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A B S T R A C T

Alzheimer's disease (AD), the most common neurodegenerative disorder world-wide, presents sex-specific dif
ferences in its manifestation and progression, necessitating personalized diagnostic approaches. Current pro
cedures are often costly and invasive, lacking consideration of sex-based differences. This study introduces an 
explainable machine learning (ML) system to predict and differentiate the progression of AD based on sex, using 
non-invasive, easily collectible predictors such as neuropsychological test scores and sociodemographic data, 
enabling its application in every day clinical settings. The ML model uses SHapley Additive explanations (SHAP) 
and Local Interpretable Model-Agnostic Explanations (LIME) to provide clear insights into its decision-making, 
making complex outcomes easier to interpret. The system includes a user-friendly graphical interface designed 
in collaboration with clinicians, supporting its integration into medical practice. The study extends the cohort to 
include healthy and Mild Cognitive Impairment subjects, aiming to support early diagnosis in AD pre-clinical 
stages. The ML system was trained on a large dataset of 2407 subjects from the ADNI open dataset, enhancing 
its robustness and applicability. By focusing on sex-specific features and utilizing longitudinal data, the system 
aims to improve prediction accuracy and early detection of AD, ultimately advancing personalized diagnostic 
and therapeutic approaches. Key findings highlight the significance of the Mini-Mental State Examination, Rey 
Auditory Verbal Learning Test, Logical Memory - Delayed Recall, and educational attainment in AD diagnosis 
and progression, with sex-based disparities. Despite performance metrics based on precision, recall, and 
weighted F1-score demonstrating model efficacy, future research should address the limitations of relying on a 
single dataset.

1. Introduction

Alzheimer's disease (AD) is the most common neurodegenerative 
disorder, marked by a progressive decline in memory, language, and 
cognitive functions [1,2]. This decline impairs daily activities, with 

early and middle stages often featuring depression and apathy and later 
stages showing neurological symptoms like dystonia and tremors [3]. 
The diagnosis of AD typically relies on analyzing the patient's medical 
history, conducting clinical tests, neurological examinations, and 
reviewing brain imaging data. Mild Cognitive Impairment (MCI) 
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currently represents the earliest identifiable stage that may indicate 
potential progression toward AD [4]. However, statistics show that only 
20–40 % of individuals with MCI will transition to AD within three years 
of diagnosis [5,6]. Researchers are actively exploring numerous prom
ising biomarkers for anticipating the onset of AD, encompassing brain 
imaging, proteins in cerebrospinal fluid (CSF), blood and urine tests, and 
genetic risk profiling [7–9]. Accuracy and timing are pivotal consider
ations in these diagnostic methodologies. While literature suggests 
biomarker changes align with AD development, no single biomarker 
adequately forecasts the conversion of MCI patients or healthy in
dividuals to AD with sufficient accuracy and ample lead time before the 
initial appearance of overt AD symptoms. A critical aspect of current 
diagnostic approaches is their reliance on costly tools (such as brain 
imaging) and invasive clinical procedures (like amyloid-PET scans and 
CSF analysis), often necessitating highly specialized personnel [10,11].

Another significant limitation of current diagnostic methods is their 
inadequate consideration of sex differences [12,13]. Despite the 
growing recognition of sex-based differences in AD [14–17], there re
mains a significant gap in the literature regarding the underlying 
mechanisms by which sex influences disease manifestation. Under
standing these mechanisms is critical for developing personalized, sex- 
specific approaches to both diagnosis and treatment. Sex-focused AD 
literature often prioritizes prevalence rates over the analysis of feature 
importance. Nevertheless, underlying factors may still render a feature 
significant in predicting AD, regardless of its prevalence rate. The 
literature often correlates variations in test scores between males and 
females with their respective significance in predicting the disease 
likelihood. However, this implicit correlation is not always accurate. 
Consider a scenario where a low score on a particular test implies an 
increased risk of AD. In males, a low score on this test does not neces
sarily indicate the test is a more important marker for the disease than 
for females. It is plausible that for females, a score slightly higher than 
what males typically achieve still signifies a heightened risk of devel
oping AD. This discrepancy could arise from various factors, such as 
different baseline levels of the feature or complex relationships with 
other unmeasured features. Consequently, the feature assessed by the 
test may hold significant or even heightened importance for females 
despite their scores being comparatively higher than those of males.

Recent studies support the use of machine learning (ML) tools in AD 
research [18–20], noting their potential for personalized medicine and 
better decision-making [21–25]. However, challenges remain in feature 
selection and clinical application due to the reliance on costly, invasive 
methods like brain imaging and CSF biomarkers [7,26–31]. To address 
this, newer ML models focus on non-invasive, easily collected predictors 
such as neuropsychological tests, sociodemographic data, and blood 
biomarkers [19,32,33]. Few ML studies explicitly focus on the sex dif
ferences in AD. These works mainly proposed ML systems able to 
distinguish between healthy and AD patients (classification task) rather 
than AD progression, do not focus on clinical features, seldom use 
explainable ML approaches, and never, to the best of our knowledge, 
propose any clinical-tailored user interface usable in a real-life scenario 
[34–36].

This article proposes an ML-based system for predicting and differ
entiating the progression of AD based on sex, marking a crucial initial 
step toward its utilization by medical professionals. In particular, the 
system includes several critical added values compared to similar ap
proaches proposed in the literature. Firstly, it pioneers the exploration of 
sex-specific features in AD by employing an explainable ML approach 
enhanced by a user interface tailored for clinicians. This approach aims 
to unveil patterns and relationships within the data, illuminating the 
distinct features characterizing AD in females and males. Elucidating the 
sex-specific dimensions of AD will aid in refining symptoms manage
ment and elevating the quality of life for patients. The interdisciplinary 
team behind this article, comprising physicians and researchers actively 
engaged with patients, has played a crucial role in delineating the crit
ical characteristics of this interface and could facilitate its integration 

into medical practice. Transitioning from theoretical research to prac
tical implementation remains a widely discussed yet underexplored area 
in the field [37]. An explainable ML algorithm provides clear, under
standable insights into its decision-making process, helping non-experts 
grasp the rationale behind model decisions and build trust. Utilizing 
SHapley Additive explanations (SHAP) and Local Interpretable Model- 
Agnostic Explanations (LIME) advanced analytical techniques, the 
study clarifies the complex interplay of variables and deepens our un
derstanding of AD multifaceted nature [38].

Secondly, the ML system relies solely on non-invasive and easily 
detectable clinical features, making it well-suited for everyday medical 
settings and particularly relevant for addressing sex-specific aspects of 
AD [39]. Thirdly, the ML system extends the cohort of subjects by 
considering both healthy individuals and MCI patients drawn from the 
ADNI open dataset. Previous studies utilizing ML to explore sex differ
ences primarily concentrated on the MCI population [33]. In this regard, 
our proposed system aims to offer support for early diagnosis in the pre- 
clinical stages, particularly in the absence of MCI, a facet overlooked in 
prior endeavors. Finally, the ML system was trained on a dataset with a 
significantly higher number of subjects, order of thousands, compared to 
similar ML approaches, which usually involved only hundreds. This 
aspect contributes to better performance, increased robustness, and 
adaptability across real-world applications. In addition, the ML system 
employs individuals whose diagnostic follow-up was available other 
than five years after the baseline assessment. Most ML studies focus on 
identifying biomarkers for early diagnosis within three years of baseline, 
using neuroimaging, genetic, and clinical data [40–45]. In particular, 
the system exploits longitudinal data to train two interacting ML models. 
The first one (Model 0) classifies individuals as either healthy or affected 
by AD, and the second one (Model 1) predicts, for healthy patients, the 
onset of AD based on sex within or beyond a five-year timeframe. Lon
gitudinal analysis is essential for gaining a deeper understanding of AD, 
improving prediction accuracy, enabling early detection, facilitating 
individualized risk assessment, and monitoring treatment effectiveness 
over time. Overall, these aspects make the ML system proposed here a 
clinically translatable early diagnostic tool to predict the conversion to 
AD of healthy and MCI subjects based on sex and using a low number of 
cost-effective, fast, and easily collectible predictors.

2. Materials and methods

2.1. ADNI dataset

The paper draws upon data from the Alzheimer's Disease Neuro
imaging Initiative (ADNI) database.1 Launched in 2003 through a 
collaborative effort between public and private sectors, led by Principal 
Investigator Michael W. Weiner, MD, the ADNI project aims to explore 
the integration of serial magnetic resonance imaging (MRI), positron 
emission tomography (PET), additional biological markers, and clinical 
and neuropsychological assessments to comprehensively measure MCI 
and early-stage AD progression. This study exclusively curated and 
utilized longitudinal neurocognitive test results and patients' de
mographic data. Individual patient data were extracted from the ADNI 
database and organized into a .csv file for efficient preprocessing, fol
lowed by processing within a neuroscientifically informed ML pipeline.

2.2. Cohort chosen for the study

11,412 observations were downloaded from September 2005 to 
January 2023, focusing exclusively on neuropsychological test results. 
The sample includes 2407 subjects, categorized as healthy individuals 
(475 females, 353 males), patients with MCI (324 females, 444 males), 
and those diagnosed with AD (345 females, 465 males). On average, 

1 adni.loni.usc.edu

F.M. D'Amore et al.                                                                                                                                                                                                                            Journal of the Neurological Sciences 468 (2025) 123361 

2 

http://adni.loni.usc.edu


each patient contributes around 4.74 observations, with a standard de
viation of approximately 3.12, indicating the extent of data spread 
around the mean and illustrating the variability in observation numbers. 
The highest recorded count in the dataset is 18, signifying the maximum 
frequency of observations for an individual. Visits typically occur 
annually for each patient. Each feature was assigned the corresponding 
name used within the ADNI dataset. Demographic variables such as sex, 
age, and education were aggregated for each patient-record pairing. The 
features were selected to align with those commonly used at the authors' 
affiliated research centers. Below are the features considered to train the 
ML system. 

• Mini-Mental State Examination (MMSE). It is a brief screening test of 
overall cognitive efficiency, including temporal and spatial orienta
tion, immediate and delayed verbal memory, attention, language, 
and copying drawings.

• Rey Auditory Verbal Learning Test: immediate (AVTOT) and delayed 
(AVDEL 30MIN) recall. In this test, which evaluates episodic verbal 
memory for unstructured material, the examiner reads a fifteen-word 
list aloud five times. Immediately following each presentation and 
15 min after the last one, the participant is required to recall as many 
words as possible without a time limit and in any order. The im
mediate recall score consists of the total number of words recalled in 
the five immediate trials (range 0–75), and the delayed score consists 
of the number of words recalled after the 15-min delay (range 0–15).

• Logical Memory - Immediate Recall (LIMMTOTAL) and delayed 
recall (LDELTOTAL). In this test, assessing episodic verbal memory 
for structured material, the examiner reads aloud a brief prose pas
sage that the subject must repeat in as much detail as possible 
immediately and after a delay.

• Digit Span Forward (DSPANFOR) and Backward (DISPANBAC). In 
this test, which examines short-term and working memory for verbal 
material, the examiner reads aloud strings of digits of increasing 
length and the subject is required to repeat it in the same order. The 
span is established as the length of the last list recalled correctly. The 
same procedure is followed for the backward version (DISPANBAC) 
with the difference that, in this case, subjects are requested to 
reproduce the sequence in reversed order.

• Letter Fluency - F (FFLUENCY). In this test, evaluating lexical access 
and executive functions, subjects are required to generate as many 
words as possible that begin with the letter “F” within one minute.

2.3. Data pre-processing

The initial data analysis revealed values that fell outside the expected 
ranges for individual features, necessitating normalization. These 
anomalies likely resulted from errors during data collection or entry, a 
common challenge in data science [46]. Approximately 2.61 % of ob
servations required correction. Some features, like Digital Span Back
ward and Forward, had a high proportion of missing data (around 66 %), 
while others had fewer gaps (less than 5 %). Data imputation methods, 
such as k-Nearest Neighbors and multivariate imputation, were applied 
but offered limited improvement in ML system performance during 
validation. XGBoost built-in capability to handle missing data effectively 
maintained model performance (Section 2.4.1).

The dataset provided patients' age at the first visit but lacked this 
information for follow-up visits. Recalculating patient ages for each 
subsequent visit was necessary to maintain accurate longitudinal data, 
which was crucial for training the ML system. Additionally, model- 
relevant data, such as the number of months between each visit and 
the onset of AD, had to be computed for patients transitioning to AD 
during the observation period. All features were normalized within the 
range [0,1], despite XGBoost not requiring it. This step facilitated the 
integration of missing data imputation into the pipeline. Normalization 
also enhanced system performance and training efficiency, especially 
when feature scales varied significantly.

The time-series problem was reframed as a supervised classification 
task, aiming to classify a patient after each visit. The model compared 
single-visit features with an enhanced version that incorporated data 
from the previous visit (if available), demonstrating improved global 
performance and robustness. A time-series forecasting model with a one- 
step time window was also implemented, incorporating the gap between 
visits (in days) as an input. The model learned to compare the patient's 
current state with their prior state to make predictions. While planned 
feature engineering aimed to enhance future models, the current setup 
required each patient to have at least two visits for classification. This 
transformation simplified analysis, enhanced interpretability, and likely 
improved prediction accuracy. By shifting from time-series analysis to 
classification, the model more effectively handled noisy or irregular 
data. However, this conversion risked information loss by ignoring long- 
term temporal patterns, and the uniform treatment of time gaps between 
visits could have introduced bias. Despite these challenges, classification 
algorithms offered a wider range of adaptable models and techniques, 
allowing for greater flexibility compared to traditional time-series 
methods. The transformation process unfolded as follows:

Step 1: Original Time Series (Patient Visits).
Start with a time series representing the features of patient visits 

recorded at successive time points.
Step 2: Lag Definition (Lag ¼ 1).
Determine the lag, representing the number of previous time steps 

used as input to predict future patient visit counts. Setting the lag to 1 
considers only the immediately preceding observation (patient visit 
count) as input.

Step 3: Generating Input-Output Pairs.
At each time point, construct a pair consisting of input and output. 

The input encompasses the features of patient visits from the previous 
and current time: Features(t-1) and Features(t).

Step 4: Removal of Rows with Missing Values.
Remove the initial rows of the dataset lacking corresponding lagged 

values. This adjustment is necessary considering that, with lag 1, there 
will be an initial row without a lagged value.

Step 5: Dataset Structure.
Ultimately, obtain a structured dataset where each row represents an 

instance with an input (count of patient visits at the current time) and 
the output (count of patient visits at the next time point). This structured 
format facilitates the transformation of the time series problem into a 
classification task.

For each pair of patient observations, defining the expected output 
was essential. The ML system aimed to distinguish between patients 
with Alzheimer's Disease (AD) and healthy individuals (Model 0). 
Among the healthy subjects, it sought to predict whether they would 
develop AD within five years or afterward (Model 1). Three classes were 
established: 0 - AD (converted); 1 - Healthy individuals who will convert 
within five years; and 2 - Healthy individuals who may convert after five 
years, or potentially never. The MCI group was included in the Healthy 
individuals group. The features underwent normalization, which en
hances model portability by ensuring consistent scaling across datasets. 
This reduces sensitivity to feature scale, improves convergence during 
training, standardizes inputs across environments, and enhances 
generalization to new data. Consequently, this process leads to more 
stable and predictable model performance across various scenarios.

The training dataset included 931 feature pairs for class 0, 458 for 
class 1, and 1638 for class 2. Patients were divided into three sets for 
training, validation, and testing, using stratification by sex and months 
to conversion. This same approach was applied during the k-fold vali
dation step. The training set (65 % of subjects) was used to train the ML 
model, while the validation set (15 %) fine-tuned hyperparameters and 
monitored performance during training, helping to prevent overfitting. 
The remaining 20 % formed the test set, used to evaluate the model 
ability to generalize to unseen data. To tackle class imbalance, class 
weights were used to adjust the training algorithm according to the 
varying sizes of each class. The XGBoost model received individual 
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example weights, calculated based on the number of examples in each 
class, to enhance its performance on the imbalanced dataset during 
training.

2.4. Explainable ML system to predict and differentiate AD progression by 
sex

Fig. 1 illustrates the architecture of the explainable ML system 
developed to predict and differentiate AD progression by sex. It com
prises a pipeline consisting of two cascade classifiers: the first (Model 0) 
detects AD at the current observation (time t), while the second (Model 
1), for non-AD observations, predicts AD onset in five years or more 
(potentially never). The ML system input comprises two consecutive 
patient observations of a specific clinical feature (CF): the current (t) and 
the past (t-1). Each model is an optimized XGBoost classifier utilizing a 
bagging boosting algorithm, which trains multiple decision trees and 
then combines the results (refer to Section 2.4.1 for further details). The 
ML system was trained, validated, and tested under two distinct sce
narios: using data from females and using data from males.

To build Model 0 and Model 1, we initially explored several ML al
gorithms, such as RandomForest, XGBoost, and LightGBM, considering 
specific characteristics of the problem and available data. Primary 
considerations included model explainability and the algorithm capacity 
to get good performance. We then conducted a preliminary coarse 
optimization of hyperparameters for each algorithm, followed by per
formance comparison using grid search with stratified k-fold cross- 
validation. Among these algorithms, XGBoost showed the most prom
ise and underwent further hyperparameter tuning.

2.4.1. XGBoost algorithm
XGBoost, short for”eXtreme Gradient Boosting,” is a widely used ML 

algorithm for classification and regression problems. Our study focuses 
on non-invasive and easily collectible clinical features. XGBoost flexi
bility in handling diverse types of input data allows us to effectively 
utilize these non-invasive measures, enhancing the practical applica
bility of our model in routine medical settings. In addition, the algorithm 
has a built-in mechanism to handle missing data, which is common in 
clinical datasets. This feature ensures that it can manage incomplete 
records without significant loss of accuracy, maintaining the integrity 
and robustness of our predictions [47]. XGBoost offers several advan
tages to studying AD progression by sex. Firstly, the algorithm optimizes 
an objective function that includes both a loss function and a regulari
zation term. For our study, we utilize mean squared error as the loss 
function, which helps to minimize prediction errors. The regularization 
component prevents overfitting, ensuring that our model generalizes 
well to new, unseen data. This balance between accuracy and general
izability is essential for developing a reliable clinical tool.

Secondly, it constructs a robust predictive model through tree 
boosting, an ensemble method that combines multiple weak learners, 
typically decision trees. Each tree iteratively trains to correct errors 
made by previous trees, resulting in a highly accurate and refined model. 
This iterative boosting process helps to capture complex patterns and 
relationships within the data, which is crucial for understanding AD 
progression and sex-specific differences.

Thirdly, XGBoost is renowned for its speed and efficiency, thanks to 
its ability to handle large datasets and perform parallel processing. This 
computational efficiency is particularly beneficial given the extensive 
dataset used in our study, which includes thousands of subjects and 
longitudinal data over five years. The algorithm scalability allows us to 
process and analyze this large volume of data quickly and effectively. 
Finally, the ability of XGBoost to provide insights into feature impor
tance aligns well with our goal of creating an explainable ML model. By 
identifying which clinical features most influence AD progression, 
especially across different sexes, we can offer clear and actionable in
sights to clinicians. This interpretability fosters trust and facilitates the 
integration of our ML system into medical practice.

2.4.2. Model optimization and evaluation
All tests were developed in Python using Scikit-learn and Keras as the 

main libraries. Hyperparameter optimization fine-tunes the settings of a 
machine learning model to enhance its performance. These hyper
parameters influence the behavior of the learning algorithm, affecting 
aspects such as model complexity, learning rate, and regularization 
strength. In this case, we use Grid Search, a hyperparameter optimiza
tion technique that systematically explores a predefined set of hyper
parameter values to find the combination that yields the best model 
performance. We searched for canonical hyperparameters such as reg
ularization, learning rate, sample parameters, and tree-related param
eters like maximum depth and minimum child weight. The Grid Search 
algorithm was used to identify the optimal hyperparameters with the 
following parameter grid: subsample: [0.80, 0.82, …, 1.0]; reg_lambda: 
[0.0, 0.5, …, 5.0]; reg_alpha: [0.0, 0.5, …, 5.0]; min_child_weight: [0, 1, …, 
10]; max_depth: [0, 1, …, 10]; learning_rate: [0.0, 0.1, …, 1.0]; gamma: 
[0.0, 0.2, …, 3.0]; early_stopping_rounds: [10, 12, …, 40].

The process involved cross-validation using a validation set, which 
also helped mitigate overfitting by limiting the number of trees. Preci
sion, recall, and the weighted F1-score were the primary evaluation 
metrics. The weighted F1-score calculates the F1-score for each class and 
averages them based on the number of instances per class, addressing 
class imbalance and providing a more accurate assessment. The learning 
rate was identified as the most critical optimization parameter, with a 
reverse correlation, indicating its role in reducing overfitting and sta
bilizing performance. The parameters gamma and max depth also showed 
reverse correlations, reflecting efforts to simplify the model. The pa
rameters gamma, reg_lambda, and reg_alpha were less significant but 
generally showed direct correlations.

Running the entire pipeline in both scenarios (females and males) for 
the tasks performed by Model 0 and Model 1, we obtained four opti
mized models, each with specific hyperparameters. We conducted 
optimization over a subset of hyperparameters within a range found 
iteratively through recursion. For each task in every scenario, we 
compared 200 models, selecting the very best. Table 1 summarizes the 
performance of the Model 0 and Model 1 on the test set in each scenario.

2.4.3. Features importance and statistical analysis
We employed SHAP (SHapley Additive exPlanations) and LIME 

(Local Interpretable Model-Agnostic Explanations) ML techniques to 
assess the importance of features within both Model 0 and Model 1. 
SHAP values offer insights into the model output by attributing the 
contribution of each feature to the prediction. These values, rooted in 
game theory, assign an importance value to each feature, quantifying its 
impact on the model output relative to the average prediction [48]. 
LIME provides local interpretability by approximating complex models 
with simpler ones, offering transparent explanations for individual 
predictions, which can be particularly useful for understanding model 
behavior on specific instances [49].

Table 1 
Performance of the ML system by sex. This table presents the performance of two 
models across different scenarios (females and males), evaluated on the test 
dataset. Model 0: classifies individuals as either healthy or having Alzheimer's 
disease; Model 1: predicts whether Alzheimer's disease will onset within five 
years or after five years; F1-Score: a metric combining precision and recall into a 
single score, weighted by class distribution; Precision (P): the proportion of true 
positive predictions among all positive predictions (true positives divided by the 
sum of true positives and false positives); Recall (R): the ability to correctly 
identify positive cases (true positives divided by the sum of true positives and 
false negatives).

Model 0 Model 1

F1-score P R F1-score P R

Females 0.92 0.92 0.97 0.93 0.92 0.95
Males 0.88 0.89 0.93 0.89 0.92 0.88
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These techniques enhance the interpretation and understanding of 
ML models applied to clinical and biomedical data. They can help 
identify which patient characteristics are most influential in model 
predictions, providing valuable insights for clinical practice. For 
example, in disease prediction models, SHAP values can identify sig
nificant risk factors, potentially aiding in patient risk assessment and 
treatment planning. LIME complements this by offering local inter
pretability, enabling clinicians to understand the rationale behind in
dividual predictions, which can be crucial for personalized patient care.

We used the Mann-Whitney U statistical test to compare SHAP values 
between males (M) and females (F). We set the significance level at 0.05. 
Each test included the computation of 95 % confidence intervals for the 
sampled differences between the datasets, achieved through boot
strapping. Notably, the Mann-Whitney test does not require equal 
sample sizes. One of its assumptions is that the instances or records in 
the dataset are independent. Since our dataset is anonymous, directly 
verifying this assumption is not feasible, and any patient relationships 
remain unknown. Nevertheless, we implemented precautions, such as 
using a single record for each patient and partitioning the data based on 
patient identifiers (ID).

2.5. Software used to develop the explainable ML web interface

The web interface, called EMA (ExplAIn Medical Analysis),2 was 
developed to make the AI techniques used in our ML system explainable 
and accessible for diagnostic purposes. The interface was built using the 
Python programming language and the Dash framework to create 
interactive web applications. Dash is an open-source framework for 
building interactive web applications in Python. Developed by Plotly, 
Dash allows users to create web applications with interactive graphs and 
user controls without writing JavaScript code. Dash is built on Flask, 
Plotly.js, and React, combining the power of these libraries to create 
dynamic and responsive web applications. Dash offers a simple and 
intuitive syntax for designing layouts and components, making it easy 
for users to build complex user interfaces. It is useful for creating data 
visualization applications, enabling the creation of interactive graphs 
and dashboards with just a few lines of code. The Plotly library, included 
in Dash, supports the development of responsive and reactive web ap
plications with interactive and animated graphs, providing an efficient 
and user-friendly experience. Plotly supports several chart types, 
including line charts, bar charts, scatter plots, and more, which are 

highly customizable and interactive. These features make Plotly a 
powerful tool for data visualization, allowing users to explore and 
analyze data intuitively and engagingly. To ensure portability and 
scalability, the application was containerized in a Docker environment. 
This environment includes a NGINX server that handles communication 
encryption for secure data transmission and a Gunicorn WSGI HTTP 
server that efficiently processes web requests, allowing smooth inter
action with the application.

The Results section offers an in-depth look at the structure and 
functionality of the EMA web interface (Section 3.2). It will summarize 
the key findings of the ML analysis, emphasizing the differences in 
critical features for predicting AD onset and progression between sexes. 
The section will also explain how these features influence model pre
dictions and detail the methods used to assess their contributions. 
Furthermore, it will demonstrate how the EMA web interface can pro
vide clinicians with practical insights for predicting AD progression 
based on sex.

3. Results

3.1. Key features to predict and differentiate AD progression in females 
and males

Fig. 2 presents two plots that compare the most important features to 
predict AD onset (Model 0), as determined by SHAP values obtained 
from the ML algorithm, separately for females and males. We can 
interpret the sign of SHAP values concerning the target variable (AD or 
healthy controls): SHAP values less than zero lean toward AD outcome, 
whereas SHAP values greater than zero lean toward a healthy controls 
outcome.

Similarly, Fig. 3 shows two plots that compare the most important 
features to predict AD progression (Model 1), as determined by SHAP 
values obtained from the ML algorithm, separately for females and 
males. In this case, negative SHAP values indicate conversion to AD 
within five years, while positive indicate conversion to AD over five 
years.

For both Figs. 2 and 3, each plot illustrates the SHAP values for the 
features utilized in XGBoost model training across all examples (records) 
sampled from the test set. These values indicate the extent to which a 
feature contributes to altering the XGBoost prediction in comparison to 
the expected value (refer to Section 2.4.1). The SHAP values associated 
with certain features appear to be spread across the x-axis, while those 
linked to other features show less dispersion. In the latter scenario, these 
features not only prove to be significant but also provide a robust 

Fig. 1. ML system architecture. The outputs of the two models are the classes (0,1,2). To increase overall robustness, we trained Model 1 to classify AD patients as 
“AD onset < five years” to minimize the impact of any errors in Model 0 (see the dotted line). Training the second model with more data variability enhances its 
robustness. In this setup, Model 0 might produce an incorrect prediction. When this happens, Model 1 receives this data for further evaluation. Given that an incorrect 
prediction by Model 0 would likely relate to an AD case, we trained Model 1 to recognize these situations. Therefore, during its training phase, Model 1 learns to 
classify AD as ‘AD onset less than five years’. CF: current clinical feature; y: years.

2 https://ctnlab.it/index.php/explain-medical-analysis-ema/
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indication of the likelihood for females or males to belong to either a 
healthy controls/AD group (Model 0) or within/over five years AD onset 
(Model 1) with greater accuracy compared to instances with wide 
dispersion of SHAP values.

Fig. 4 provides a concise representation of the most influential fea
tures identified through SHAP analysis for both females and males. The 
SHAP algorithm assigns importance scores to each feature for every 
individual observation, representing the significance of each feature in 
the models decision-making process. For each model, to combine the 
importance of each feature across two different time points, t-1 and t, we 
computed the average SHAP value for each feature using the recorded 
values from both times, and then we expressed the result in absolute 
terms. Next, we calculated the average of these values across all features. 
Tables 2 and 3 summarize the results of the Mann-Whitney test for 
statistically comparing SHAP values between females and males in both 
models.

In addition to the SHAP approach, which analyzes the importance of 
global features, we also investigated the importance of local features 
using LIME. This local characteristics analysis examines the responses of 
Models 0 and Model 1 to individual data points. For example, Fig. 5
presents the results of this analysis for data from a female subject who is 
defined as healthy by Model 0 and AD onset >5y by Model 1. Figs. 5
show the Model 0 confidence interval of the classification, which is 8 % 
as AD and 92 % as healthy, reflecting the subject's healthy status with 
the importance values of the features for the specific sample, with MMSE 

having an importance of 20 % in the”healthy” classification, followed by 
LDELTOTAL at 12 %. For the Model 1 the confidence interval is 10 % for 
AD onset <5y and 90 % for AD onset >5y; the major contributor is given 
by MMSE with 12 %. The last panel shows the value of the features 
measured in the sample subject. Features highlighted in orange 
contribute to class 1 (healthy), while features highlighted in blue 
contribute to class 0 (AD). A similar figure is generated for Model 1 for 
the two classifications, AD onset <5 years and AD onset >5 years. Ap
pendix A provides additional examples of local explainers provided by 
LIME. Specifically, explainers are reported for male and female subjects 
who represent all classes of Models 0 (healthy and AD) and Model 1 (AD 
onset <5 years and AD onset >5 years).

Fig. 6 illustrates the distribution of LIME analysis results for females 
and males, comparing Model 0 and Model 1. The analysis uses absolute 
values to underline how each feature contributes to the performance of 
the models.

3.2. Explainable ML clinician-tailored user interface

Fig. 7 displays the interface we developed, named EMA (ExplAIn 
Medical Analysis). EMA is a web application based on two explainable 
machine learning models, Model 0 and Model 1, to provide insights into 
AD progression stratified by sex. It comprises five tabs. The first one 
(Description) gives an overview of the interface. The second tab (Model 
Description) presents an overview of the ML system (i.e., Model 0 and 

Fig. 2. SHAP beeswarm plot of Model 0 (AD/healthy) from Females (a) and Males (b) individuals. Negative values indicate AD, while positive values indicate healthy 
controls. Each data point corresponds to a specific record within the test set. The vertical axis represents training features, sorted by their respective importance. 
Feature names remain consistent with their original source from the ADNI dataset. On the horizontal axis, each point signifies an individual record and expresses the 
SHAP value attributed to that particular feature during prediction (AD or healthy controls). The color of each point reflects the true value of the feature in the 
corresponding record used during prediction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)
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Fig. 3. SHAP beeswarm plot of Model 1 (within/over five years onset) from Females (a) and Males (b) individuals. Negative values indicate conversion to AD within 
five years, while positive values indicate conversion over five years. The data point description is the same as Fig. 2.

Fig. 4. Aggregated SHAP values magnitude for Model 0 (a) and Model 1 (b).
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Model 1) and explains its functionality. The subsequent two tabs (SHAP 
Evaluation and LIME Evaluation) illustrate feature importance through 
the SHAP and LIME methodologies, enabling users to grasp the most 
relevant features. Lastly, the section about the dataset under analysis 
(Value Prediction tab) involves employing trained models to predict 
new observations. The depicted screen in the figure first displays a form 
comprising two empty tables corresponding to observations at time t 
and (t-1), along with a section showing the model graphical outputs.

The users can manually enter the data. In this case, they need to 
select the patient sex and each cell of the table to input the values. If the 
users want to compare multiple observations with the same previous 
observation (t-1), they can use the “+” function below the second table, 
which allows them to add new rows. This function enables testing 
different values for the critical features, helping to find those with 
greater weight in predicting the onset of the disease and its temporal 

definition.
The “Load/Generate Data” button supports data insertion and 

loading processes. When clicked, a modal window opens, allowing the 
users to load existing data or generate new data. Data loading involves 
selecting the desired diagnosis category: patient, onset within five years, 
or onset after five years. The users could insert values from a randomly 
selected record in the ADNI dataset corresponding to the chosen diag
nosis category.

The second section of the modal window provides the option to 
generate random values. The user can specify the number of records to 
add and which attributes to modify. It is important to note that the 
ability to change specific features depends on existing observations in 
the table and requires activating the function to retain previously 
inserted values before adding new ones.

After entering the values, the “Predict” button applies the ML system 

Table 2 
Mann-Whitney U test comparing SHAP value distributions between females (F) and males (M) in Model 0 for the most important features. A p < 0.05 (bold) indicates a 
statistically significant difference. h1 represents the alternative hypothesis.

mean std. median p

Feature F M F M F h1 M

MMSE 1.118 0.952 0.543 0.431 1.343 > 1.113 0.000
AVTOT 0.267 0.192 0.128 0.124 0.273 > 0.188 0.000
AVDEL30MIN 0.195 0.098 0.105 0.044 0.186 > 0.104 0.000
LDELTOTAL 0.256 0.209 0.129 0.107 0.275 > 0.219 0.000

Table 3 
Mann-Whitney U test comparing SHAP value distributions between females (F) and males (M) in Model 1 for the most important features. A p < 0.05 (bold) indicates a 
statistically significant difference. h1 represents the alternative hypothesis.

mean std. median p

Feature F M F M F h1 M

MMSE 0.530 0.649 0.242 0.298 0.486 < 0.693 0.000
AVTOT 0.163 0.223 0.080 0.092 0.165 < 0.239 0.000
AVDEL30MIN 0.338 0.207 0.114 0.098 0.332 > 0.203 0.000
LDELTOTAL 0.508 0.441 0.265 0.246 0.579 > 0.440 0.000
EDUCAT 0.334 0.220 0.186 0.180 0.309 > 0.181 0.000

Fig. 5. LIME explainer for a female subject in Model 0 and Model 1.
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to all rows of the observation table (t) relative to the preceding obser
vation (t-1). Following this, graphs are generated for both stages of the 
pipeline if the initial prediction classifies as “healthy”; otherwise, the 
interface shows only the first graph.

Fig. 8 illustrates the predictions for various records, displaying the 
two analysis steps of the model. Specifically, the image on the right 
showcases all the output classifications of the model pipeline. By 
selecting a marker using the mouse, the users can identify the record that 

generated the prediction and experiment with modifying different fea
tures. In this way, the users could assess the significance of individual 
features relative to the observation at the previous time (t-1). The users 
could interact with the graphs, rotating and zooming to better visualize 
and analyze different records. Additionally, the users could adjust the 
characteristics on the three axes (x, y, z) to observe the marker move
ment compared to the previous reference (t-1).

Fig. 6. Distribution of LIME analysis results.

Fig. 7. The EMA web user interface. The figure illustrates the section relating to the prediction and observation of the model results (Value Prediction tab).
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4. Discussion

4.1. Model results framed within the literature on sex difference in AD

Recent evidence suggests crucial sex-based differences in AD mani
festation and progression, highlighting the necessity for personalized, 
sex-specific approaches to both diagnosis and treatment [12–14]. Bio
logical explanations for sex differences in AD manifestation include 
hormonal influences, genetic susceptibility, and differences in brain 
structure and function [15,16]. For example, sex hormones and sex 
chromosomes interact with various disease mechanisms during aging, 
encompassing inflammation, metabolism, and autophagy, leading to 
unique characteristics in disease progression between males and females 
[16]. Multimodal brain imaging indicates sex differences in the devel
opment of the AD endophenotype, suggesting that the preclinical AD 
phase is early in the female aging process and coincides with the 
endocrine transition of perimenopause. These data indicate that the 
optimal window of opportunity for therapeutic intervention in females 
is early in the endocrine aging process [17].

Several works support the use of ML tools in AD research and clinical 
practice to provide predictions with a certain degree of confidence, 
pivoting on information about the specific person [18–20]. These 
personalized medicine approaches support improved and more effective 
decision making by researchers and clinicians [21–24]. Although some 
of these models could reach high levels of accuracy [25], consistency 
regarding what combination of features is more informative to predict 
AD as well as the translation into clinical practice are still lacking. One 
possible reason for this is that current ML algorithms still generally rely 
on expensive and invasive predictors, such as brain imaging or CSF 
biomarkers [7,23,24,26–31]. As such, these studies only serve the pur
pose of proof of concept but do not represent a viable substitute of 
standard approaches with which they share application complexities 
and economic costs. To overcome these limitations, recent works pro
posed ML algorithms elaborating only non-invasive and easy-to-collect 

predictors (e.g., neuropsychological test scores, sociodemographic and 
clinical features, blood biomarkers) [19,32,33].

Few ML studies focus on the sex differences in AD [34–36]. Klin
genberg and colleagues compare the performance of a not-explainable 
ML system in classifying healthy versus AD individuals stratified by 
sex. They do not conduct a feature importance analysis [35]. Sarica and 
colleagues confirm that females had a higher risk of progressing to de
mentia. Influential variables across the sexes included brain glucose 
metabolism and CSF biomarkers. Hippocampus volume is critical only to 
predict male conversion, while verbal memory and executive function 
are key contributors only in predicting female conversion [36]. The ML 
analysis proposed by Cieri and colleagues shows that sex differences in 
memory and cortical thickness can play a key role in the different 
vulnerability and progression of AD in females compared to males [34]. 
Despite some efforts utilizing ML to investigate sex differences in AD, 
there remains a significant gap in research addressing the most impor
tant clinical features for characterizing AD in females and males.

The primary focus of these studies lies in ML systems capable of 
discerning between healthy individuals and those with AD, primarily for 
classification purposes. There is a notable absence of emphasis on 
tracking AD progression or incorporating clinical features into the 
models. Furthermore, these works have utilized explainable ML ap
proaches sparingly, and there have been no attempts to craft a clinical- 
focused user interface that enhances the models interpretability for real- 
world implementation.

The explainable ML system proposed here addresses these points. It 
only relies on non-invasive and readily detectable clinical features to 
support its use in everyday medical settings. Non-invasive tests are more 
accessible, comfortable, and safer than invasive procedures, reducing 
patient anxiety and increasing participation in screenings. They are cost- 
effective, quicker, and require less preparation, enhancing efficiency in 
medical settings. In this way, they are also well-suited for application in 
countries with limited infrastructure and developing economies. More
over, non-invasive features enable ongoing monitoring of health status 

Fig. 8. The figure shows the result of the random generation of 50 records in which it is possible to observe the prediction of the models used.
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and response to treatment, aiding in the management of chronic con
ditions and early detection of complications, particularly significant in 
addressing sex-specific aspects of AD [39].

In addition, the ML system proposed here incorporates a user- 
friendly graphical interface co-designed with end-users, particularly 
clinicians, streamlining its assimilation into medical routines. In this 
way, the ML system forecasts and distinguishes AD progression based on 
sex, representing a pivotal initial stride toward its adoption by health
care practitioners. In the literature discussing sex differences in AD, the 
focus often lies on variations in test scores, neglecting to explicitly delve 
into an analysis of feature importance as discussed in this article. Here, 
we highlight the importance of differentiating between scoring dispar
ities and the significance of features in predicting AD. For example, if 
research indicates that a particular feature consistently yields higher 
scores in females compared to males, and higher scores are associated 
with a greater likelihood of developing AD. This finding does not 
diminish the feature importance in predicting AD in males; it merely 
underscores its lower prevalence within this group. Various factors may 
hide the importance of a feature for a particular sex. For example, the 
necessity for different scoring scales may arise for males and females 
undertaking the same test. Our explainable ML analysis through Model 
0 and Model 1 allows us to clarify these underlying factors. This insight 
holds significant promise for personalized medicine, indicating the ne
cessity to tailor data collection methods for males and females to opti
mize diagnostic and therapeutic outcomes.

Fig. 2 shows that the most important feature to detect non-AD vs AD 
subjects (Model 0) is MMSE for both sexes. The ML analysis also iden
tifies the tests to evaluate verbal memory and learning capacity (AVTOT, 
AVDEL30MIN) and logical memory (LDELTOTAL), as highly significant 
to detect not-AD vs AD subjects in both females and males, albeit with 
some differences (see Fig. 2). For all these features the SHAP value for 
females is significantly higher than that for males (Fig. 4a and Table 2), 
suggesting that they may be more predictive factors in determining the 
risk of AD in females than in males. MMSE is still an important feature 
for sex-based AD onset prediction within or over five years (Model 1) for 
both sexes (Fig. 3), even though in this case the SHAP value for males is 
significantly higher than that for females (Fig. 4b and Table 3), sug
gesting that the MMSE may be a more predictive factor in males than in 
females. By contrast, for this latter group, the most important feature to 
predict AD onset within or over five years is LDELTOTAL (Fig. 3). 
AVTOT is more important for males compared to females. The LIME 
analysis largely confirms these results for MMSE and LDELTOTAL 
(Fig. 6).

These results agree with literature showing that females have lower 
MMSE scores (indicating worse global cognitive status) than males at 
initial diagnosis of AD (after adjustment for age and education level) 
[13,50]. Previous studies have also observed that females had signifi
cantly worse cognitive function scores than males in the areas of 
episodic memory, semantic memory, working memory, perceptual 
speed, and visuospatial ability [51–54]. However, these findings do not 
diminish the importance of MMSE in predicting AD in males; they 
merely underscore its higher prevalence in females. The existing liter
ature does not explicitly investigate whether MMSE significantly con
tributes to detect not-AD vs AD subjects when stratified by sex. The 
Model 0 addresses this gap. It suggests that MMSE is a significant pre
dictor also for males (Fig. 2), despite the lower SHAP values compared to 
females (Fig. 4a and Table 2). In addition, Model 1 suggests that the 
MMSE could be an important predictor for monitoring AD progression in 
males.

Finally, the ML analysis suggests that for both females and males, the 
level of education (EDUCAT) is important to detect not-AD vs AD sub
jects (Model 0) or AD onset within or over five years (Model 1), but with 
quite differences. It is more important for females in the Model 1 (Fig. 4). 
These findings align with existing literature indicating historical con
straints on females access to cognitive reserve, thereby heightening their 
risk of AD, albeit mitigated by educational attainment. Indeed, the 

elevated incidence of AD in females could be due to disparities in reserve 
levels between genders [55–57]. More specifically, previous studies 
have shown that females with lower and moderate levels of education, 
compared to those with a higher level of education, had 4.3 (95 % 
confidence interval: 1.5, 11.9) and 2.6 (95 % confidence interval: 1.0, 
7.1) times higher risks for AD, respectively [58]. Nevertheless, alter
native studies have suggested that females continue to experience a 
heightened risk of AD even after adjusting for educational level, calling 
into question the notion that lower educational attainment alone ex
plains the increased risk of AD in females [59]. Consequently, further 
research is warranted to elucidate this matter.

4.2. Integrating sex-specific diagnostic approaches into AD clinical 
practice

The model results reveal that certain features, such as MMSE and 
memory tests, have differing predictive power for AD in males and fe
males. Specifically, the higher SHAP values for females suggest that 
MMSE may be a stronger indicator of AD risk for women, while it re
mains significant for long-term monitoring in men. Similarly, tests like 
AVTOT and LDELTOTAL show varying levels of importance, under
scoring the need for sex-specific memory assessments to accurately 
evaluate AD risk. Additionally, the differential impact of education on 
AD risk between sexes highlights the necessity for tailored risk assess
ments and treatment plans based on educational background.

These results underline notable distinctions in AD detection and 
progression between males and females, emphasizing the requirement 
for customized diagnostic strategies. Raising awareness among health
care professionals about these differences is the first step to incorpo
rating sex-specific diagnostic approaches for AD into current clinical 
practice, enhancing patient care, and advancing personalized medicine 
in neurology.

Updating diagnostic guidelines is another crucial step. Collaborating 
with medical associations to incorporate sex-specific neuropsychologi
cal tests into these guidelines ensures that healthcare providers have 
clear directions on which assessments to prioritize and how to interpret 
their results in the context of sex differences. Tailoring treatment plans 
based on sex-specific neuropsychological test results is essential for 
optimizing patient care. For instance, if a test indicates a higher risk or 
different progression pattern in males, treatment plans could be adjusted 
accordingly.

Enhancing patient education is also crucial. Educating patients about 
the significance of sex-specific diagnostic tools empowers them to 
advocate for comprehensive assessments and personalized care based on 
their characteristics, ultimately improving their treatment outcomes. 
Furthermore, fostering ongoing research and development in this area is 
vital. Exploring and refining sex-specific neuropsychological tests and 
biomarkers for AD will contribute to improving diagnostic accuracy and 
informing tailored treatment approaches in the future.

4.3. The importance of a “clinician-in-the-loop” approach

Although numerous explainable ML algorithms exist in the medical 
field, few efforts extend beyond foundational research to create software 
and graphical interfaces that help healthcare professionals utilize the 
algorithm results [60]. ML researchers often rely on their intuition to 
determine what makes a good explanation of the ML analysis results, 
neglecting validation from medical professionals [61]. To maximize 
stakeholder benefit, the concurrent involvement of medical and AI ex
perts is imperative in refining interpretability within the explainable ML 
framework. Effectively, research in this domain inadequately adheres to 
the “human-in-the-loop” principle, which needs explicit consideration of 
end-users, such as healthcare professionals in our scenario, for evalu
ating and developing explainable systems. This approach represents a 
significant limitation in current research endeavors [62].

This article tackles this issue, leveraging the expertise of healthcare 
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professionals, particularly neurologists, working in medical and clinical 
domains with AD patients. Their insights were pivotal in interpreting 
model results within the AD context and designing the EMA web inter
face to enhance model explainability, catering to experts in AD. The 
EMA application enhances explainability by providing graphical tools to 
evaluate feature importance using results from SHAP and LIME algo
rithms. It also displays predictions based on patients' data for AD 
detection and progression through an interactive 3D graph. The 3D 
visualization allows end users to observe deviations from initial values 
and assess the patients' status regarding AD detection and progression 
through chromatic identification. EMA web application marks a first 
step toward the support of AI systems in precision medicine, enabling 
clinicians to investigate the “black box” and assist in data interpretation. 
Subsequent efforts will involve disseminating this software among 
medical staff and soliciting feedback to refine user experience and 
explainability.

5. Conclusions

This article proposes an explainable ML system designed to predict 
and differentiate the progression of AD by sex. As discussed in Sections 1
and 4, the ML system demonstrates several critical advantages over 
existing methods. It represents a significant advancement toward 
personalized diagnostic approaches, with a user-friendly graphical 
interface developed in collaboration with clinicians to ensure its prac
tical application in medical settings. By focusing on sex-specific features 
and utilizing non-invasive clinical data, the ML system offers a novel and 
accessible approach to understanding AD heterogeneity.

Despite the promising results, there are several limitations that 
warrant further investigation and refinement to enhance the robustness 
and generalizability of the proposed ML system. Below are these limi
tations, along with future actions to address each one. Firstly, the dataset 
used to train the ML models predominantly comprises individuals from 
North America. Future research should include cohorts from diverse 
geographical regions, such as Europe and Asia. This broader represen
tation is essential for enhancing generalizability and ensuring that ML 
algorithms are reliable and applicable in various real-world contexts. 
Additionally, the dataset potential over-representation of some de
mographics and limited diversity in lifestyle factors could impact the 
generalizability of our results. Future work should address this by 
incorporating comorbidities and lifestyle factors from the ADNI dataset 
as covariates to control for their effects. Balancing confounders across 
groups will also be crucial for reducing bias and improving the robust
ness of the analysis.

Secondly, further steps will be necessary to make the ML system and 
the related EMA web application usable in clinical practice. It will be 
required to ensure compliance with stringent regulatory standards for AI 
in medicine, such as those set by the Food and Drug Administration in 
the United States and the European Medicines Agency in Europe. These 
regulations require thorough validation of the AI system safety, efficacy, 
and reliability. Additionally, comprehensive clinical trials will be 
essential to evaluate the system performance in real-world settings. 
These trials should include diverse patient populations and assess the 
system impact on diagnostic accuracy, treatment outcomes, and overall 
patient care. Collaboration with medical professionals and regulatory 

bodies throughout this process will be crucial to address ethical and 
practical considerations, ultimately ensuring the system integration into 
standard medical practice. Additionally, although the current EMA 
implementation incorporated informal clinician feedback, a more 
structured evaluation of the system's explainability is needed. Con
ducting formal user studies and feedback sessions with clinicians from 
various centers would help assess the clarity and usefulness of the ex
planations provided, highlighting areas for improvement.

Thirdly, while SHAP and LIME effectively assess feature importance, 
they may introduce biases due to model-specific assumptions and local 
approximations. For example, LIME can misinterpret complex in
teractions if the local linearity assumption fails. Future model im
provements should include cross-verifying findings with alternative 
feature importance procedures, such as permutation or tree-based 
measures. These approaches can provide complementary insights and 
help mitigate any biases introduced by SHAP and LIME.

Finally, the current system does not integrate with software capable 
of autonomously collecting and organizing data from neuropsycholog
ical tests directly from patients. Leveraging digital devices like tablets to 
collect and manage data can streamline the pipeline of data collection 
plus data analysis [63]. This integration will facilitate preventive fast 
screening during routine healthcare visits and improve the overall effi
ciency of the diagnostic process.

CRediT authorship contribution statement

Fabio Massimo D'Amore: Writing – review & editing, Visualization, 
Validation, Software, Methodology, Investigation, Formal analysis, Data 
curation. Marco Moscatelli: Writing – review & editing, Visualization, 
Validation, Software, Methodology, Investigation, Formal analysis. 
Antonio Malvaso: Writing – review & editing, Visualization, Valida
tion, Methodology, Data curation. Fabrizia D'Antonio: Visualization, 
Resources, Methodology, Data curation. Marta Rodini: Visualization, 
Resources, Methodology, Data curation. Massimiliano Panigutti: Re
sources, Data curation. Pierandrea Mirino: Resources, Data curation. 
Giovanni Augusto Carlesimo: Writing – review & editing, Visualiza
tion, Validation, Methodology. Cecilia Guariglia: Writing – review & 
editing, Visualization, Validation, Methodology. Daniele Caligiore: 
Writing – review & editing, Writing – original draft, Visualization, 
Validation, Supervision, Project administration, Methodology, Formal 
analysis, Conceptualization.

Declaration of competing interest

On behalf of all authors, the corresponding author states that there is 
no conflict of interest.

Acknowledgements

GAC research activities are supported by #NEXTGENERATIONEU 
(NGEU) and funded by the Ministry of University and Research (MUR), 
National Recovery and Resilience Plan (NRRP), project MNESYS 
(PE0000006) a multiscale integrated approach to the study of the ner
vous system in health and disease (DN. 1553 11.10.2022).

Appendix A. Additional Examples of Local Explainers

This section presents supplementary examples of local explainers generated using LIME. These examples are provided for male and female subjects 
across all classes of Models 0 (comprising healthy individuals and those with AD) and Model 1 (distinguishing between individuals with AD onset <5 
years and those with AD onset >5 years). Fig. A.9 illustrates the results of the analysis for data from a female subject classified as AD by Model 0. The 
figure displays the Model 0 confidence intervals for classification, showing 89 % confidence as AD and 11 % as healthy, indicating the subject's healthy 
status. The figure also depicts the importance values of features specific to the sample, where MMSE is most important with 30 % importance in the 
“AD” classification, followed by LDELTOTAL at 9 %. Fig. A.10 presents the results of the LIME analysis for data from a female subject who is defined as 
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healthy by Model 0. The figure shows the Model 0 confidence interval of the classification, which is 8 % as AD and 92 % as healthy, reflecting the 
subject's healthy status with the importance values of the feature for the specific sample, with MMSE having an importance of 20 % in the “Healthy” 
classification, followed by LDELTOTAL at 12 %.

Fig. A.9. LIME explainer for female subject for Model 0 and AD classification.
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Fig. A.10. LIME explainer for female subject for Model 0 and Healthy classification.

Fig. A.11 shows the Model 1 confidence interval of the classification, which is 78 % as AD onset <5 years and 22 % as AD onset >5 years, reflecting 
the subject's healthy status with the importance values of the features for the specific sample, with LDELTOTAL having an importance of 24 % in 
the”AD onset <5 years” classification, followed by AVTOT at 11 %. Similarly, according to Fig. A.12 the Model 1 assigns a 90 % probability to the 
onset of AD occurring more than 5 years in the future and a 10 % probability to the onset occurring in less than 5 years. The importance values of the 
features for this specific sample are also shown, with the MMSE score contributing 12 % to the “AD onset >5 years” classification, followed by the 
AVTOT score at 3 %. 
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Fig. A.11. LIME explainer for female subject for Model 1 and AD onset <5y classification.

Fig. A.12. LIME explainer for female subject for Model 1 and AD onset >5y classification.

Fig. A.13 shows the analysis results for data from a male subject classified as having AD by Model 0. The figure displays Model 0 confidence 
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intervals for classification, indicating a 96 % confidence level for AD and 4 % for healthy, thereby identifying the subject's condition as AD. Addi
tionally, the figure highlights the importance values of features specific to the sample, with MMSE being the most significant at 24 % in the “AD” 
classification, followed by LDELTOTAL at 20 %. Fig. A.14 presents the results of the LIME analysis for data from a male subject classified as healthy by 
Model 0. The figure shows Model 0 confidence intervals for the classification, indicating 14 % confidence as AD and 86 % as healthy, thereby reflecting 
the subject's healthy status. Additionally, the figure highlights the importance values of features for the specific sample, with LDELTOTAL having an 
importance of 22 % in the “Healthy” classification, followed by AVTOT at 10 %.

Fig. A.15 presents the results of the LIME analysis for data from a male subject classified as AD onset <5 years by Model 1. The figure shows the 
Model 1 confidence interval of the classification, which is 85 % as AD onset <5 years and 15 % as AD onset >5 years, reflecting the subject's healthy 
status with the importance values of the features for the specific sample, with MMSE having an importance of 8 % in the “AD onset <5 years” 
classification, followed by LDELTOTAL at 5 %. Fig. A.16 presents the results of the LIME analysis for data from a male subject classified as having an 
AD onset >5 years by Model 1. The figure shows Model 1 confidence intervals for the classification, indicating 99 % confidence for AD onset less than 
5 years and 1 % for AD onset more than 5 years. This reflects the subject's status with the importance values of the features for the specific sample, with 
AVTOT having an importance of 3 % in the “AD onset <5 years” classification, followed by LIMMTOTAL at 3 %.

Fig. A.13. LIME explainer for male subject for Model 0 and AD classi.
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Fig. A.14. LIME explainer for male subject for Model 0 and Healthy classification.
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Fig. A.15. LIME explainer for male subject for Model 1 and AD onset <5y classification.

Fig. A.16. LIME explainer for male subject for Model 1 and AD onset >5y classification.
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