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Critical active dynamics is captured by a colored-
noise driven field theory
Claudio Maggi 1,2✉, Nicoletta Gnan 2,3, Matteo Paoluzzi 4, Emanuela Zaccarelli 2,3 & Andrea Crisanti2,3

Active matter may sometimes behave almost indistinguishably from equilibrium matter. This

is particularly evident for some particle-based models and active field-theories close to a

critical point which falls in the Ising universality class. Here we show however that, even

when critical, active particles strongly violate the equilibrium fluctuation-dissipation in the

high-wave-vector and high-frequency regime. Conversely, at larger spatiotemporal scales

the theorem is progressively restored and the critical dynamics is in effective equilibrium. We

develop a field-theoretical description of this scenario employing a space-time correlated

noise field finding that the theory qualitatively captures the numerical results already at the

Gaussian level. Moreover a dynamic renormalization group analysis shows that the correlated

noise does not change the equilibrium critical exponents. Our results demonstrate that a

correlated noise field is a fundamental ingredient to describe critical active matter at the

coarse-grained level.
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Active matter may display striking non-equilibrium phe-
nomena such as the unidirectional propulsion of ratchet
motors driven by active particles1,2 or the spontaneous

accumulation of self-propelled bacteria or colloids interacting
with asymmetric obstacles3. However, there are situations where
the non-equilibrium features of an active system are not imme-
diately evident as, for instance, when self-propelled particles
exhibit a collective motion or self-organization on large scales4

similar to what observed in equilibrium systems. The archetypal
example of this kind of behavior is the Motility-Induced Phase
Separation (MIPS)5. This phenomenon can be microscopically
understood in terms of active particles that move slower in denser
regions, thus triggering an effective attraction that brings the
system close to a spinodal decomposition6–14. Although the MIPS
can be observed even in active particles without attractive inter-
action forces, it shares many similarities with the gas-liquid
coexistence in equilibrium systems. Such analogies can be cap-
tured through effective equilibrium approaches which allow to
reduce the non-equilibrium fluctuating forces to an effective
interaction potential5,15–19. The mapping to the gas-liquid phase
transition suggests that MIPS ends in a critical point. Although
previous numerical results have suggested that, in some active
systems, such a critical point displays non-Ising exponents20,
recent studies have shown that some other active on-lattice and
off-lattice models have a critical point belonging to the Ising
universality class21,22. As a consequence in the latter case,
equilibrium-like φ4 field theories23 should provide the correct
asymptotic description of MIPS around its critical point, at least
at sufficiently large spatial dimensions. However it has been
pointed out that additional terms, which break the time reversal
symmetry, could be included in the standard φ4 theory to capture
the non-equilibrium and non-universal features near the MIPS
critical point. Although these terms turn out to be irrelevant from
the point of view of Renormalization Group (RG) transforma-
tions, they might yield, for example, a non-zero entropy pro-
duction rate24. In this context it is thus crucial to understand if
and how the critical dynamics of an active system becomes
effectively identical to the one of an equilibrium critical system.

One of the most direct and natural way to unveil the non-
equilibrium nature of a system is to look at the response and the
correlation function of the observable of interest. These dyna-
mical functions are related in equilibrium by the Fluctuation
Dissipation Theorem (FDT). Its violation can be thus used to
quantify how far the system is from equilibrium at various spatio-
temporal scales. This approach has been widely employed to
study the properties of several off-equilibrium systems such as
glasses, gels and granulars25–34. Simultaneous measurements of
response and correlation functions have also been used to reveal
non-equilibrium fluctuations in active particle simulations35–40

and in active experimental systems, such as living red-blood cell
membranes41 and suspensions of swimming bacteria probed by
passive tracers 42,43. Despite the deep interest on this topic, to our
knowledge, no previous work has investigated systematically
(over several spatio-temporal scales) the FDT violation in a
microscopic model of active particles close to the critical point.

In the present work we collect and use the information from
the critical correlation and the response of the order parameter to
build a field-theoretical model that is able to faithfully reproduce
the non-universal features of active particles close to the MIPS
critical point. We find that the FDT is strongly violated at high
frequencies and large wave-vectors. In this regime we find that
the frequency-resolved correlator is much lower in amplitude
than the corresponding response. Upon lowering the frequency
and the wave-vector, we find that the response and correlator
tend to coincide, thus satisfying FDT and validating the effective
equilibrium picture. To rationalize this numerical evidence, we

put forward a colored-noise-driven dynamical field theory, that is
able to explain the coarse-grained behavior of the active system.
We find that already at the Gaussian level, our theory predicts a
scale-dependent violation of FDT that is restored on large length-
and time-scales in full agreement with the simulations. We fur-
ther find that the additional parameters describing the noise field
—its spatial correlation length and correlation time—are irrele-
vant under RG transformation and the system belongs to the
Ising universality class. With respect to the active field theories
considered so far, our model captures the non-equilibrium fea-
tures of critical active particles without the addition of non-
integrable contributions to the field dynamics24,44,45. The
overall picture, stemming from simulations and theory, unveils
that a colored noise-field is a fundamental ingredient to describe
near-critical active fluids.

Results
Simulations. We consider a system composed by N self-propelled
active Ornstein-Uhlenbeck particles16,46 (AOUPs) in d= 2. This
model has been intensively studied analytically38,47–51 and, as
discussed in the following, it is the ideal model for characterizing
the perturbed and spontaneous critical dynamics. The equations
of motion of AOUPs read

_ri ¼ μ ðψ i þ FiÞ ð1Þ

τ _ψ i ¼ �ψ i þ ξi ð2Þ
where ri indicates the i-th particle’s position and ψi is the self-
propelling force. Fi=∑j≠ifij represents the force acting on the
particle generated by two body interactions, i.e., f ij ¼ �∇ri

ϕðrijÞ,
with rij= ∣ri− rj∣. The two-body potential is modeled as a steep
inverse power-law ϕ(r)= (r/σ)−12/12 with a cut-off at r= 2.5 σ.
Here σ represents the diameter of the particle and is set to 1. In
Eq. (2)τ is the persistence time of the active force and ξ is a
standard white noise source, i.e. hξαi ðtÞi ¼ 0 and hξαi ðtÞξβj ðsÞi ¼
2ðD=μ2Þ δαβ δij δðt � sÞ, where the greek indices indicate the
Cartesian components. Here D is the diffusivity of the non-
interacting particles and μ is the particles mobility (set to 1 in
simulations). Note that, by taking the limit τ→ 0 at constant D,
AOUPs reduce to passive Brownian particles in equilibrium at
temperature T=D/μ (kB= 1 units are used throughout the
present work).

We have recently located the MIPS critical point for this model
and demonstrated that the resulting static critical exponents are
in agreement with the Ising universality class22. In the present
work we focus our study on the dynamics of the near-critical
state-point with density ρ= 0.95 and active-force parameters
τ=D= 16.5 and by employing various system sizes. Particles are
enclosed in a rectangular box of sides (Lx, Ly= Lx/3) and periodic
boundary conditions apply, as in ref. 22. Since the local density is
the order parameter field of our critical system, we study the real
part of its Fourier transform at time t, i.e. ρqðtÞ ¼ ∑i cosðq � riðtÞÞ,
where the sum runs from i= 1 to i=N and q= 2π(nx/Lx, ny/Ly)
represents the wave-vector (here nx;y 2 Z). The quantity which
statistically characterizes the spontaneous fluctuations of the field
is the auto-correlation function

Cðq; tÞ ¼ 2N�1hρqðt þ sÞ ρqðsÞi
where brackets indicate the average over configurations. Note
that we assume that translational and rotational invariance hold
in our system so that C(q, t) is identical to the correlator
computed from the complex density field, i.e. h~ρqðt þ sÞ~ρ�qðsÞi
with ~ρqðtÞ ¼ ∑je

iq�rjðtÞ.
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The linear response function, associated with C(q, t), is

χðq; tÞ ¼ N�1 ∂hhρqðtÞi
h i

h!0

where h is the amplitude of an external force field fexti which
perturbs the i-th particle dynamics of Eq. (1) as

_ri ¼ μ ðψ i þ Fi þ fexti Þ
and has the form

fexti ðtÞ ¼ �2 hΘðtÞ q sinðq � riðtÞÞ
with Θ(t) being the Heaviside step function.

The definition of χ(q, t) immediately poses two main
difficulties. The first is that computing χ(q, t) at different q-
values requires a different simulation for each q. Secondly, to
ensure that the field amplitude is small enough to avoid non-
linear effects, one should repeat the simulations for various values
of h. Fortunately, applying the field is not required for measuring
χ(q, t) in AOUPs. Indeed, among the “family” of active models
with exponentially correlated noise52, AOUPs have the unique
feature that the exact linear response of any dynamic variable can
be computed in unperturbed simulations as demonstrated in
refs. 39,40. In the present work we employ the method developed
by Szamel40, which generalizes the Malliavin weights method53 to
systems driven by persistent Gaussian noise and efficiently
combines it with parallel (GPU-based) simulations. The key idea
of the method is to derive the appropriate fluctuating variables,
encoding the linear response, by taking the limit of vanishing
external field before taking the statistical average. Details on the
method implementation can be found in Methods. Figure 1
shows the functions of interest C(q, t) and χ(q, t) at q= 2π(6/Lx,
2/Ly) for a system of N= 3750 at (ρ= 0.95, τ=D= 16.5). The
response function χ(q, t) is evaluated both with a small external
field (h= 0.1) and with the field-free method, showing a good
agreement between the two and validating the implementation of
the latter technique.

We report here the results for correlation and response of the
critical active system at different spatio-temporal scales. We focus
on the frequency-resolved correlation and response functions,
which we indicate as C(q, ω) and R(q, ω) respectively, that are
obtained as the time-Fourier transforms C(q, ω)= ∫dt eiωt C(q, t)
and R(q, ω)= i ω ∫dt eiωt χ(q, t). Note that using the factor i ω
yields the frequency-resolved impulsive response function which,
in equilibrium, is related to C(q, ω) by the FDT:

ωCðq;ωÞ ¼ 2TR00ðq;ωÞ
where the double prime indicates the imaginary part. Figure 2a, b
reports the frequency-resolved correlation and response functions
at the near-critical state-point (ρ= 0.95, τ=D= 16.5). To access
a wide range of q-values we employ different system sizes ranging
from N= 3750 to N= 60 × 103, rather than simulating one single
large system, in order to speed-up the simulations at high q-
values. Figure 2a shows the evolution of ω C(q, ω) for different q-
values. We observe that the correlator grows in amplitude and its
peak shifts to lower frequencies upon lowering q, signaling a
considerable slowing-down at large length-scales.

Figure 2b shows that the response 2 T R″(q, ω) has a similar
qualitative behavior. However, by reporting ω C(q, ω) on the
same plot (gray dashed lines Fig. 2b), it is immediately evident
that the response has a much higher amplitude than the
correlator at large q-values, implying a dramatic violation of the
FDT at these length-scales. Moreover, the high-q correlator
decays faster than the response at high ω, further suggesting that
the FDT-violation is also frequency-dependent. Differently, we
observe that at low q-values ω C(q, ω) and 2 T R″(q, ω) become
much closer and almost perfectly coincide for small frequencies.
The differences between ω C and R″ can be evidenced also by
plotting these functions as color maps in the whole (q, ω)-range,
as shown in the insets of Fig. 2a, b. From these plots is evident
that ω C(q, ω) sensibly decreases in amplitude upon increasing q
and ω while R″(q, ω) does not.

To appreciate the different frequency-dependence between
correlation and response, we plot these functions scaled by their
respective maximum in Fig. 2c, d. We find that, while the shape of
ω C(q, ω) significantly changes upon changing q, R″(q, ω) does
not vary and a good collapse is found for the scaled response at all
q-s. This is also evident from the color maps shown in the insets
of Fig. 2c, d. More specifically, in the low-ω regime, both
correlation and response show a good collapse and they both
grow as ω as highlighted by the dashed-dotted power law fits in
Fig. 2c, d. Differently, in the high-ω region, the response decays
slightly slower than ω−1 at all q-s, while the correlator behavior
shows a progressive change from a single ω−3 decay at high q
(purple curve in Fig. 2c) to a two-step decay at intermediate q
(magenta curve), first showing a ω−1 dependence followed by a
crossover to a faster decay. Finally, at very low q (orange curve),
the decay is almost fully captured by a slow (approximately ω−1)
power-law.

In addition, the peak positions of ω C(q, ω) and R″(q, ω),
which can be identified as the system relaxation frequency, also
show some differences. We denote the frequency where the peak
is found as ωmax and we plot it as a function of q for both
functions in Fig. 3a. We observe that the correlator has an ωmax
lower than the one of the response in the high-q regime,
implying that the response relaxes faster than the correlator
at these length scales. However, at small q-s the two
relaxation frequencies almost perfectly coincide, nicely following
a power-law decay as ωmax � qz .

A direct power law fit of the low q-values (orange points in
Fig. 3a corresponding to the largest system with N= 60 × 103)
yields z= 3.78(0.13) for the response and z= 3.80(0.14) for the
correlator (the fit error is reported in brackets), which are

Fig. 1 Perturbed and spontaneous dynamics of active Ornstein-Uhlenbeck
particles. The field-free method allows to extract the correlation function of
the spontaneous fluctuations C(q, t) (blue curve) and the integrated
response function χ(q, t) (orange curve). The latter coincides with the
response obtained by directly applying the field (green curve). The curves
are evaluated at the near-critical state point τ= 16.5 and ρ= 0.95.
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compatible with the critical exponent z= 3.75 of the equilibrium
Ising model with conserved magnetization in d= 254. It is worth
to stress that extending the fitting to larger q-s leads to a value of z
that is lower than the Ising z, but also the quality of the power-law
fit deteriorates since the data-points deviate from a straight line.

The deviation from the power-law behavior observed at large
q-values signals that we are probing the microscopic relaxation
and hence we are far from the scaling regime. To better
understand this deviation, we have also simulated the critical
equilibrium triangular lattice gas22, shown in the inset of Fig. 3a,
which displays a qualitative similar deviation at large q-s. This
suggests that, independently on the fact the the system is in
equilibrium or not, at large enough q-values one is probing the
dynamics at short scales where the microsocpic details play an
important role and the relaxation frequency does not follow a
scaling law.

To conclude this paragraph it is worth noting that, by using the
active field theoretical framework proposed in refs. 24,44,45, one could
in principle evaluate the entropy production rate directly from the
numerical correlation and response exploiting the Harada-Sasa (HS)
relation55. However, our numerical results show that, while ω C(q,
ω) decays relatively fast (ω C(q, ω) ~ω−3) at high frequencies, the

response R″(q, ω) decays much slower (R″(q, ω) ~ω−1). This implies
that the entropy production rate S cannot be computed using the
HS relation for white noise, i.e. as done in ref. 44 by employing the
formula S / R

dq qd�1
R1
�1 dω q�2ω ½ωCðq;ωÞ � 2T R00ðq;ωÞ�,

because this quantity diverges upon performing the frequency
integral (unless one introduces an upper frequency cut-off). Since
this result is a consequence of assuming a white-noise-driven field
theory, it suggests that our data can not be described by white noise
only. Moreover, a similar divergence is obtained when studying one
single harmonic oscillator driven by a colored (Ornstein-Uhlenbeck)
noise, in which one also finds that R″(ω) ~ω−1 and ωC(ω) ~ω−3.
In the colored-noise case the HS relation has to be modified, as
shown in ref. 36, removing the divergence in S. These results suggest
that (i) any field theory, including only white noise, is not sufficient
to capture the behavior observed in numerical simulations and (ii)
that our numerical results could be rationalized in terms of colored
noise. We will return to this point in more detail at the end of the
next paragraph after showing further evidenced in favor of a theory
characterized by colored noise.

From the observations presented above it emerges that the
FDT violation depends on both q and ω. It is therefore desirable
to quantify the FDT violation by a single function, which

Fig. 2 Correlation and response in the critical active system. a Frequency-resolved correlation functions at various q-s (colored curves). Simulating larger
systems gives access to lower wave-vectors (see legend). The inset shows ln½ωCðq;ωÞ� as color map (value increasing from blue to yellow) at all q and ω-s.
The gray area represents the highest and lowest ωmeasured at each q determined by the simulation duration and sampling frequency. The horizontal lines
indicate the q-values selected for the main panel. b Frequency-resolved response function evaluated by the field-free method at the same q-s as in
a (colored curves, same legend as in a). The correlation spectra for the highest and lowest wave-vectors in a are reproduced here as dashed lines to show
that the deviation between response and correlation is more pronounced at high q. The inset is the same of the inset of a for ln½R00ðq;ω�Þ. c Frequency-
resolved correlation functions from a revealing an evident deviation from scaling in the high-q/high-ω regime. The asymptotic behaviors of these functions
are highlighted by power-law fits (straight lines, see legend). The inset is the same of the inset of a for ln½ωC=ðωCÞmax�. d Scaled response functions from
b. Differently from c, a good data-collapse is observed for the response function. The asymptotic behaviors are evidenced by power law fits (straight lines,
same legend as in c). The inset is the same of the inset of (a) for ln½R00=R00

max�.
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we identify as the (normalized) frequency-dependent “effective
temperature”:

Teff ðq;ωÞ ¼
ωCðq;ωÞ

2T R00ðq;ωÞ : ð3Þ

The normalization ensures that, when Teff(q, ω)= 1, the system
can be considered as being in effective equilibrium at the bath
temperature T. We emphasize that here we do not assign any
deeper meaning to the Teff than a convenient “violation factor”.
While it has been shown that, in some glassy systems, the
separation of timescales of aging processes allows one to interpret
Teff as a “thermodynamic” temperature28,56, here we rather use
Eq. (3) only as a suitable measurement of the FDT violation.

To first understand the q-dependence of Teff, we show in
Fig. 3b the quantity Teff ðq;ωmaxÞ that is the Teff evaluated at the
characteristic frequency ωmax of the correlator. We find that the
large-q regime is dominated by a strong violation of the FDT with
a Teff ðq;ωmaxÞ< 1. Upon lowering q, however, Teff ðq;ωmaxÞ
asymptotically tends to unity suggesting that, over large scales,
the system relaxes as if it were in equilibrium at temperature

T. Moreover, to understand the ω-dependence of Teff, we plot
Teff(q, ω) as a function of ω in Fig. 3c. We note that, even at low q,
where the relaxation frequencies of response and correlator
coincide, Teff(q, ω) still displays clear violation of the FDT at high
ω, where the decay of Teff(q, ω) is well captured by a power
law ~ ω−2. This result is consistent with Eq. (3) considering that,
at high frequencies, we have found the approximate decays ω C(q,
ω) ~ ω−3 and R″(q, ω) ~ ω−1 (see Fig. 2c, d). Differently, for ω
smaller than ωmax, Teff(q, ω) remains close to unity and
progressively approaches one as q decreases. The full (q, ω)
dependence of Teff is depicted in the inset of Fig. 3c where we see
Teff decreasing considerably at high (q, ω).

To summarize our numerical findings, we found that the
spontaneous fluctuations (measured by the correlator) are
weaker than those induced by the external field (measured by
the response) at short time- and length-scales. These quantities
allow us to investigate the microscopic model on a coarse-
grained level in terms of the density field having its own non-
equilibrium fluctuating dynamics. The scenario found for these
density relaxation functions can thus be modeled by considering

Fig. 3 Relaxation frequency and effective temperature of the critical active system. a Peak frequency ωmax of the correlator (circles) and of the response
(squares) as a function of q. Error-bars represent the fit error on the peak position. Different colors indicate different systems sizes (see legend). The
straight full line is a power-law fit of the low-q correlator peak-frequencies (i.e. the yellow points for which N= 60 × 103), yielding a critical exponent z very
close to the Ising one (z= 3.75), which is lower than the mean-field value (the best fit with z= 4 is indicated by the dashed line). The inset (same axes as
the main panel) shows the peak frequency for the equilibrium triangular lattice gas. Deviations from the scaling ωmax � q4 are also found at high q-values.
b Effective temperature evaluated at the correlator peak-frequency Teffðq;ωÞmax as a function of q (different colors indicate different system sizes with the
same as in a. Error-bars represent the linear propagation of the error on the peak amplitude. The black curve is a fit of the low-q data by means of the
expression found in the one-loop colored-noise-driven field theory (Eq. (11)). c Frequency resolved effective temperature Teff(q, ω) in the low-q regime
(colored curves), different colors indicate different q-values (see legend). The dashed line represents the power-law ω−2 predicted by the theory for
asymptotic behavior of Teff. The inset shows ln½Teffðq;ωÞ� as color map (value increasing from blue to orange) at all q and ω-s. The gray area represents
the highest and lowest ω measured at each q determined by the simulation duration and sampling frequency. The dashed black lines indicate the of low
q-values range selected for the main panel. d Data in c are scaled according to the theory. Collapsed data are well fitted by the Lorentzian predicted by the
theory (full line). The inset is the same of the inset of c but for the scaled effective temperature appearing in the main panel.
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a coarse-grained noise-field which does not “excite” enough the
density modes at high q and ω and therefore is “colored”.
Differently the external field, inducing the response, can vary on
an arbitrarily high frequency and wavelength equally exciting all
available modes. As discussed in the following paragraph, this
picture can be made rigorous by means of a field-theoretic
approach and describes qualitatively well the simulation data.

Theory. We now show that the results of the previous paragraph
can be rationalized using an appropriate non-equilibrium
relaxation dynamics of a conserved scalar field φ(x, t) at posi-
tion x= (x1,.., xd) in the d-dimensional space at time t. The
dynamics of the field is governed by the equations:

∂tφðx; tÞ ¼ �γ i∇ð Þ2 δHLG

δφðx; tÞ þ ηðx; tÞ ð4Þ

hηðx; tÞ ηðy; t0Þi ¼ � i∇ð Þ2Kζ;T ðjx � yj; jt � t0jÞ ð5Þ
where the parameter γ represents a macroscopic mobility (setting
the time-scale of the relaxation dynamics) and HLG is the stan-
dard φ4 Landau-Ginzburg Hamiltonian

HLG½φ� ¼
Z

ddx
1
2
ð∇φÞ2 þ r

2
φ2 þ u

4!
φ4

� �
: ð6Þ

In Eq. (5) the kernel Kζ ;T ðjx � yj; jt � sjÞ indicates that the noise
η(x, t) is time and space translational invariant and correlated
over a length-scale ζ and over a time-scale T . If we further
assume that the noise relaxes exponentially both in space and in
time then, in the Fourier domain, the noise kernel takes the
Lorentzian form

Kðκ; κ0Þ ¼ ð2πÞdþ1 2 γT

1þ ζ2q2
� �2 þ ω2 T 2

δðκþ κ0Þ ð7Þ

where κ compactly indicates57 the Fourier-vector κ= (q, ω) and
T is the noise strength. As usual we assume that r ≥ 0 (r van-
ishes at the Gaussian critical point) and u > 0. These type of
models have been studied in the past (but only in the case of a
non-conserved order parameter58) as the simplest colored-
noise-driven field-theories. Note that by taking the limit T ! 0
and ζ→ 0 the model defined by Eqs. (4–7) reduces to the
standard version of Model B which describes the relaxational
dynamics of a conserved scalar field in equilibrium at a tem-
perature T57. More details about the field theoretical
framework in presence of the correlated noise field are given in
Supplementary Note 1.

We start by showing that, already at the Gaussian level (u= 0),
the model (4–7) predicts a scenario in qualitative agreement with
the simulation data. To show this, we solve Eqs. (4–7) and find
correlator and response (details are given in the Supplementary
Note 2) as,

G0ðq;ωÞ ¼
1

γq2 q2 þ r
� �� iω

ð8Þ

R0ðq;ωÞ ¼ γ q2 G0ðq;ωÞ ð9Þ

C0ðq;ωÞ ¼
2 γ q2 T G0ð�q;�ωÞG0ðq;ωÞ

1þ ζ2q2
� �2 þ ω2T 2 ð10Þ

where G0(q, ω) is the standard Gaussian response propagator and
the subscript zero refers to the Gaussian theory. To understand
the behavior of response and correlation functions given by Eqs.
(9) and (10) and how it compares with the numerical results of
the previous paragraph, we plot ω C0(q, ω) and 2T R

00
0ðq;ωÞ in

Fig. 4a and b, respectively. Since we are interested in the critical
point we set r= 0. As we will see in the following the peak

frequency of R
00
0ðq;ωÞ and ω C0(q, ω) for low q is given by

ωmax ¼ γ q4, therefore we choose γ such that the ωmax of the
Gaussian colored field-theory matches the one found in particles
simulations at the lowest q (this yields γ ≈ 102). The noise
parameters are set to T ¼ 16:47 and ζ= 5.59 (this particular
choice will be justified in the following).

In Fig. 4a, b we plot ω C0(q, ω) and 2T R
00
0ðq;ωÞ at the same q,

ω-values of the numerical simulations. The theoretical results for
ω C0(q, ω) and 2T R

00
0ðq;ωÞ show a striking similarity to the

numerical results of Fig. 2a, b, i.e. the correlator and the response
are considerably different at large q but they almost coincide at
low q-values. As in simulations we observe some deviations
between ω C0(q, ω) and 2T R

00
0ðq;ωÞ also at low q if ω is high

enough (see dashed lines in Fig. 4b). Furthermore, the shape of
the scaled ω C0(q, ω), shown in Fig. 4c, displays an evolution that
is very similar to the numerical one of Fig. 2c. The correlator
shows a fast (~ω−3) decay at large q, while it shows a slower decay
(~ω−1) at intermediate and low q in full analogy with the
numerical results of Fig. 2c. Also, for the scaled theoretical
response of Fig. 4d, the agreement with the numerical results
(Fig. 2d) is evident as a good data-collapse is obtained.

From Eq. (9) we readily find that ωmax ¼ γ q4 for the response
function, as also shown in Fig. 4e (squares). Differently for ω
C0(q, ω), the function ωmaxðqÞ is more complicated but it can be
approximated at low q as ωmax � γ q4 � 2γ3 T 2 q12. This implies
that relaxation frequency for the correlator is slightly lower than
the one of the response as shown also in Fig. 4e (circles) at large
q-values in analogy with Fig. 3a. Note, however, that the field-
theory cannot capture the deviation from the perfect scaling
ωmax � qz for the response function observed both in numerical
simulations and also in the equilibrium lattice gas (see Fig. 3a and
its inset). Indeed the response (9), for r= 0, represents a truly
scale-free relaxation in which the microscopic details of the
dynamics have been completely washed-out by the coarse-
graining.

By using (9) and (10) in the definition (3) we find the effective
temperature of the Gaussian model (see also the Supplementary
Note 2):

Teff ðq;ωÞ ¼
ωC0ðq;ωÞ
2T R

00
0ðq;ωÞ

¼ 1

ð1þ ζ2q2Þ2 þ ω2 T 2
: ð11Þ

We first notice that the effective temperature (11) contains the
essential information about the noise kernel of Eq. (7). This
implies that, according to this model, the study of Teff allows us
to characterize the noise-field. In analogy with the analysis of
Fig. 3b we report Teff evaluated at the ωmax of the correlator in
Fig. 4f. We find that this has the same tendency, observed in
simulations, to approach unity from below as q decreases. In the
regime where ωmax ¼ γq4, Eq. (11) implies that, at low q-values,

we can approximate Teff ðq;ωmaxÞ � ð1þ ζ2q2Þ�2
. We use this

formula to fit the low-q data of Fig. 3b to estimate the parameter
ζ. We find that the characteristic length-scale of the noise field
ζ= 5.897(0.073). This value is close to the characteristic length of
the velocity correlation studied in ref. 22 for the microscopic
critical active system. This suggests that the coarse-grained noise
field embodies the velocity correlation that develops at the
particle level. We report the Teff dependence on ω at different q-s
in Fig. 4g. Similarly to the numerical results in Fig. 3c, at low ω,
Teff is approximately constant (its value approaches unity upon
lowering q) while Teff decays as ω−2 at high ω. Given the strong
analogies between the theory and the numerical model, we use
Eq. (11) to fit the data Fig. 3c. In this way we estimate T ¼
16:47ð0:25Þ and ζ= 5.592(0.028) (this justifies the choice of
parameters mentioned at the beginning of this paragraph).
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Although we do not attempt here a microscopic derivation of the
parameter T , we note that this is very close to the relaxation time
of the microscopic active force. Finally we note that Eq. (11) also
implies that Teff data for different q and ω should collapse on the

same curve ð1þ T 2ω2Þ�1
when we plot ð1þ ζ2q2Þ2 Teff ðq;ωÞ as a

function of (1+ ζ2 q2) ω (as shown in Fig. 4h). Applying the
same procedure to the data in Fig. 3c we find a reasonably good
data collapse as shown in Fig. 3d in the low-q regime, while some
deviation at very high q is evidenced by the color-map shown in
the inset of Fig. 3d. It is worth to stress that this analysis sets
some strict bounds on the noise-field. For example, the noise
cannot have long-ranged correlations as these would likely
cause deviations from the Ising exponents. Moreover, the
noise must have also a finite correlation length (and not
just a finite correlation time) to reproduce the results of the
microscopic model.

At this point, two questions naturally arise: (i) since the Gaussian
theory is strictly valid only for d above the critical dimension d= dc
(which turns out to be dc= 4 as in equilibrium) why does the Teff of
Eq. (11) fit well the simulation data in d= 2 ? (ii) is the colored-
noise-driven field theory consistent with the critical exponent of the
Ising universality class in d < 4 ? To partially answer these questions
we then study the field theory perturbatively in d= 4− ϵ dimensions
as detailed below.

To show that the Teff(q, ω) given by Eq. (11) also applies below
dc, we calculate the correlator and the response to first order in
perturbation theory (see Supplementary Note 2). By inserting
these functions in the definition (3), we find the same exact result
of Eq. (11). The key steps leading to this conclusion can be
summarized in the following way. We start by writing the Dyson

equation of the form Gðq;ωÞ ¼ G0ðq;ωÞ�1 þ Σðq;ωÞ� ��1
with

Σ(q, ω) being the self-energy23. Then the perturbation theory to

one loop yields

Rðq;ωÞ ¼ R0ðq;ωÞ 1� u
2
R0ðq;ωÞ I ðζ; T ; rÞ

h i
ð12Þ

where the analytical expression of the integral I is provided in
Supplementary Note 2. The corresponding correlation function
reads

Cðq;ωÞ ¼ C0ðq;ωÞ 1� u R0
0ðq;ωÞ Iðζ; T ; rÞ� � ð13Þ

where the prime indicates the real part of R0 The crucial
observation here is that the response (12) depends on the
correlated-noise parameters only via the term I , while the
Lorentzian kernel of the noise factors out in C(q, ω) as in C0(q,
ω). Therefore, Teff(q, ω) turns out to be the same as the one
computed in the Gaussian theory. This suggests that the
expression (11) can be used as a suitable approximation to
model the effective temperature also below the upper critical
dimension.

We now turn to the question regarding the universality of
the colored-noise-driven field theory. A scaling analysis of the
model readily shows that, under the Kadanoff transformation
x→ bx and t→ bzt, we have for the couplings
r0 ¼ r b2; u0 ¼ u b4�d; ζ 0 ¼ ζ b�1, and T 0 ¼ T b�z with z= 4
(see Supplementary Note 3). While it is evident from the
scaling analysis that dc= 4, it is also clear that T and ζ are
irrelevant operators in the RG sense at the Gaussian fixed-
point. This also suggests that the non-Gaussian fixed point is
the usual Wilson-Fisher fixed point. In order to check this, we
employ Wilson’s RG up to one loop (further details are
provided in Supplementary Note 4). With ϵ= 4− d, the calcu-
lation, that does not require any small T and ζ approximation,
brings to the non-Gaussian fixed point r0F:P: ¼ �ϵ CðΛ; ζ 0; T 0Þ=6

Fig. 4 Relaxation spectra and effective temperature in the colored-noise-driven field theory. a Frequency-resolved correlation functions at various q-s
(colored curves, see legend). b Frequency-resolved response function at the same q-s of a (colored curves, same legend as in a). The correlation spectra
for the highest and lowest wave-vectors in a are reproduced here as dashed lines to show that the deviation between response and correlation is stronger
at high q. c Scaled correlation functions from a revealing a deviation from scaling in the high-q/high-ω regime. The asymptotic behaviors of these functions
are highlighted by power-law fits (straight lines, see legend). d Scaled response functions from b. Differently from c a good collapse of the data is observed
for the response and the asymptotic behaviors are evidenced by power law fits (straight lines, same legend as in c). e Peak frequency of the correlator
(circles) and of the response (squares) as a function of q (points are the results of analytic computation therefore they are reported without error-bars).
The straight full line corresponds to the equation ωmax ¼ γ q4 with γ≈ 102 (see text). f Effective temperature evaluated at the correlator peak-frequency as
a function of q. (points are the results of analytic computation therefore they are reported without error-bars). g Frequency-resolved effective temperature
in the low-q regime (colored curves), different colors indicate different q-values (see legend). The black line represents the power-law ω−2 predicted by
theory for the high-ω decay of Teff. h Data from g are scaled according to the theory.
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and u0F:P: ¼ ϵ 16π2 BðΛ; ζ 0; T 0Þ�1
=3. On the critical surface

ζ 0F:P: ¼ T 0
F:P: ¼ 0 and we obtain CðΛ; 0; 0Þ ¼ Λ2, B(Λ, 0,

0)= 1, i. e., the Wilson-Fisher fixed point59.
This study confirms the idea that the universality class of the

colored-noise-driven field theory is the same as the Ising
universality class which is compatible with the observation
reported in the present work and in previous investigations21,22.

Discussion
In this work we have studied numerically and analytically the
dynamical properties of an active system around its MIPS critical
point. We have found that the FDT is strongly violated at short
time and length scales and that effective equilibrium is progres-
sively restored at large spatiotemporal scales.

It is interesting to qualitatively compare this scenario with the
breakdown of the FDT found in other types of non-equilibrium
systems. For example in glassy systems, the FDT violation is
typically stronger at large spatiotemporal scales60, which can be
interpreted as the rapid equilibration of the fast degrees of free-
dom at the bath temperature followed by a gradual re-
equilibration of the slow degrees of freedom (associated with
the collective rearrangements) which “remember” another tem-
perature. Contrarily, in our critical active system the stronger
violation occurs at small length- and time-scales highlighting a
very different type of non-equilibrium behavior.

We have found that the the frequency dependence of the cor-
relator and the response in the particle simulations cannot be
rationalized in terms of a field theory driven by white noise only.
Differently we have shown that the scenario resulting from simu-
lations is captured by a field-theory where the order-parameter
dynamics is driven by a noise field correlated in time and space. The
model directly derives from the numerical observation that the
spontaneous fluctuations appear to be weaker (at high q and ω)
than the ones induced by the external field. In this context the
correlated noise field turns out to be a crucial ingredient to model
the critical dynamics at the coarse-grained level, as the theory—
already in its Gaussian version—qualitatively reproduces most of
the non-equilibrium features observed numerically. In particular the
Gaussian model predicts a scale-dependent effective temperature
Teff(q, ω) that tends to a constant for (q→ 0, ω→ 0) and therefore
equilibrium is restored asymptotically. We remark that this is
consistent with our previous numerical results22 showing that the
Ising critical exponents are observed for large system sizes. In
addition our model also phenomenologically justifies the deviations
from the Ising exponents found in ref. 20 since the spatial corre-
lations of the noise are important on a small scale and may affect
the static critical exponents. In summary the main advantage of our
colored-noise model is that it captures both the FDT-violation at
short scales and the Ising-like critical behavior at large scales
observed in simulations of critical AOUPs.

Regarding the problem of computing the entropy production rate
in critical active particles numerical results show that, for AOUPs,
the standard HS relation cannot be applied. It would thus be
interesting to try to generalize the HS formula to the case of
colored-noise-driven fields, as done before with the HS-type
equation proposed in ref. 36 for one single degree of freedom dri-
ven by colored-noise. From the theoretical side, by using a dynamic
RG approach, we have found that the colored-noise-driven field-
theory falls in the Ising universality class also below the upper
critical dimension. This happens because the noise memory kernel
introduces two operators that are RG irrelevant. It is worth noting
that, in the present work, the analytical computation has been done
using Wilson’s RG scheme up to one loop. A detailed study of our
field theoretical framework, at higher orders in perturbation theory,
is in progress also to understand how the effective temperature may

change its functional form beyond first order. As a further per-
spective one could try to measure correlation and response func-
tions also in the critical active lattice models21,61 and to check if the
current scenario applies also in these cases. Although no field-free
method has been yet developed for measuring the response in these
systems, it could be that their numerical efficiency still allows one to
obtain quickly the response function by directly applying the field.
Moreover, it would be also interesting to explore the consequences
of having a correlated noise field deep in the phase separation
region of the MIPS and to understand, for example, what the role
such a complex noise may have in the formation of interfaces at a
coarse-grained level. It would also be important to investigate if the
colored-noise-driven field theory can predict a micro-phase
separation, for some parameter range, and then probe these
regimes numerically to understand how the critical point may be
destabilized as suggested in previous theoretical studies45.

Finally, it would be worth trying to derive the correlated-noise-
driven field-theory directly from the microscopic dynamics
by using, for example, the Mori-Zwanzig formalism62 or by
applying the Ito’s lemma to the density field as done in ref. 63 for
equilibrium systems.

Methods
Implementation of the Malliavin weights for AOUPs. To evaluate the response
over unperturbed trajectories we follow ref. 40 according to which the response
function of interest is given by

½∂hhρqðtÞi�h!0
¼ hρqðtÞðQðtÞ þ PðtÞÞi þ τ h _ρqðtÞQðtÞi ð14Þ

where the Malliavin variables Q and P can be rewritten in terms of single-particle
variables, i.e. Q=∑iQi and P=∑iPi. The evolution of the Qi and Pi is governed by
the equations:

_Qi ¼ � μ3

D
sinðq � riðtÞÞ q � ξi ð15Þ

_Pi ¼
τμ3

2D
_xi �Hi � ξi ð16Þ

where Hi is the Hessian matrix Hi ¼ �2 q� q cosðq � riðtÞÞ defined by the dyadic
product q⊗ q. To compute the response (14), Eqs. (15) and (16) must be inte-
grated according to the Ito’s rule from t ≥ 0 with initial conditions Q(t ≤ 0)= 0 and
P(t ≤ 0)= 0. This method is particularly convenient first because the white noise ξi
in Eqs. (15) and (16) is the same as the one in the particle’s dynamics (Eqs. (1) and
(2)) and no additional random numbers have to be generated. Secondly Eqs. (15)
and (16) can be efficiently evaluated in parallel for all particles and summed to
compute Eq. (14) only when needed.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The simulation codes which have been use to produce the data of this study are available
from the corresponding author upon reasonable request.
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