
Json-GUI - a module for the dynamic generation of
form-based web interfaces

Antonella Galiziaa,⇤, Gabriele Zereika, Luca Roverellia,
Emanuele Danovaroa, Andrea Clematisa, Daniele D’Agostinoa

aCNR-Institute of Appled Mathematics and Information Technologies “E. Magenes”,
via De Marini 6, 16149 Genova, Italy

{zereik,roverelli,galizia,danovaro,clematis,dagostino}@ge.imati.cnr.it

Abstract

Json-GUI is an AngularJS front-end module that dynamically generates

form-based web interfaces. Starting from a formal JSON configuration ob-

ject describing a list of inputs, Json-GUI is able to build a form frame in-

terface at runtime, with standard and personalized validation rules, giving

the possibility to define constraints between input fields. Validated data are

stored as Json objects or text files. Json-GUI has been exploited by scien-

tific communities to e↵ectively reduce the development and maintenance of

customized user interfaces in science gateways. Moreover, Json-GUI can also

be employed in the development of general-purpose Web forms.

Keywords: AngularJS, web form, science gateways

1. Motivation and significance1

Computational science represents a broad field where advanced comput-2

ing capabilities are exploited to understand and solve complex, interdisci-3

plinary problems. Present technologies and infrastructures represent impor-4

tant enablers because of their support to large-scale sharing of software,5

⇤
Corresponding author

Preprint submitted to SoftwareX September 27, 2018



data, instruments, computing services, and other domain-specific resources6

[1]. Science gateways are integrated ecosystems that exploit web technologies7

to make the sharing easier and to shield users from low-level technological8

issues. Science gateways are domain oriented and the provided interfaces for9

workflow configuration are mostly based on end user knowledge elicitation.10

Most of the available toolkits and frameworks for the design of science gate-11

ways decouple front-end and back-end with API-based interfaces. With this12

approach, the gateway communities can focus their e↵ort on the design of13

community-specific Graphical User Interfaces (GUI) [2]. However, the devel-14

opment of front-end solutions can be a challenging task for non-IT experts15

[3].16

With this vision in mind, we developed Json-GUI, a front-end library17

composed by a set of reusable AngularJS1 directives, that allows the dynamic18

generation of full-featured form-based web interfaces for AngularJS applica-19

tions. Starting from a formal JSON2 configuration object, Json-GUI simpli-20

fies and automatizes the design and the implementation of a standard web21

form; the tool includes added value features as validation, constraints and the22

straightforward use of geographic maps. Json-GUI improves the interaction23

with users in the elicitation of new requirements and allows rapdly and incre-24

mental implementation of GUI improvements supporting agile methodology25

[4]. The form produces as output a set of validated data stored as JSON26

objects or text files. In a science gateway context, the output text files can27

be customized to be used as configuration files to run models, therefore they28

can be passed and processed by any back-end technology.29

Json-GUI has been employed in several scientific contexts [5, 6, 7]; fur-30

1
AngularJS O�cial site, https://angularjs.org

2
http://www.json.org

2



thermore, due to its flexibility, Json-GUI can be employed in more general31

contexts, e.g. commercial tools and wherever it is necessary to define a form-32

based web interface.33

The paper is organized as follow: in the next Section the scientific con-34

text and similar tools are analyzed; in Section 3 Json-GUI is described from35

logical, architectural and functionality points of view; in Section 4 we discuss36

two main experiences of the uses of Json-GUI to develop the form-based web37

GUIs of science gateways addressing the requirements posed by meteorolog-38

ical and astrophysical communities. Section 5 highlights the benefits and39

added value features of the tool, while the last Section concludes the paper.40

2. Scientific and technological context41

Recently, several tools have been developed with di↵erent levels of ma-42

turity and completeness. In the following we briefly give an overview of43

di↵erent possibilities currently available in this rapidly evolving field. Most44

of the tools are oriented to support web/business communities; they may45

provide appealing interfaces to define forms, potentially hide programming46

aspects, be deeply integrated with third party frameworks, natively imple-47

ment services typically more oriented to a commercial usage.48

json-editor3 represents a simple but complete editor that starts from a49

JSON schema to generate a web form and gives back a JSON object with50

the fields and values filled though the form. No support is provided to define51

the JSON schema. Alpaca4 provides a library of out-of-the-box JSON schema52

to define field types, controls, templates, etc. The library has to be used,53

through a text editor, to create the HTML file that will generate interactive54

3
http://jeremydorn.com/json-editor

4
www.alpacajs.org

3



forms for web and mobile applications. Schema Form5 is a set of AngularJS55

directives that, similarly to Alpaca, provides a set of out-of-the-box of JSON56

schema, but provides user-friendly interfaces to create the initial schema of57

the forms. JotForm6 and <form.io>7 instead allow to completely skip the58

manual first schema generation and manage this part autonomously through59

the use of drag-and-drop interfaces and services.60

Most of the cited tools support many types of parameters, integrate valu-61

able external services, e.g. Paypal or Braintree payment, and support the62

possibility to extend the parameters/services natively provided. All tools63

implement validation rules with di↵erent levels of complexity, from basic to64

customized validation logic, but none of them allows the definition of com-65

plete custom constraints cross-checking of a set of values coming from di↵er-66

ent form fields. Moreover, being designed for general purpose applications,67

such tools lack the possibility to define markers and geographical areas on a68

map.69

There is no evidence of the adoption and the exploitation of the above70

mentioned tools by the scientific community that achieved few benefits from71

the development of these interesting softwares. Json-GUI represents an at-72

tempt made to cover this gap and, although somewhere simplifies features73

with respect to the previous tools, it has proved its e↵ectiveness in several74

scientific contexts: it has been employed to develop the science gateway of75

the EXTraS project [5] for the astrophysics community, for the refactoring of76

a science gateway for hydro-meteorological community [7] and, more gener-77

ally, to dress Airavata, a powerful middleware supporting the development of78

5
http://schemaform.io/

6
www.jotform.com

7
form.io

4



solid science gateways, together with the EasyGateway toolkit [6]. In these79

projects, Json-GUI was exploited to develop the GUI to configure model runs80

as well as to generate configuration files that have been used by the specific81

software available for model execution.

Figure 1: The architectural approach to integrate Json-GUI in a science gateway.

82

The integration of Json-GUI within a science gateway can be obtained83

smoothly because only the model configuration component leverages on Json-84

GUI. The existing submission handler component of the science gateway in85

fact is provided with data collected through the GUI, i.e. parameters to86

configure the model run, and it can run the model without modification.87

This architectural schema is depicted in Figure 1 and it has been discussed88

in details in [6].89

3. Software description90

Json-GUI generates at runtime a complete form-based web GUI that a91

user can exploit to insert heterogeneous values. The fields of the form and92

related customized rules are defined by manipulating an array of parame-93

ters, actually a JSON object. The input data collected through the form94

are stored as a JSON object that can be converted in a text file with an95

5



user-defined format. Completely integrated with Bootstrap8 and based on96

responsive technologies, Json-GUI suitably addresses also mobile experiences97

while implementing a model-view-controller pattern.98

Aligned with agile methodology and mockups [8, 9], Json-GUI allows99

a flexible approach to requirements and quick user-feedbacks, and reduces100

the time to deploy through cycles of interaction with users and incremental101

refinements of the GUIs. The development phase converges in few iterations102

of elicitation of domain specific knowledge and integration in user interfaces,103

i.e. the Web form GUI built through Json-GUI. The logical phases of this104

process are schematized in Figure 2.105

Figure 2: A logical schema of the Json-GUI usage.

Starting from the interaction with scientists, a first round of requirements106

are elicited and the definition of the JSON object is derived. In this phase, the107

8
https://getbootstrap.com

6



main actors involved are data scientists and Web form users. At this point,108

Json-GUI automatically generates the Web form corresponding to the JSON109

object, and users/scientists can fill in the values corresponding to the defined110

fields. Once the Web form is compiled, Json-GUI generates the output: a111

JSON object that can be possibly customized and used for the final aim.112

The generated output is a generic Json object, and, thus, it is ready to be113

processed by any middleware, workflow manager or local scheduler.114

If the form is in a validation phase, the interaction among scientists115

and the Json-GUI user can continue to elicit more requirements, modify the116

JSON object and lead to the correct Web form. Also thanks to model-view-117

controller pattern at the base of the tool, Json-GUI speeds up this phase118

enabling a run-time visualization of the Web form, reducing the duration of119

iterations for the elicitation/integration of derived information and conse-120

quently the development time of the final GUIs.121

Since the definition of the input for the generation of the web form could122

become a bit challenging, we developed a graphical tool to build the cor-123

responding JSON object, called Json-GUI-Builder9. Through a simple in-124

terface, the Builder completely supports developers, i.e. Json-GUI users, in125

the definition of parameters and related validation, constraint and condition126

rules. The Builder is provided as separated tool since it could be also used au-127

tonomously, i.e. to define any type of JSON object, and no dependencies are128

actually implemented among the two tools. However, Json-GUI without the129

Builder comes less interesting and the combination of the two tools represents130

an added value for both. In Section 4, two examples of Json-GUI-Builder131

graphical user interface are reported.132

9
https://github.com/portalTS/Json-gui-builder

7



Form Fields133

The core of the input object consists in an array of parameters, where134

each element defines (and renders) a single input field of the form. The135

possible input forms are: integer and float respectively generating a field136

for the specification of an integer and a float number; datetime generating137

fields for the specification of a date, including hours and minutes; select138

generating a combo box to select a value among the available ones; text139

generating a plain text input field; domains, generating a geographical map140

where rectangular domains and single markers can be drawn; fileupload141

defining an input box to upload one or more files.142

Json-GUI o↵ers high level features to enrich the form interface by defining:143

• Validation checks - each parameter type has internal format val-144

idation, e.g. float and integer types have a built-in number format145

verification. Moreover, it is possible to add a custom validation for the146

specification of a behavior: e.g. a user may define a datetime input147

valid if it predates a specific date - the 1st January 1970.148

• Constraint rules - since parameter values may mutually influence149

their behavior, constraints among di↵erent inputs can be implemented:150

if a time range has to be fixed, it is possible to set the “Start date”151

parameter value valid only if predates the “End Date” parameter value.152

This gives Json-GUI the potential to specify all standard constraints153

of a classic HTML5 form based interface.154

• Conditions - Json-GUI o↵ers the possibility to specify a condition155

(constant or depending on the value itself) to activate/deactivate pa-156

rameters in the input form. This permits to enrich the form interface157

with a dynamic behavior when managing, for example, Select and158

8



Domain parameters. A common example for Select parameter can be159

a form for online payment, Json-GUI allows to present di↵erent form160

fields depending on the value of a payment method field: if the selected161

value is “Paypal”, the GUI presents fields for “Paypal” login, with a162

Credit Card value, the GUI presents fields for credit card configuration163

(e.g. the credit card number, CVV, name and surname of the owner),164

and so on. The same level of dynamism is ensured when considering the165

Domain parameter, since the number of geographical domains relies on166

the user interaction and is unknown a-priori: depending on the number167

of domains that a user draws, the GUI can display di↵erent form fields168

and information. For example, in Figure 4 three geographical domains169

are considered, and the related geographical coordinates are displayed170

for each domain.171

As standard behavior implemented by Json-GUI, if one of the rules/checks172

described above is violated, it will be not possible to submit the form and the173

output will not be generated. A custom message can be displayed if specified174

during the definition of the related parameter. Examples are reported in the175

remaining of the Section and in Figure 8.176

Software Architecture177

Json-GUI presents a two-level software architecture, schematized in Fig-178

ure 3. The higher level, named Form, is composed by the Web form GUI179

automatically rendered from the JSON object, equipped with its overall logic180

and behavior. This includes the validation checks among parameters and the181

collection of each value to build the overall output, i.e. couples of param-182

eters and corresponding values possibly stored in a text file following an183

user-defined format. The lower level, named Fields, is represented by the184

9



Figure 3: A logical schema of the Json-GUI usage.

AngularJS directives defining each parameter type. This level defines the in-185

dividual behavior of the form fields, including the internal validation. Each186

validation rule can be general-purpose or specific.187

Json-GUI is designed to be easily installed, extended or customized10. In188

particular, since the tool is open-source and developed with free technologies,189

a user can modify the css default settings and use the preferred css files190

thus to change how the form is rendered. Furthermore, a user can render191

his/her own customized fields by adding the definition of the logic for the new192

field; similarly, a user can extend the Json-GUI Builder to have the Builder193

support.194

Software Functionalities195

The basic element of the JSON object, input of Json-GUI, is a parameter196

that contains the value and all conditions that apply on it. Each parameter197

of the Json-GUI object has the following structure:198

parameter: {

value: {type: "parameterType"},

10
https://github.com/portalTS/json-gui/wiki

10



displayName: {type: "string"},

dbName: {type: "string"},

isValid: {type: "string"},

parameterType: {type: "enum(’float’, ..., ’fileupload’)"},

parameterCategory: {type: "integer"},

computedResult: {type: "string"},

dependencies: [{type: "string"}, ...],

required: {type: "boolean"},

editable: {type: "boolean"},

description: {type: "string"} }

The displayName property defines the name of the parameter to be dis-199

played in the interface, while the dbName is a unique identifier used inter-200

nally. The parameterType defines the type to be specified among the ones201

supported. The parameterCategory property allows to logically group pa-202

rameters in the form, e.g. by appearing in the same tab. The parameter203

can also be marked as required, it is possible to specify if the default value204

can be editable or not. The description property contains a text shown in205

an info box, and can be used as hint to the user. The dependency property206

is an array containing the references to the parameters on which the current207

parameter depends. These are the parameters that shall be used within the208

isValid property. This property is a string containing a Javascript function209

body to possibly define custom validations. The following is an example,210

where also a custom message is set for invalid condition:211

isValid : "if(parameter.value < dependencies[’dep_1’].value) {

isValid.valid= false; isValid.message=’custom error message’;}"

The computedResult property defines a Javascript function meant to per-212

form a final computation in order to (possibly) refine the value before the213

11



form submission. An example is the following:214

computedResult: "return parameter.value/1000;"

Please note that the computedResult property allows a further customization215

for the value of the single fields; this is extremely useful when a specific format216

is required, e.g. datetime parameters formatted in a di↵erent standard or a217

specific projection for a geographical domain parameter.218

4. Illustrative Examples219

A valuable example is presented by the form field Domain defined to sup-220

port the hydro-meteorological community in the configuration of the Weather221

Research and Forecasting, WRF11 Model. The possibility to draw a geo-222

graphical domain by using a graphical map has been actually acknowledged223

by scientific community [10]; for this reason, the Domain input type has been224

implemented with the integration of the Google Map JavaScript library. Fur-225

thermore, meteorological models usually enable the definition of more than226

one domains, that can be nested or not: nest is a finer-resolution model run,227

that can be embedded simultaneously within a coarser-resolution (parent)228

model run, or run independently as a separate model forecast. The first229

case, depicted in Figure 4, represents nested domains. For this reason, the230

Domain is enhanced with the possibility (for the user) to draw up to three231

rectangles, each one representing a geographical domain, and a constraint to232

permit the drawing of nested domains has been defined.233

Figure 5 presents a sample code related to the hydro-meteorological sci-234

ence gateway [7] and leading to the configuration depicted in Figure 4: the235

11
http://www.wrf-model.org

12



Figure 4: An example of GUI to draw up to three domains exploiting a Google map.

parameter maxDomains limits to three the maximum number of drawable do-236

mains and the parameter onlyNested permits to draw domains only inside a237

single parent domain. In Figure 6, an example of Json-GUI Builder interface238

corresponding to the Domain parameter is shown.239

Another significant example is provided in Figure 7, that shows sample240

code related to the form field Time Interval Selection, representing one241

of the input of the transient analysis tool provided by the EXTraS science242

gateway. A wide diversity of astrophysical phenomena - from stars to super-243

massive black holes - are characterized by flux and spectral changes on time244

scales, ranging from a fraction of a second to several years. Current observing245

facilities subdivide an observation in a set of images, with a time resolution246

of the order of 1 sec. or shorter. In particular the transient analysis is based247

on the use of two alternative subdivision strategies, i.e. the use of fixed time248

intervals or variable intervals based on the Bayesian blocks algorithm. There-249

fore the user can select only one method and, consequently, the form field250

depends on the parameter named Time Interval Selection Bayesian, be-251

13



Figure 5: The Json-GUI parameters for automatic building of the Domains form field.

cause one and only one of them must have the ”no” value. This is specified252

with the dependencies and isValid properties. Figure 7 shows also the error253

message raised in the GUI when the condition related to the parameters are254

not verified. In Figure 8, an example of Json-GUI Builder interface corre-255

sponding to the Time Interval Selection parameter is shown.256

5. Impact and sustainability257

Json-GUI represents a step towards closing the gap between the high258

level and low level layers of a science gateway, represented respectively by259

the community-specific GUI and the general-purpose middleware plus the260

computational infrastructure. Most of the available framework to develop261

science gateways do not provide a suitable support for the definition of cus-262

14



Figure 6: An example of parameter definition with Json-GUI-Builder.

Figure 7: An example of parameter and consistency check definition with Json-GUI.

tomized GUI [7]. This may be challenging for non-IT communities, and a263

wrong selection of the front-end technology, combined with frequent devel-264

oper turnover, can represent a major issue for the gateway sustainability [3].265

Json-GUI definitely accomplishes this task while adding valuable features.266

15



Figure 8: An example of parameter definition with Json-GUI-Builder.

Actually, Json-GUI allows the dynamic generation of web forms without267

the need to write any line of code. However this does not limit its expressive-268

ness. The possibility to define customized rules on/among parameters in facts269

gives Json-GUI the potential to specify all standard constraints of HTML5270

forms. The possible complexity in the definition of parameters rules are del-271

egated to the Json-GUI-Builder, therefore again, this task does not suppose272

specific programming expertise. By contrast, more expert users could extend273

the tool to address their requirements since Json-GUI is open-source, based274

on widespread technologies and based on modern architectural pattern.275

Furthermore, since user interfaces are dynamically generated starting276

from a JSON Object, it is possible to modify a web form interface on the fly277

by simply modifying the object without the need to re-deploy or restart any278

service. The resulting faster development cycle is very relevant in research279

fields relying on software tools developed (and frequently updated) by the280

community. Of course, such reduction has an impact also in terms of costs,281

thus becoming appealing in a general-purpose context.282

16



Focusing on the added value features, the most valuable are constraints283

and conditions. The consistency check among parameters supports the proper284

configuration of experiments and, performed before the actual execution of285

the models, avoids the waste of CPU time due to execution of a misconfig-286

ured experiment. Also the possibility to draw geographical domains has been287

actually appreciated in the scientific community, and a great e↵ort as been288

dedicated to this point, as outlined in Section 4.289

And last but not least, Json-GUI e↵ectively supports the creation of con-290

figuration files that can be directly ingested by target applications. Vali-291

dated data collected through the generated form interfaces in fact can be292

stored as Json object or text file, e.g. as classical key-value format, but it293

is possible to define further customization to match the expectations of the294

models/applications. A user can develop and override any standard behavior295

of the generation phase: a transformation function can be defined for each296

field as well as for the final configuration file. This file can be used by the297

specific tools in charge for application execution; the actual submission can298

then be performed by the science gateway services, as described in [6].299

As for software sustainability, this represents an open problem that may300

strongly a↵ect the usefulness of new software tools. Json-GUI has the po-301

tentiality of satisfying most of the features requested to define software sus-302

tainability [11]. User interfaces developed using Json-GUI are: 1) easy to303

maintain because no specific programming expertise are required, without304

limiting their expressiveness. Furthermore they support a flexible approach305

to requirements and quick user-feedback and fast refinements; 2) easy to306

evolve because they are based on technologies and an architectural pattern307

that separate logic and presentation layers. This supports the possibility308

to simply implement customized solutions; 3) able to fulfill their aim in a309

17



dynamic environment since it is possible to easy adapt them to changing310

requirements.311

6. Conclusions312

We presented Json-GUI, an AngularJS front-end module which allows to313

quickly create form-based web interfaces. The module supports the export of314

the parameters in structured data files, which are often used for configuring315

complex experiments. The tool demonstrated its e↵ectiveness a) in support-316

ing users for the configuration of scientific experiments, where it is important317

to keep consistency among the inserted values, and b) in supporting non-IT318

experts for the design of such complex interfaces. Due to the successful user319

experience gained with two communities, we plan further e↵ort to improve320

the visibility of tool and to engage other scientific communities.321

References322

[1] G. Andronico, V. Ardizzone, R. Barbera, B. Becker, R. Bruno, A. Ca-323

landucci, D. Carvalho, L. Ciu↵o, M. Fargetta, E. Giorgio, et al., E-324

infrastructures for e-science: a global view, Journal of Grid Computing325

9 (2) (2011) 155–184.326

[2] P. Kacsuk, Science gateways for distributed computing infrastructures,327

Springer International Publishing. doi 10 (2014) 978–3.328

[3] K. A. Lawrence, M. Zentner, N. Wilkins-Diehr, J. A. Wernert, M. Pierce,329

S. Marru, S. Michael, Science gateways today and tomorrow: positive330

perspectives of nearly 5000 members of the research community, Con-331

currency and Computation: Practice and Experience 27 (16) (2015)332

4252–4268.333

18



[4] J. M. Rivero, J. Grigera, G. Rossi, E. R. Luna, F. Montero, M. Gaedke,334

Mockup-driven development: Providing agile support for model-driven335

web engineering, Information and Software Technology 56 (6) (2014)336

670 – 687. doi:https://doi.org/10.1016/j.infsof.2014.01.011.337

URL http://www.sciencedirect.com/science/article/pii/S0950584914000226338

[5] D. D’Agostino, L. Roverelli, G. Zereik, G. L. Rocca, A. D. Luca,339

R. Salvaterra, A. Belfiore, G. Lisini, G. Novara, A. Tiengo, A sci-340

ence gateway for exploring the x-ray transient and variable sky341

using egi federated cloud, Future Generation Computer Systems-342

doi:https://doi.org/10.1016/j.future.2017.12.028.343

URL http://www.sciencedirect.com/science/article/pii/S0167739X17310051344

[6] A. Galizia, L. Roverelli, G. Zereik, E. Danovaro, A. Clematis,345

D. D’Agostino, Using apache airavata and easygateway for the creation346

of complex science gateway front-end, Future Generation Computer347

Systemsdoi:https://doi.org/10.1016/j.future.2017.11.033.348

URL http://www.sciencedirect.com/science/article/pii/S0167739X17310671349

[7] D. D’Agostino, E. Danovaro, A. Clematis, L. Roverelli, G. Zereik,350

A. Galizia, From lesson learned to the refactoring of the drihm science351

gateway for hydro-meteorological research, Journal of Grid Computing352

14 (4) (2016) 575–588.353

[8] C. D’Souza, V. Deufemia, A. Ginige, G. Polese, En-354

abling the generation of web applications from mock-355

ups, Software: Practice and Experience 48 (4) 945–973.356

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2559,357

doi:10.1002/spe.2559.358

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2559359

19



[9] C. Torrecilla-Salinas, J. Sedeño, M. Escalona, M. Mej́ıas, Agile, web360

engineering and capability maturity model integration: A systematic361

literature review., Information and Software Technology 71 (2016) 92 –362

107. doi:https://doi.org/10.1016/j.infsof.2015.11.002.363

URL http://www.sciencedirect.com/science/article/pii/S095058491500186X364

[10] E. Danovaro, L. Roverelli, G. Zereik, A. Galizia, D. DAgostino,365

G. Paschina, A. Quarati, A. Clematis, F. Delogu, E. Fiori, A. Par-366

odi, C. Straube, N. Felde, Q. Harpham, B. Jagers, L. Garrote, L. Dekic,367

M. Ivkovic, O. Caumont, E. Richard, Setting up an hydro-meteo ex-368

periment in minutes: The drihm e-infrastructure for hm research, in:369

2014 IEEE 10th International Conference on e-Science, Vol. 1, 2014, pp.370

47–54. doi:10.1109/eScience.2014.40.371

[11] C. Venters, C. Jay, L. Lau, M. K. Gri�ths, V. Holmes, R. Ward,372

J. Austin, C. E. Dibsdale, J. Xu, Software sustainability: The modern373

tower of babel, in: Proceedings of the Third International Workshop on374

Requirements Engineering for Sustainable Systems co-located with 22nd375

International Conference on Requirements Engineering (RE 2014), Vol.376

1216, RWTH Aachen University, 2014.377

Required Metadata378

Current code version379

20



Nr. Code metadata description Please fill in this column

C1 Current code version 1.1.3

C2 Permanent link to code/repository

used for this code version

https://github.com/portalTS/json-

gui/releases/tag/1.1.3

C3 Legal Code License Apache License 2.0

C4 Code versioning system used git

C5 Software code languages, tools, and

services used

Javascript, HTML, CSS, AngularJS,

Bootstrap

C6 Compilation requirements, operat-

ing environments & dependencies

AngularJS, Bootstrap, JQuery

C7 If available Link to developer docu-

mentation/manual

https://github.com/portalTS/json-

gui/wiki

C8 Support email for questions gabrielezereik@gmail.com

Table .1: Code metadata (mandatory)

21





Json-GUI - a module for the dynamic generation of
form-based web interfaces

Gabriele Zereika,⇤, Luca Roverellia, Antonella Galiziaa,
Emanuele Danovaroa, Andrea Clematisa, Daniele D’Agostinoa

aCNR-Institute of Appled Mathematics and Information Technologies “E. Magenes”,
via De Marini 6, 16149 Genova, Italy

{zereik,roverelli,galizia,danovaro,clematis,dagostino}@ge.imati.cnr.it

Abstract

Json-GUI is an AngularJS front-end module that dynamically generates

form-based web interfaces. Starting from a formal JSON configuration ob-

ject describing a list of inputs, Json-GUI is able to build a form frame in-

terface at runtime, with standard and personalized validation rules, giving

the possibility to define constraints between input fields. Validated data are

stored as Json objects or text files. Json-GUI has been exploited by scien-

tific communities to e↵ectively reduce the development and maintenance of

customized user interfaces in science gateways. Moreover, Json-GUI can also

be employed in the development of general-purpose Web forms.

Keywords: AngularJS, web form, science gateways

1. Motivation and significance1

Computational science represents a broad field where advanced comput-2

ing capabilities are exploited to understand and solve complex, interdisci-3

plinary problems. Present technologies and infrastructures represent impor-4

tant enablers because of their support to large-scale sharing of software,5

⇤
Corresponding author

Preprint submitted to SoftwareX April 10, 2018



data, instruments, computing services, and other domain-specific resources6

[1]. Science gateways are integrated ecosystems that exploit web technologies7

to make the sharing easier and to shield users from low-level technological8

issues. Science gateways are domain oriented and the provided interfaces for9

workflow configuration are mostly based on end user knowledge elicitation.10

Most of the available toolkits and frameworks for the design of science gate-11

ways decouple front-end and back-end with API-based interfaces. With this12

approach, the gateway communities can focus their e↵ort on the design of13

community-specific Graphical User Interfaces (GUI) [2]. However, the devel-14

opment of front-end solutions can be a challenging task for non-IT experts15

[3].16

With this vision in mind, we developed Json-GUI, a front-end library17

composed by a set of reusable AngularJS1 directives, that allows the dy-18

namic generation of full-featured form-based web interfaces for AngularJS19

applications. Starting from a formal JSON2 configuration object, Json-GUI20

simplifies and automatizes the design and the implementation of a standard21

web form. Json-GUI reduces the development time, includes added value22

features as validation and constraints while supporting an agile methodology23

and map based user interfaces. The form produces as output a set of vali-24

dated data stored as JSON objects or text files. In a science gateway context,25

the output text files can be customized to be used as configuration files to26

run models, therefore they can be passed and processed by any back-end27

technology.28

Json-GUI proved its e↵ectiveness in several scientific contexts: it has been29

employed to develop the science gateway of the EXTraS project [4] for the30

1
AngularJS O�cial site, https://angularjs.org

2
http://www.json.org

2



astrophysics community as well as to dress Airavata, a powerful middleware31

supporting the development of solid science gateways [5]. Moreover, Json-32

GUI has been used for the refactoring of a science gateway for hydro-meteo33

community [6]. In these projects, Json-GUI was also exploited to gener-34

ate configuration files that have been used by the specific tools available for35

model execution. Due to its flexibility, Json-GUI can be employed in more36

general contexts, e.g. commercial tools and wherever it is necessary to de-37

fine a form-based web interface. Recently, several tools have been developed38

with di↵erent levels of maturity and completeness: json-editor3, <form.io>4,39

Alpaca5, JotForm6. Most of the cited softwares support many types of pa-40

rameters, as color-picker, and integrate valuable external services, e.g. Pay-41

pal or Braintree payment. Furthermore, all tools implement validation rules42

with di↵erent levels of complexity, from basic to customized validation logic,43

but none of them allows the definition of complete custom constraints cross-44

checking of a set of values coming from di↵erent form fields. Moreover, being45

designed for general purpose applications, such tools lack the possibility to46

define markers and geographical areas on a map.47

2. Software description48

Json-GUI generates at runtime a complete form-based web GUI that a49

user can exploit to insert heterogeneous values. The fields of the form and50

related customized rules are defined by manipulating an array of parameters,51

actually a JSON object. The input data collected through the form are stored52

as a JSON object that can be converted in a text file with an user-defined53

3
http://jeremydorn.com/json-editor

4
form.io

5
www.alpacajs.org

6
www.jotform.com

3



format. Based on agile technologies and mockups [7], the development phase54

converges in few iterations of elicitation of domain specific knowledge and55

integration in user interfaces, i.e. the Web form GUI built through Json-GUI.56

The logical phases of this process are schematised in Figure 1. Starting from

Figure 1: A logical schema of the Json-GUI usage.

57

the interaction with scientists, a first round of requirements are elicited and58

the definition of the JSON object is derived. In this phase, the main actors59

involved are data scientists and Web form users. At this point, Json-GUI60

automatically generates theWeb form corresponding to the JSON object, and61

users/scientists can fill in the values corresponding to the defined fields. Once62

the Web form is compiled, Json-GUI generates the output: a JSON object63

that can be possibly customized and used for the final aim. The generated64

output is a generic Json object, and, thus, it is ready to be processed by65

any middleware, workflow manager or local scheduler. If the form is in a66

4



validation phase, the interaction among scientists and the Json-GUI user67

can continue to elicit more requirements, modify the JSON object and lead68

to the correct Web form. Json-GUI speeds up this phase enabling a run-time69

visualization of the Web form, reducing the duration of iterations for the70

elicitation/integration of derived information.71

Since the definition of the input for the generation of the web form could72

become a bit challenging, we provide a tool to build the corresponding JSON73

object, called Json-GUI-Builder. Through a simple interface, the Builder74

completely supports developers, i.e. Json-GUI users, in the definition of75

parameters and related validation, constraint, condition rules. In Section 3,76

two examples of Json-GUI-Builder graphical user interface are reported.77

Form Fields78

The core of the input object consists in an array of parameters, where79

each element defines (and renders) a single input field of the form. The80

possible input forms are: integer and float respectively generating a field81

for the specification of an integer and a float number; datetime generating82

fields for the specification of a date, including hours and minutes; select83

generating a combo box to select a value among the available ones; text84

generating a plain text input field; domains, generating a geographical map85

where rectangular domains and single markers can be drawn; fileupload86

defining an input box to upload one or more files.87

Json-GUI o↵ers high level features to enrich the form interface by defining:88

• Validation checks - each parameter type has internal format val-89

idation, e.g. float and integer types have a built-in number format90

verification. Moreover, it is possible to add a custom validation for the91

specification of a behavior: e.g. a user may define a datetime input92

valid if it predates a specific date - the 1st January 1970.93

5



• Constraint rules - since parameter values may mutually influence94

their behavior, constraints among di↵erent inputs can be implemented:95

if a time range has to be fixed, it is possible to set the “Start date”96

parameter value valid only if predates the “End Date” parameter value.97

This gives Json-GUI the potential to specify all standard constraints98

of a classic HTML5 form based interface.99

• Conditions - Json-GUI o↵ers the possibility to specify a condition100

(constant or depending on the value itself) to activate/deactivate pa-101

rameters in the input form. This permits enrich the form interface102

with a dynamic behavior when managing, for example, Select and103

Domain parameters. A common example for Select parameter can be104

a form for online payment, Json-GUI allows to present di↵erent form105

fields depending on the value of a payment method field: if the selected106

value is Paypal, the GUI presents fields for Paypal login, with a Credit107

Card value, the GUI presents fields for credit card configuration (e.g.108

the credit card number, CVV, name and surname of the owner), and109

so on. The same level of dynamism is ensured when considering the110

Domain parameter, since the number of geographical domains relies on111

the user interaction and is unknown a-priori: depending on the number112

of domains that a user draws, the GUI can display di↵erent form fields113

and information. For example, in Figure 2 three geographical domains114

are considered, and the related geographical coordinates are displayed115

for each domain.116

As standard behavior implemented by Json-GUI, if one of the rules/checks117

described above is violated, it will be not possible to submit the form and the118

output will not be generated. A custom message can be displayed if specified119

during the definition of the related parameter. Example are reported in the120

6



remaining of the Section and in Figure 6.121

Software Architecture122

Json-GUI presents a two-level software architecture. The higher level is123

represented by the Web form GUI automatically rendered from the JSON124

object, equipped with its overall logic and behavior. This includes the val-125

idation checks among parameters and the collection of each value to build126

the overall output, i.e. couples of parameters and corresponding values pos-127

sibly stored in a text file following an user-defined format. The lower level is128

represented by the AngularJS directives defining each parameter type. This129

level defines the individual behavior of the form fields, including the internal130

validation. Each validation rule can be general-purpose or specific.131

Software Functionalities132

The basic element of the JSON object, input of Json-GUI, is a parameter133

that contains the value and all conditions that apply on it. Each parameter134

of the Json-GUI object has the following structure:135

parameter: {

value: {type: "parameterType"},

displayName: {type: "string"},

dbName: {type: "string"},

isValid: {type: "string"},

parameterType: {type: "enum(’float’, ..., ’fileupload’)"},

parameterCategory: {type: "integer"},

computedResult: {type: "string"},

dependencies: [{type: "string"}, ...],

required: {type: "boolean"},

editable: {type: "boolean"},

description: {type: "string"} }

7



The displayName property defines the name of the parameter to be dis-136

played in the interface, while the dbName is a unique identifier used inter-137

nally. The parameterType defines the type to be specified among the ones138

supported. The parameterCategory property allows to logically group pa-139

rameters in the form, e.g. by appearing in the same tab. The parameter140

can also be marked as required, it is possible to specify if the default value141

can be editable or not. The description property contains a text shown in142

an info box, and can be used as hint to the user. The dependency property143

is an array containing the references to the parameters on which the current144

parameter depends. These are the parameters that shall be used within the145

isValid property. This property is a string containing a Javascript function146

body to possibly define custom validations. The following is an example,147

where also a custom message is set for invalid condition:148

isValid : "if(parameter.value < dependencies[’dep_1’].value) {

isValid.valid= false; isValid.message=’custom error message’;}"

The computedResult property defines a Javascript function meant to per-149

form a final computation in order to (possibly) refine the value before the150

form submission. An example is the following:151

computedResult: "return parameter.value/1000;"

Please note that the computedResult property allows a further customization152

for the value of the single fields; this is extremely useful when a specific format153

is required, e.g. datetime parameters formatted in a di↵erent standard or a154

specific projection for a geographical domain parameter.155

3. Illustrative Examples156

A valuable example is presented by the form field Domain defined to sup-157

port the hydro-meteorological community in the configuration of the Weather158

8



Research and Forecasting, WRF7 Model. The possibility to draw a geograph-159

ical domain by using a graphical map has been actually acknowledged by160

scientific community; for this reason, the Domain input type has been imple-161

mented with the integration of the Google Map JavaScript library. Further-162

more, meteorological models usually enable the definition of more than one163

domains, that can be nested or not: nest is a finer-resolution model run, that164

can be embedded simultaneously within a coarser-resolution (parent) model165

run, or run independently as a separate model forecast. The first case, de-166

picted in Figure 2, represents nested domains. For this reason, the Domain is167

enhanced with the possibility (for the user) to draw up to three rectangles,168

each one representing a geographical domain, and a constraint to permit the169

drawing of nested domains has been defined.

Figure 2: An example of GUI to draw up to three domains exploiting a Google map.

170

Figure 3 presents a sample code related to the hydro-meteorological sci-171

ence gateway [6] and leading to the configuration depicted in Figure 2: the172

7
http://www.wrf-model.org

9



parameter maxDomains limits to three the maximum number of drawable do-173

mains and the parameter onlyNested permits to draw domains only inside a174

single parent domain. In Figure 4, an example of Json-GUI Builder interface175

corresponding to the Domain parameter is shown.176

Figure 3: The Json-GUI parameters for automatic building of the Domains form field.

Another significant example is provided in Figure 5, that shows sample177

code related to the form field Time Interval Selection, representing one178

of the input of the transient analysis tool provided by the EXTraS science179

gateway. A wide diversity of astrophysical phenomena - from stars to super-180

massive black holes - are characterized by flux and spectral changes on time181

scales, ranging from a fraction of a second to several years. Current observing182

facilities subdivide an observation in a set of images, with a time resolution183

of the order of 1 sec. or shorter. In particular the transient analysis is based184

10



Figure 4: An example of parameter definition with Json-GUI-Builder.

Figure 5: An example of parameter and consistency check definition with Json-GUI.

on the use of two alternative subdivision strategies, i.e. the use of fixed time185

intervals or variable intervals based on the Bayesian blocks algorithm. There-186

fore the user can select only one method and, consequently, the form field187

depends on the parameter named Time Interval Selection Bayesian, be-188

11



cause one and only one of them must have the ”no” value. This is specified189

with the dependencies and isValid properties. Figure 5 shows also the error190

message raised in the GUI when the condition related to the parameters are191

not verified. In Figure 6, an example of Json-GUI Builder interface corre-192

sponding to the Time Interval Selection parameter is shown.

Figure 6: An example of parameter definition with Json-GUI-Builder.

193

4. Impact194

Json-GUI represents a step towards closing the gap between the high195

level and low level layers of a science gateway, represented respectively by196

the community-specific GUI and the general-purpose middleware plus the197

computational infrastructure. Most of the available framework to develop198

science gateways do not provide a suitable support for the definition of cus-199

tomized GUI [6]. This may be challenging for non-IT communities, and a200

wrong selection of the front-end technology, combined with frequent devel-201

oper turnover, can represent a major issue for the gateway sustainability [3].202

Json-GUI definitely accomplishes this task while adding valuable features.203

12



Actually, Json-GUI allows the dynamic generation of web forms without204

the need to write any line of code. However this does not limit its expres-205

siveness. The possibility to define customized rules on/among parameters206

in facts gives Json-GUI the potential to specify all standard constraints of207

HTML5 forms. The possible complexity in the definition of parameters rules208

are delegated to the Json-GUI-Builder, therefore again, this task does not209

suppose specific programming expertise.210

Furthermore, since user interfaces are dynamically generated starting211

from a JSON Object, it is possible to modify a web form interface on the fly212

by simply modifying the object without the need to re-deploy or restart any213

service. The resulting faster development cycle is very relevant in research214

fields relying on software tools developed (and frequently updated) by the215

community. Of course, such reduction has an impact also in terms of costs,216

thus becoming appealing in a general-purpose context.217

Focusing on the added value features, the most valuable are constraints218

and conditions. The consistency check among parameters supports the proper219

configuration of experiments and, performed before the actual execution of220

the models, avoids the waste of CPU time due to execution of a misconfig-221

ured experiment. Also the possibility to draw geographical domains has been222

actually appreciated in the scientific community, and a great e↵ort as been223

dedicated to this point, as outlined in Section 3.224

And last but not least, Json-GUI e↵ectively supports the creation of con-225

figuration files that can be directly ingested by target applications. Vali-226

dated data collected through the generated form interfaces in fact can be227

stored as Json object or text file, e.g. as classical key-value format, but it228

is possible to define further customizations to match the expectations of the229

models/applications. A user can develop and override any standard behavior230

13



of the generation phase: a transformation function can be defined for each231

field as well as for the final configuration file. This file can be used by the232

specific tools in charge for application execution; the actual submission can233

then be performed by the science gateway services, as described in [5].234

5. Conclusions235

We presented Json-GUI, an AngularJS front-end module which allows to236

quickly create form-based web interfaces. The module supports the export of237

the parameters in structured data files, which are often used for configuring238

complex experiments. The tool demonstrated its e↵ectiveness a) in support-239

ing users for the configuration of scientific experiments, where it is important240

to keep consistency among the inserted values, and b) in supporting non-IT241

experts for the design of such complex interfaces.242

References243

[1] G. Andronico, V. Ardizzone, R. Barbera, B. Becker, R. Bruno, A. Ca-244

landucci, D. Carvalho, L. Ciu↵o, M. Fargetta, E. Giorgio, et al., E-245

infrastructures for e-science: a global view, Journal of Grid Computing246

9 (2) (2011) 155–184.247

[2] P. Kacsuk, Science gateways for distributed computing infrastructures,248

Springer International Publishing. doi 10 (2014) 978–3.249

[3] K. A. Lawrence, M. Zentner, N. Wilkins-Diehr, J. A. Wernert, M. Pierce,250

S. Marru, S. Michael, Science gateways today and tomorrow: positive per-251

spectives of nearly 5000 members of the research community, Concurrency252

and Computation: Practice and Experience 27 (16) (2015) 4252–4268.253

14



[4] D. D’Agostino, L. Roverelli, G. Zereik, G. La Rocca, A. De Luca, R. Sal-254

vaterra, A. Belfiore, G. Lisini, G. Novara, A. Tiengo, A science gateway255

for exploring the x-ray transient and variable sky using egi federated256

cloud, Future Generation Computer Systems.257

[5] A. Galizia, L. Roverelli, G. Zereik, E. Danovaro, A. Clematis,258

D. D’Agostino, Using apache airavata and easygateway for the creation259

of complex science gateway front-end, Future Generation Computer Sys-260

tems.261

[6] D. D’Agostino, E. Danovaro, A. Clematis, L. Roverelli, G. Zereik, A. Gal-262

izia, From lesson learned to the refactoring of the drihm science gate-263

way for hydro-meteorological research, Journal of Grid Computing 14 (4)264

(2016) 575–588.265

[7] C. D’Souza, V. Deufemia, A. Ginige, G. Polese, Enabling the generation266

of web applications from mockups, Software: Practice and Experience.267

Required Metadata268

Current code version269

15



Nr. Code metadata description Please fill in this column

C1 Current code version 1.1.3

C2 Permanent link to code/repository

used for this code version

https://github.com/portalTS/json-

gui/releases/tag/1.1.3

C3 Legal Code License Apache License 2.0

C4 Code versioning system used git

C5 Software code languages, tools, and

services used

Javascript, HTML, CSS, AngularJS,

Bootstrap

C6 Compilation requirements, operat-

ing environments & dependencies

AngularJS, Bootstrap, JQuery

C7 If available Link to developer docu-

mentation/manual

https://github.com/portalTS/json-

gui/wiki

C8 Support email for questions gabrielezereik@gmail.com

Table .1: Code metadata (mandatory)

16


