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Abstract

The primary structures of two salivary proline-rich peptides (PRP-SP-A, M 6156.0 amu and PRP-SP-B, M 1905.0 amu), f&s pig (
scrofg were determined. The PRP-SP-B peptide, 21 residues long, overlaps with a sequence repeated 43 times in three deposited cDN/
coding for PRP proteins cloned from porcine parotid glands (Swiss-Prot cQ8&6JdC9 Q95JD1, Q95JDQ. PRP-SP-A peptide, 56 amino
acid residues long, overlaps with the N-terminus repea@338JC%ndQ95JD1and it is phosphorylated at Ser 12 and 14. The two peptides
were found both in whole saliva and in granules from pig parotid glands. The biosynthesis of the two peptides implies the action of a proteinase
responsible for PrpAla cleavage in the pre-secretory process.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction structural similarities and differences observed with respect
to human salivary PRPs could offer some novel information
Mammal saliva contains different specific classes of onthe role of these proteins in the maintaining of oral health.
peptides and proteins. Among them, the class of peptidesThis study describes the characterization of two salivary
with abnormal elevated presence of proline residues (salivaryproline-rich peptides from pigSus scrofa The principal in-
proline-rich proteins; PRPs) usually represents more thanformation on structures and genetic relationships of salivary
50% of the total whole salivary protein complg}. Primary proline-rich peptides derives from human sal¥g,12,24]
structures of some human PRPs have been characterize®n the basis of the ionogenic properties, salivary PRPs can
[15,20], while those of other mammals are quite incomplete. be subdivided into acidic (A-PRPs), basic (B-PRPs) and
For this reason, a comparative study is developing in our labo- basic glycosylated (G-PRPs) proline-rich proteins. Acidic
ratories addressed towards a more complete characterizatio®RPs seem contribute to maintain calcium homeostasis
of the protein complex of mammal saliva, in the hope that in the oral cavity[8], glycosylated PRPs act as lubricants
[14], whereas the role of basic PRPs is not well understood.
* Corresponding author. Tel.: +39 06 3053598; fax: +39 06 3053598. Probably one of their functions is to bind tannins, preventing
E-mail addressmassimo.castagnola@icrm.cnr.it (M. Castagnola). their toxic effects at the gastro-intestinal trficT]. Recently,
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it has been hypothesized that a not identified basic PRP exert9.5 mM, HEPES buffer 10 mM, pH of 7.4. In order to remove

a protection against HIV infectivity in the oral cavity,22]. fibrous connective tissue and insoluble particles, homogenate

The number of human PRPs is not completely defined. More was filtered through four layers of clean cheesecloth in the

than 11 human basic-PRPs and more than five acidic PRPhomogenizing medium and then centrifuged at 5Qpfor

isoforms have been identified5,20] They derive from 30. The soluble solution was submitted to further centrifu-

different genes where homologous and unequal crossing-gation at 2500« g for 30' and the pellet corresponding to the

over produce frequent length polymorphisiiisl6,18,19] crude fraction of secretory granules was suspended im700

Multiple PRPs may originate from the same gene throughout of 0.2% formic acid. Solution was centrifuged at 80@ for

allelic variations and differential splicing. However, post- 30 and CHC} was added to the solution (1:1 v/v). The sepa-

translational cleavages from larger precursors have beenrated agueous phase was newly centrifuged and the solution

recognized as a widespread motif in their biosynthesis, aswas stored at-20°C.

well as for that one of other salivary peptides. Therefore, it

is important to establish either the cleavage occurs during 2.4. Apparatus

granule maturation or it is generated after salivary secretion

by exogenous proteinases present in the oral cavity. In this  The HPLC apparatus was a System Gold HPLC, Beckman

aim, the peptides characterized in whole pig saliva were alsoCoulter (Fullerton, CA, USA) using a LIChrosorb RP-18

searched with success in granule preparations of pig parotid.column (7um, 4.6 mmx 250 mm). The HPLC-ESI-MS
apparatus was a ThermoFinnigan (San Jose, CA, USA) Sur-
veyor HPLC connectedyba T splitter to a PDA diode-array

2. Materials and methods detector to Xcalibur LCQ deca-Xplus mass spectrometer.
The mass spectrometer was equipped with an electrospray
2.1. Reagents ion (ESI) source. The resolution of the mass spectrometer

was in the range of 0.4 FWHM. The chromatographic column
All general chemicals and reagents were of analytical was a Vydac (Hesperia, CA, USA)g@&olumn, with 5um
grade and were purchased from Farmitalia-Carlo Erba (Mi- particle diameter (column dimension 150 nxn2.1 mm).
lan, Italy), Merck (Darmastad, Germany), or Sigma—Aldrich Peptide sequence was performed with a Procise 610A Protein
(St. Louis, MI, USA). Sequencer (Applied Biosystems, Foster City, CA, USA).

2.2. Sample collection and treatment 2.5. Protein isolation and identification

Salivary samples were collected from four anesthetized  Preparative separations were performed in a linear gra-
pigs (Landrace bred). Pigs were all females, about 90-daysdient HPLC system, using a LiChrosorb RP-18uf,
old, mean weight about 30 kg. Pre-anesthesia was performedt.6 mmx 250 mm) column. Eluting peptides (eluant A: 0.2%
without atropine by intramuscular administration of ketamine TFA aqueous solution; eluant B: acetonitrile/solution A 80:20
(15mg/kg) and diazepam (0.1 mg/kg). Anesthesia induction v/v) were monitored at 214 nm wavelength. The single col-
was performed by inhalation mask with a gaseous mixture of lected peaks were further analyzed by HPLC-ESI-IT mass
Oolisoflurane 98/2 (v/v%). Saliva secretion was stimulated spectrometry. The following solutions were utilized for the
by sublingual direct administration of pilocarpine and car- reversed-phase chromatography: (eluant A) 0.056% aque-
bachol (2 and 4 mg/kg, respectively; powder). Whole saliva ous TFA and (eluant B) 0.050% TFA in acetonitrile—water
was collected by means of plastic aspirators. It was immedi- 80/20 (v/v). The applied gradient was linear from 0 to 55%
ately diluted (1:1 v/v) with HO/TFA 0.2% in ice bath and  in 40min, at a flow rate of 0.30 ml/min. A T splitter ad-
centrifuged at 10,008 g for 5 min. The precipitate was dis-  dressed a flow-rate of about 0.20 ml/min towards the diode
charged and the acidic solution was either used immediatelyarray detector and a flow-rate of about 0.10 ml/min towards
for chromatographic separations or stored-&0°C. The the ESI source. The diode array detector was usually set in
acidic treatment of salivary samples caused the precipitationthe wavelength range of 214-276 nm. Mass spectra were col-
of high molecular weight proteins and partly inhibited sali- lected every 3ms in the positive ion mode. MS spray volt-
vary proteinases, preserving sample protein composition forage was 4.50 kV and the capillary temperature was°220
the following analysis. Experiments were carried out in ac- De-convolution of averaged mass spectra were automatically
cordance with the EU (86/609/EEC) ethical guidelines. performed by software provided with the instrument.

2.3. Salivary gland granules preparation 2.6. Trypsin digestion and analysis of tryptic digest by
HPLC-ESI MS-MS
Granules were isolated according to the procedure of Silva
and colleague$23] with some modifications. The glands The lyophilized peptide (1 mg) was dissolved in 1.9 ml of
were homogenized by Ultra-Turrax T25 as a 5% (w/v) sus- distilled water and the pH was adjusted to 8.8 by addition
pension in the following medium: sucrose 340 mM, EDTA of NaOH 0.1 M. Ammonium hydrogencarbonate (4.0 mg)
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and 50ul of trypsin dissolved in HCI 1 mM (2 mg/ml) were Automated sequencing of PRP-SP-A peptide (M
added. Cleavage was performed for 6 h at@7The digest 6156.04+ 0.8 amu) allowed to obtain primary structure infor-
was brought to pH 2.0 by HCI 1 M, lyophilized and stored mation up to the 27th residue with two undetermined residues
at —20° C. The HPLC-ESI MS-MS analysis of the tryptic at 12 and 14 positions:

digest was performed according to the procedure described
in the previous section. e RSPFFDLEDA NXNXAEKFLR PPPGGGRP..

A similarity search carried out with BLAST algorithm
2.7. Data analysis software at the Expasy-EMBL/GenBank database, revealed
that the sequence of PRP-SP-B and the partial sequence of
Mass values obtained by HPLC-ESI-MS analyses were PRP-SP-A overlap several regions of three different cDNA
compared with averaged theoretical values available atsequences@95JD1 Q95JDQ Q95JC9 corresponding to
SWISS-PROT (fttp//www.expasy.ch and EMBL (ttp// bigger hypothetical basic PRP proteins. PRP-SP-B sequence
www.embl-heidelberg.dalata bank. Tandem-MS data were match with 43 contiguous and non-contiguous repeats of the
compared with the theoretical fragmentation patterns ob- three cDNA sequences (11 @B5JD1 10 onQ95JDQ 22
tainable by Protein Prospectont{p//prospector.ucsf.edu/  onQ95JC9.
program. The molecular mass of PRP-SP-A peptide exactly cor-
responds to the N-terminal fragment 1-56 of the two
cDNA sequencef95JD1and Q95JDQ assuming that the
3. Results two undetermined residues at 12 and 14 positions (ser-
ines from the cDNA sequence) were phosphorylated (M av.
Salivary samples of pig were collected from anesthetized €xp=6156.G: 0.8 amu; M av. theor. 6156.4 amu). On this
animals treated with carbachol and pilocarpine as stimulantsbasis, the complete sequence of PRP-SP-A is the following:

1 11 21 31 41 51
RSPFFDLEDA NSNSAEKFLR PPPGGGPPRP PPPEESQGEG HQKRPRPPGD GPEQGP

in order to increase saliva secretion. A study on the effect whereSsymbol corresponds to phosphorylated serines. This
of stimulants was not performed. Pig saliva was mixed as sequence was confirmed after tryptic digestion of purified
obtained in a 1:1 (v/v) ratio with an agueous solution of TFA PRP-SP-A peptide and MS-MS experimerfsg( 3). The
0.2% (v/v) (see SectioR). The precipitate was discharged three fragments were: 1-17 which mass value corresponds to
and the acidic soluble solution was submitted to RP-HPLC the diphosphorylated peptide[+ H]*=2088.0+ 0.5 amu),
analysis at 214 nm and RP-HPLC-ESI-M3(. 1a) showing 18-43 (M+H]"=2747.0+ 0.6 amu) and  44-56

a complex chromatographic profile. Even though the profiles ([M + H]*=1360.5+ 0.4 amu).

obtained analyzing whole salivary samples obtained from In order to verify that PRP-SP-A and PRP-SP-B pep-
different animals was roughly similar, minor differences tides were not originated by post-secretion proteolysis in pig
were often observed, probably linked either to individual saliva, granule preparations from pig parotid glands, where
variations or to different gland contributions. One of analyzed. The HPLC-ESI-MS profile of the protein content
the components of the salivary protein complex, having of parotid granules showed the presence of the two peptides
M (average) 6156.@0.8amu was named PRP-SP-A in a quantity comparable to that observed in whole saliva
(Proline-Rich-Peptide-Salivary-Pig-A) and another one (Fig. 4). The peptide sequences will appear in the Swiss-Prot
having M (average) 19048 0.4 amu was named PRP-SP-B and TrEMBL knowledgebase under the accession numbers
(Fig. 1b). The mass values were obtained by de-convolution P85405 and P84506 for PRP-SP-A and PRP-SP-B, respec-
of different ESI spectra recorded in the central part of the tively.

chromatographic peaks. PRP-SP-A and PRP-SP-B were

collected by preparative HPLC separation and submitted,

without further purification, to automated Edman degra- 4. Discussion

dation. The sequence of PRP-SP-B was the following:

The results of this study suggest that PRP-SP-A and PRP-
SP-B peptides are generated from higher molecular weight
precursors before or during the maturation of granules of

The sequence determined exactly matches the experi-parotid glands. The three cDNA sequences of the precursor
mental mass determined by ESI-MS experiments (M exp. protein, deposited in Swiss-Prot data bank, account for
1904.0+ 0.4 amu; M theor. 1904.2 amu). The sequence of proteins of 550Q95JDJ), 495 Q95JDQ and 660 Q95JC9
PRP-SP-B peptide was confirmed by MS-MS experiments amino acid residues, respectively. Interestingly, in the three
(Fig. 2. cDNA sequences multiple repeats could be responsible for

1 11 21
APPGARPPPG PPPPGPPPPG
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Fig. 1. Panel a: ionic current and UV (214 and 276 nm) chromatograms of pig saliva preparation. Panel b: ESI-IT mass signals of PRP-SP-A and PRP-SP-B
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Fig. 2. MS/MS experiment of PRP-SP-B peptide performed on the doubled charged ionmwithvaue of 953.0. The analysis of the fragmentation pattern
allowed recognize the y and b (mono- and di-charged) fragmentation series.

the generation of the smaller peptides: the two N-terminal those reported for human basic 1B-6 PRI®428( and for
1-56 sequences of tg95JD1andQ95JD0for PRP-SP-A human basic glycosylated PO peptid&l(0163. Similarly
peptide and 43 contiguous and non-contiguous repeatsto the cleavage of human acidic PRP-1 (150 residues), which
for PRP-SP-B peptideTable 1 reports the overlapping generates an acidic peptide named PRP-3 (106 residues)
of PRP-SP-A and PRP-SP-B with tl(@g95JD0cDNA, in and a basic PC peptide (43 residues), the PRP-SP-A peptide
example. is greater and acidic (pl th. 4.6 non-phosphorylated; 4.0
Moreover, MS experiments showed that the PRP-SP-A diphosphorylated) and PRP-SP-B peptide is smaller and
peptide is diphosphorylated at Ser 12 and Ser 14. Itis worth- basic (pl th. 9.1). The acidic residues of PRP-SP-A are
while to outline that NetPhos 2 program provided high scores more confined towards the N-terminus of the sequence and
(0.95) for Ser 2 and 36 residues as potential sites of phosphothe basic ones towards the C-terminus, even though they
rylation, whereas the two effectively phosphorylated residues are more dispersed in the sequence with respect to human
(Ser 12 and Ser 14) obtained alower score (about 0.45). Simi-PRP-3. SP-A peptide shares part of its sequence with acidic
lar result was observed in human PRPs, which are phosphory-proline-rich proteins, in particular from human and rat
lated by uncommon kinases that do not recognize the consen{Table 2, and the similarity pertains to the portion between
sus sequences used in the algorithm of NetPhos 2. Recentlyacidic and basic portion of the proteins.
Brunati and colleaguef®] reported that in human salivary PRP-SP-B peptide shares its sequence WWi#preolus
PRP-1 the phosphorylation is probably under the action of a capreolus and Mus musculusparotid salivary proline-
Golgi-CK-like kinase able to recognize either SXE/S(phos) rich proteins, having a common sequence GPPP and its
or SXQXX(D/E) consensus sequences. A similar pig ki- palindromic analogues, as shownTable 3 It should be
nase could be responsible for the phosphorylation both atnoticed the similarity betweeCapreolus capreolusand
Ser 12 and 14. Ser 14 should be the first serine phosphory-pig sequences. On the contrary, the pig sequence has a
lated according to the flanking SXE sequence and Ser 12 thelow similarity with other known mammals PRPs. The most
second one, according to the SXS(phos) flanking consensugelevant difference with respect to the known sequence
sequence generated by the first phosphorylation. of human is the complete lacking of glutamine residues
The process of PRP-SP-A and PRP-SP-B production between the polyproline repeats. Because glutamine residues
in some way resembles the pathway observed for humancould play a relevant role in polyphenol binding activities,
PRPs. These proteins are generated by a complex pathways demonstrated for human and rats PR} the structural
involving the cleavage of the primary transcription products difference of PRP-SP-B suggests a different role of this pep-
by a proteolytic proces§l9]. Interestingly, the identical tide in pig oral cavity. Its structural features suggest consider
leader sequence of 16 amino residues of the three cDNAthis compound as a possible member of the “proline-rich
(MLPILLSVAL LALSSA) is quite coincident with the peptide” family, whose components show interesting anti-
leader sequence of human acidic PRP8281Q and with microbial activity[1]. This defensive role would justify the
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Fig. 3. (a) TIC and (b) selected ion monitoring (SIM) profiles of a MS-ion trap experiment performed for the search of tryptic fragments of PRP-SP-A. SIM
profiles show the sum of ionic current relative to: (c) di- and tri-charged ions of 2088.0 (1-17 fragment); (d) di- and tri-charged ions of 274Traga®HAt};
(e) mono- and di-charged ions of 1360.5 (44-56 fragment), respectively.

presence of multiple repeats in the cDNA sequences and thekexin-subtilisin family which recognize a RXXRconsensus
high production of this peptide in the pig oral cavity. sequencéll]. The cleavage is often followed by the remov-
However, the cleavages observed for the generationing ofthe C-terminal Arg, by the action of a carboxypeptidase
of many human salivary peptides/proteins suggested probably pertaining to CPZ familj21]. The cleavage pro-
the widespread action of a proprotein convertase of the cessrecognized inthe secretion of human salivary peptides is
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Table 1
Transcript 0fQ95JD0OcDNA deposited parotid pig sequences and identification of the portions coding PRP-SP-A and PRP-SP-B peptides

1 gagaacaacc gcagcacttc ctccaag-atg-ctg-ccg-atc-ctg-ctc-tca-gtg-gcc-ttg-ctg-
———————————————————————————— Met Leu Pro Ile Leu Leu Ser Val Ala Leu Leu
61 gcc-ctg-agc-tca-gct-cgg-agc-ccg-ttt-ttt-gat-tta-gag-gat-gca-aac-tca-aac-
Ala Leu Ser Ser Ala Arg Ser Pro Phe Phe Asp Leu Glu Asp Ala Asn Ser Asn
115 tcc-gect-gag-aag-ttt-ctg-aga-cca-cct-cct-gga-ggc-gga—-cca-ccc-agg-ccc-cct-
Ser Ala Glu Lys Phe Leu Arg Pro Pro Pro Gly Gly Gly Pro Pro Arg Pro Pro
169 cct-cct-gag-gaa-agc-caa-ggt-gag-gga-cat-cag-aag-aga-cca-cga-cca-cct-ggt-
Pro Pro Glu Glu Ser Gln Gly Glu Gly His Gln Lys Arg Pro Arg Pro Pro Gly

223 gac-gga-ccg-gag-cag-gga-cca-gcc-cca-cct-ggt-gcc-aga-ccc-ccg-ccc-gga-ccg-
Asp Gly Pro Glu Gln Gly Pro¢Ala Pro Pro Gly Ala Arg Pro Pro Pro Gly Pro
277 ccec-cca-ccc-gga-ccg-cecg-cca-ccc-gga—-ccc-gecc-cca—-cct-ggt-gecc-aga-ccc-ceg-

Pro Pro Pro Gly Pro Pro Pro Pro Gly Pro¢Ala Pro Pro Gly Ala Arg Pro Pro
331 ccc-gga-ccg-ccc-cca-ccc-gga-cca-ccg-cca-ccc-gga-cca-gecc—-cca-cct-ggt-gee-
Pro Gly Pro Pro Pro Pro Gly Pro Pro Pro Pro Gly Pro¢Ala Pro Pro Gly Ala
385 aga-cca-ccg-ccc-gga-ccg-ccc-cca-ccc-gga—-cca-ccc-cca-ccg-gga-cca-gec-cca-
Arg Pro Pro Pro Gly Pro Pro Pro Pro Gly Pro Pro Pro Pro Gly Pro¢Ala Pro
439 cct-ggt-gcc-aga-ccc-ccg-ccc-gga-cca-ccg-cca-ccc-get-ggec-gga-ctc-cag-cag-
Pro Gly Ala Arg Pro Pro Pro Gly Pro Pro Pro Pro Ala Gly Gly Leu Gln Gln
493 gga-cca-gcc-cca-tcc-cat-gtt-gga-cca-aag-aag-aaa-cca-cct-cca-ccc-ggt-gcc-
Gly Pro Ala Pro Ser His Val Gly Pro Lys Lys Lys Pro Pro Pro Pro Gly Ala
547 gga-cac-cct-ccc-aga-cca-ccc-cca-cct-gect-aac-gaa-tcc-cag-ccg-gga-ccc-aga-
Gly His Pro Pro Arg Pro Pro Pro Pro Ala Asn Glu Ser Gln Pro Gly Pro Arg
601 cct-ccg-ccg-gga-cca-cca-tca-cca-ccc-gct-aac-gat-agc-cag-gag-gga-tca-ccc-
Pro Pro Pro Gly Pro Pro Ser Pro Pro Ala Asn Asp Ser Gln Glu Gly Ser Pro
655 cca-tcc-gct-gac-gga-ccc-cag-caa-gga-cca-gcc-cca-tcc-ggt-gac-aaa-cca-aag-
Pro Ser Ala Asp Gly Pro GIn Gln Gly Pro Ala Pro Ser Gly Asp Lys Pro Lys

709 aag-aaa-cca-ccc-cca-ccc-gct-ggec-cca-ccc-cca-cca-ccc-cca-ccc-cca-ccc—gga-
Lys Lys Pro Pro Pro Pro Ala Gly Pro Pro Pro Pro Pro Pro Pro Pro Pro Gly
763 cca-ccg-cct-cct-gga-cca-gcc-cca-cct-ggc-gecc-aga-ccc-ccg-ccc-gga-ccg-ccc—

Pro Pro Pro Pro Gly Proe¢Ala Pro Pro Gly Ala Arg Pro Pro Pro Gly Pro Pro
817 cca-ccc-gga-ccg-ccg-cca-ccc-gga-cca-gcc-cca-cct-ggc-gecc-aga-ccc-ccg-ccc—
Pro Pro Gly Pro Pro Pro Pro Gly Proé¢Ala Pro Pro Gly Ala Arg Pro Pro Pro
871 ggt-ccg-ccc-cca-ccc-gga-ccg-ccg-cca-ccc-gga-cca—-gecc-cca-cat-ggec-gec-aga-
Gly Pro Pro Pro Pro Gly Pro Pro Pro Pro Gly Pro¢Ala Pro His Gly Ala Arg
925 ccc-ccg-ccc-ggt-ccg-ccc-cca-ccc-gga-ccg-ccg-cca-ccc-gga-cca-gecc-cca-cct-
Pro Pro Pro Gly Pro Pro Pro Pro Gly Pro Pro Pro Pro Gly Pro¢Ala Pro Pro
979 ggc-gcc-aga-ccc-ccg-ccg-gga-cct-cca-cca-cca-gga—-cca-ccg-cac-ccg-gac—-cca-—
Gly Ala Arg Pro Pro Pro Gly Pro Pro Pro Pro Gly Pro Pro Pro Pro Gly Pro+¢
1033 gcc-cca-cct-ggc-gecc-aga-ccc-ccg-ccc-gga-ccg-ccc-cca-cecc-gga-ccg-ccg-cca-
Ala Pro Pro Gly Ala Arg Pro Pro Pro Gly Pro Pro Pro Pro Gly Pro Pro Pro
1087 ccc-gga-cca-gcc-cca-cct-ggt-gecc-aga-ccc-ccg-ccg-gga-cct-cca-cca-cca—-gga-
Pro Gly Pro¢Ala Pro Pro Gly Ala Arg Pro Pro Pro Gly Pro Pro Pro Pro Gly
1141 cca-ccg-cca-ccc-gga-cca—-gcc-cca-cct-ggt-gcc-aga-ccc-ccg-ccc—-gga—ccg-ccce—
Pro Pro Pro Pro Gly ProVAla Pro Pro Gly Ala Arg Pro Pro Pro Gly Pro Pro
1195 cca-ccc-gga-ccg-ccg-cca-ccc-gga-cca-gecc-cca-cct-ggt-gcc-aga-ccc-ccg-cct-
Pro Pro Gly Pro Pro Pro Pro Gly Pro¢Ala Pro Pro Gly Ala Arg Pro Pro Pro
1249 gga-ccg-ccc-ccg-ccc—gga—-ccg-ccg-cca—-ccc—gga—-ccc—gec—cca-cct-ggt-gecc-aga-
Gly Pro Pro Pro Pro Gly Pro Pro Pro Pro Gly Pro¢Ala Pro Pro Gly Ala Arg
1303 ccc-ctg-cct-gga-ccg-ccc-cca-ccc-gga—-cca-ccg-cca-ccc-gga—-ccc—gec-cca—cct-
Pro Leu Pro Gly Pro Pro Pro Pro Gly Pro Pro Pro Pro Gly Pro Ala Pro Pro
1357 ggt-gcc-aga-ccc-ccg-cca-cca-cca-ccc-cca-cecc-gct-gac-gaa—-ccc-cag-cag-gga-
Gly Ala Arg Pro Pro Pro Pro Pro Pro Pro Pro Ala Asp Glu Pro Gln Gln Gly
1411 cca-gcc-cca-tcc-ggt-gac-aaa-cca-aag-aag-aaa—-cca-ccc—-cca-ccc-gect-gge-cca-
Pro Ala Pro Ser Gly Asp Lys Pro Lys Lys Lys Pro Pro Pro Pro Ala Gly Pro
1465 ccc-ccg-cca-cca-cca-ccc-cca-ccc-gga-att-caa-gga-cag-aaa-atg-agc-gcg-aaa-
Pro Pro Pro Pro Pro Pro Pro Pro Gly Ile Gln Gly Gln Lys Met Ser Ala Lys
1519 aca-ccc-gtc-ctt-cgg-aga-gcc-gtg-aca-ttg-gaa-tgt-gac-ggt-tga gcttcga
Thr Pro Val Leu Arg Arg Ala Val Thr Leu Glu Cys Asp Gly -Stop —-—-—--------
1571 ttaccaataa aatcatcttgc atccag
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Table 2
Comparison of PRP-SP-A sequence with salivary PRPs from human and rat
N() Sequence C(t)  Species
20 RPPPGGGPPRPP—PPEESQGEGHQKRPRPPGDGPEQGP 56 Sus scrof®RP-SP-A
110 GPPQQGGHPRPPRGRPQGPRQGGHQQGPPPPPRGKPQGPP 150  Human salivary acidic proline-rich protePOR81Q

6 DLEDANSNSAEKFLRPPPGGGPPRPPPPEE®)GEGHQKRPRPPGDGPEQ® 56  Sus scrofdRP-SP-A
34 DVEDSSQRPDQGPRPPPEGLLPRPPGDSGNQDDGPQQRPPKPGGHHRHFP 83  Human proline-rich protein 4 pre@(637§

20 RPPPGGGPPRPPPPEESQGEGHQKRP—RPPGDGPEQGP 56  Sus scrof®®RP-SP-A
115 GPPPQGGPQGPPQPGNPQGPPRYGGPQQRPPQPGKPQGPP 154 Rat acidic proline-rich proteif?Q4474
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