log files analysis reveals some periods of inactivity (see, e.g., user

U4 in Figure 15). Even if users documented the breaks during the

annotation, there are some discrepancies between the reported time

spent working and the log files report. However, since such differ-

ences are not great (about 10% on average with a maximum of 20%

for U2), and we have only the declared time for the Photoshop la-

belling (Task 1), we used the self‐declared working times in our

evaluations. As demonstrated in Figure 10, some users were more

likely to separate colonies, while others were more likely to include

several distinct colonies in the same polygon. This decision is typically

based on whether a given patch of coral is represented by contiguous

live tissue (Bak & Meesters, 1998), a difficult cognitive task even for

those with considerable expertise. This effect is clear in the results, as

some users produced more accurate label maps but required more

time to do so. Figure 14 shows contour tracing per‐pixel speed. The

introduction of the extreme click paradigm achieves a gain of about

42.6%, while the speed gain obtained by correcting the automatic

classification is only 12.1%. Novice users U1 and U2, who were less

accustomed to using Photoshop, had significantly greater gains:

about 88.2% for assisted segmentation and 27.5% for automatic

classification plus corrections. The relatively smaller time savings for

experienced users may result from their familiarity with using some

Photoshop tools, such as the eraser tool, which are not implemented

in TagLab. The smaller overall time savings with the fully automatic

segmentation is largely due to the elevated annotation times of user

U1 in VM03. The VM03map is the most complex orthoimage in terms

of both human and automatic recognition. This is confirmed both by

the data reported in terms of accuracy (mIoU) in Table 2 and by the

agreement between users. The average accuracy of users in classi-

fying VM03 was 0.80, a significantly lower value than reported in the

TABLE 2 Results in terms of average accuracy and mIoU

(a) Average mIoU per orthoimage
Orthoimage Avg. mIoU

MAL 0.90

SMA 0.98

VM01 0.87

VM03 0.80

(b) Average mIoU for each task
Task Avg. mIoU

Task1 0.91

Task2 0.86

Task3 0.89

Task4 0.89

(c) Average mIoU for each user
User Avg. mIoU

U1 0.90

U2 0.90

U3 0.85

U4 0.90

(d) Average mIoU for each class
Class Avg. mIoU

Background 0.90

Porites 0.87

Montipora p. 0.85

Montipora enc. 0.41

Pocillopora 0.83

Note: Overall, annotating VM01 and VM03 was more complex, regardless
of the task or operator (see panel a). The values in panel b confirm that

Taglab ensures a segmentation accuracy comparable with Photoshop.
Panel c demonstrates that all users were accurate and produced excellent
results relative to the ground truth. According to panel d, encrusting
Montipora is harder to identify.

TABLE 3 Evaluation of labelling obtained by voting

Orthoimage Accuracy mIoU Pixels with vote ≥2

MAL 0.97 0.93 97.38%

SMA 0.99 0.99 99.69%

VM01 0.96 0.91 96.20%

VM03 0.94 0.88 94.17%

Note: The class for each pixel corresponds to the most assigned.
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other maps. The automatic segmentation accuracy of VM03 was also

the lowest of the four maps, (see Figure 11), particularly for the class

Pocillopora. This is probably because VM03 contains Acropora, a class

of corals that are morphologically similar to Pocillopora but do not

appear in the training data. Note that in the automatic classification,

the IoU values per class were (0.69, 0.78, 0.72, 0.36, and 0.24) but

were much higher after human correction (0.85, 0.89, 0.85, 0.585,

0.74). The difference between these quantities (0.15, 0.10, 0.12,

0.22, and 0.50) indicated that user U1 required additional time to

modify classes, including 50% of the Pocillopora pixels. This reduces

the advantages of using TagLab in Task 4. However, the user's ability

to manually edit predictions directly led to an improvement in the

mIoU from 0.69 to 0.84 for VM03, again highlighting the advantages

of the human‐in‐the‐loop approach.

(a) (b)F IGURE 12 Vote map and agreement label
for the MAL orthoimage. White corresponds to
four agreed votes, light grey to three votes, red to
two votes, and dark red to one. Almost all the
pixels are white or light grey, highlighting the high
agreement between users. The pixel labelling
produced according to the maximum votes is very
close to the ground truth (see also Table 3) [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 13 The table shows the self‐reported times each user spent on each task for each map. The final row shows the total time spent by
each user on each study. These times are used in the speed calculations, although the log files' analysis reveals several periods of inactivity
(lasting up to tens of minutes) [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 14 Stated times do not provide a measure of how fast each user produces segmentations, as each drew a different total length of
outlines. The per‐pixel speed provides a better understanding of the actual improvement introduced by TagLab. The (average) speed gain is
evident in Task 3 (42.6%) and less in Task 4 (12.1%). Annotation beginners, U1 and U2, benefitted from assisted annotation far more than the
experts. This larger performance improvement for the beginners likely means that their limited Photoshop pipeline experience has made them
more adaptable in using TagLab [Color figure can be viewed at wileyonlinelibrary.com]
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6.3 | Tools' analysis and limitations

An in‐depth analysis of the log files reveals that the cognitive

workload for assigning four points is moderate, even when coral

shapes are complex. The mean time for this assignment ranges

from 4 to 8 s, depending on the user. This is in line with the

previous study of Papadopoulos (Papadopoulos et al., 2017), who

reported an average time of 7 s to indicate an object's extremes.

The processing time varies with the corals' size but is around

3–4 s on the PCs used in this study (each equipped with a

GeForce GTX 1080Ti). Our implementation of the 4‐clicks tool

does not support the editing of polygons' boundaries, and ac-

cording to the logged time (Figure 15), manual editing greatly

impact the overall efficiency. Figure 15 gives a synopsis of the

users' editing operations during different tasks. A row represents

30 min of editing, with the starting time corresponding to a period

of intense activity. Different users exhibit different behaviour.

User U1 navigated the orthoimage and evaluated the required

manual work for some time before editing, while U3 performed

small continuous adjustments. The mean time required to create a

polygon using the Freehand tool gradually decreases as users

become more familiar with it. For example, U4 required 23.6 8s

on average to create polygons in Task 2, 5.6 s in Task 3, and 4.61 s

in Task 4. This trend is confirmed by all users' time analyses,

suggesting that users rapidly improve their familiarity withTagLab

workflows.

During the user study, we realized that some tools had im-

plementation deficits that made their use impractical. For example,

the Freehand drawing tool used to delete unclosed curves made it

necessary to draw the complete segmentation again. Also, the Edit

Border tool did not allow the creation and modification of internal

holes, which had to be done using the other tools.

6.4 | Overcoming limitations: The new TagLab
release

In April 2021, we released a new version of TagLab that solves

the problems related to the manual tracing tools (Freehand

drawing and Edit Border), highlighted in Section 6.3, and includes

a new AI‐based interactive solution that experts can use both for

the creation and the editing of complex‐shaped labels. Since we

received positive feedback for these improvements, we decided

to conduct a preliminary experiment to assess their effi-

ciency gain.

The new assisted tracing solution, the positive/negative clicks

tool, implements a custom version of the CNN presented in Sofiiuk

and Ilia Petrov (2021). The positive/negative clicks tool enables object

segmentation from a sketch by placing a few inner (positive) or outer

(negative) points. A single positive point placed in the object's centre

is generally sufficient for achieving complete colony outlining. This

tool completes the automation of the annotation pipeline, adding an

assisted interactive tool also for Step 3 (see Figures 2, 16, and 17).

We evaluated the performance of the new release by re-

purposing the assisted segmentation task at only two users, the ones

who had segmented the two medium‐difficulty orthomosaics, MAL

and VM01, in Task 3. We asked them to repeat Task 3 using TagLab

with the improved manual tracing tool (Task A) and TagLab with the

improved manual tracing plus the new interactive CNN (Task B).

After more than 1 year from the first experiment, we can assume

there is no repetition bias inTask 3; moreover, these annotators have

not done any further labelling work using TagLab. The users de-

monstrated slightly better performance in Task A, achieving an

average annotation speed of 8.25 px/s compared to 6.93 px/s for the

previous attempt (see Figure 14). They then achieved an average

speed of 13.1;5 px/s inTask B. InTask A, both users conducted fewer

manual operations (the number of Edit Border operations decreased

overall from 2400 to 1570). We assumed that they both would in-

crease their annotation speed using the revised Freehand drawing

tool, so we introduced a compensation factor to highlight only the

speed gain introduced by the new CNN. After taking this into ac-

count, the annotation speed achieved by the positive/negative clicks

tool was 11.05 px/s, with a gain of about 59% over the TagLab ver-

sion that includes only the 4‐clicks annotation tool. Thus, the current

release halves the annotation time of the manual Photoshop anno-

tations (overall speed gain is about 96% on average). The per‐pixel

classification accuracy achieved by users in both Tasks A and B is

reported in Figure 18. The value remains in line with that previously

recorded, with a slight improvement in accuracy scored with the new

interactive tool.

F IGURE 15 Excerpt of the editing operations performed by different users in different annotation tasks. Note that each user has a very
different annotation style. Timelines more detailed are available in the Supporting Information material [Color figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 16 Labelling a colony using the positive/negative clicks tool. Positive points are drawn in green. Colony outlining placing two positive
points (left), the same polygonal shape after the class assignment (center). The use of automatic refinements further improves the segmentation
(right) [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 17 Edit a colony using the positive/negative clicks tool. The original form (left). Drawing negative points in red excludes an area.
Drawing positive points in green includes an area. Using automatic refinements further improves segmentation (right) [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 18 Accuracy of U1 and U3 in the new experiments. Task
A tests the improved manual drawing tools (Freehand drawing and
Edit Border). Task B tests the new interactive annotation CNN
performance (positive/negative clicks tool) [Color figure can be viewed
at wileyonlinelibrary.com]

7 | CONCLUSIONS AND FUTURE
DIRECTIONS

The semantic segmentation of image‐based landscapes composed of

complex natural shapes demands novel workflows to ensure pixel‐

level accuracy. Fully automatic models that yield pixel‐wise

predictions and perfectly generalize on complex data and in complex

tasks are beyond the scope of current technologies. Therefore, ex-

perts must retain control over the annotation pipeline, which moti-

vates the design of human‐centric AI‐system solutions that support

them and provide a significant speed increase. TagLab fulfills this

demand by offering several integrated functionalities that accelerate

robust data annotation production.

We tested TagLab's potential on the spatial analysis of coral

colonies on reefs, which is a challenging real‐world scenario. We

found that TagLab successfully sped up the coral colony tracing

task, preserving a level of accuracy comparable to that of humans.

The results are surprisingly good, if we consider that the per-

formance of TagLab's tools suffered from a lack of previous ex-

perience. TagLab's interactive segmentation feature, the 4‐clicks

tool, dramatically reduces the human effort in annotating com-

plex object from scratch (Step 1 of Figure 2) without affecting the

segmentation accuracy. Our user study indicates that TagLab‐

assisted segmentation provides an annotation speed gain by

about 42% on average (90% for nonexpert annotators). TagLab's

interactive annotation efficiency increases by combining the new

interactive labelling solution, the positive/negative clicks tool, with

the 4‐clicks. According to the preliminary results in 6.4, the
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assisted annotation with the current Taglab version leads to a

total speed gain of +93%, halving the annotation time w.r.t the

manual Photoshop‐based annotation pipeline.

The Train‐Your‐Network feature gives scientists access to au-

tomatic ad hoc model optimization, which represents a powerful

resource for accelerating data extraction from imagery (Step 2 of

Figure 2). To enhance the functionality of this feature, in the next

releases we will investigate further domain adaptation strategies for

improving model generalization. When the automatic classification

generalizes properly (as in the case of MAL), editing the automatic

predictions (Step 3 of Figure 2) almost halves the assisted annotation

time and reduces the manual time by two‐thirds (for the same level of

accuracy). However, the speed‐up gain is limited by the great number

of manual editing operations when the automatic model poorly

generalizes, even if the image processing interactive tool for the

boundary adjustment is functional, and particularly with the graphics

tablet. The introduction of an instance segmentation network for

the coral taxa could further reduce editing times, thus improving

Step 3 of the proposed workflow.

TagLab also performs data analysis; some of its functions, such as

the Multitemporal Comparison tool, proved extremely useful for ex-

tracting spatial information from orthoimages (Sandin et al., 2020).

However, the current version of TagLab has limitations on the size of

the orthoimages handled, which cannot exceed 32000 × 32000

pixels. Therefore, we are evaluating a multiresolution approach for

managing larger images. TagLab has already been tested successfully

on other application contexts, such as Architectural Heritage (Pavoni,

Giuliani, et al., 2020). Here, the fully automatic plus editing annota-

tion strategy (Steps 2 and 3) was found to be extremely efficient.
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