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ABSTRACT

The present paper aims to analyze the fluid dynamic problem of oblique—shock—
wave/laminar—boundary—layer interaction. Our concerns regard the influence
of boundary conditions, the stability of the time integration technique, the ac-
tual accuracy of the discrete model, and the suitability of the algorithm to the
Quadrics architecture.

1 Mathematical Model and Integration Technique

The Navier-Stokes equations define the mathematical model of the phenomenon: the Stokes’
hypothesis is assumed for the viscosity second coefficient, while the viscosity first coefficient
is governed by the Sutherland Law, a good approximation in the temperature range realized
in the present study. The Navier-Stokes equations are numerically solved in integral form
by a fractional step techniques. The operator is splitted into two parts, the Euler subsystem
and the Dissipative operator: an explicit four step predictor—corrector technique has been
adopted [1]. The essential properties of the integration scheme are: i) the Euler operator is
integrated by an ENO-type scheme with second order accuracy both in time and space; ) the
reconstruction step is performed in terms of primitive variables; iii) the Riemann problems
are solved exactly [2] or approximately [3]; i) the Dissipative operator is integrated by a
centered scheme second order accurate both in time and space; v) the time integration step
is chosen in order to satisfy the stability of each operator; vi) the boundary conditions are
imposed following the approach proposed in [4].

2 Implementation on the Quadrics Architecture

Parallelization has been achieved with a porting of an existing Fortran 77 code on the Alenia
Spazio Quadrics architecture. This is an high performance and cost effective SIMD architec-
ture, directly derived from the INFN APE100 supercomputer family. The machine [5] is built
with single precision FPU nodes, ranging in number from 8 to 2048, and a single controller re-
sponsible of integer operations, addressing and program flow control. Every FPU has 4 or 16
MB of local memory and yields a peak performance of 50 MFlops. The FPUs are arranged on
a 3D cubic mesh and the machine is capable of parallel synchronous communications between
nearest neighbouring FPUs at speeds up to 12.5 MB/s per link.

The algorithm lends naturally to a multiblock parallelization, i. e. every FPU takes charge
of a patch of the whole computational grid, with local boundary conditions obtained from
the neighbouring FPUs. We used a Q1 (8 nodes, 400 MFlops peak) machine for development
and small grids, and a Q16 (128 nodes, 6.4 GFlops peak) machine for bigger grids. The first
version of the parallel code yielded a speedup factor per computational cell of 1.4 on the Q1
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Figure 1: Pressure field, normalized to the pressure at the infinity. The isolines range from
1.0 to 1.5, with A = 3.6 x 1072

and of 19.6 on the Q16, with respect to a Sun SPARCstation 10/41, on small and medium
sized grids. Very large grids take advantage of the large real memory of the Q16 (512 MB)
and do not suffer from the huge amount of pagination which hampers a workstation.

Two factors affect these results. First, the Quadrics FPUs are mainly highly pipelined
multiplier and adder devices, and the algorithm isn’t able to sufficiently fill the pipe. Second,
the original program adopted an exact solver of the Riemann problem [2], which finds a first
guess of the solution with an iterative method. This badly affects a SIMD machines, because
the cost of every step is dictated by the node with the slowest convergence. The switch to an
approximate solver [3] (which didn’t affect the numerical results in this class of problems),
while resulting in a 10% speed improvement on the workstation, doubled the speed of the
Quadrics code.

3 Numerical Results

The essential features of the two-dimensional interaction of an oblique shock with a lami-
nar boundary layer on an adiabatic flat plate are (Fig. 1): i) the pressure increase across
the shock influences the boundary layer, which results retarded and, for sufficiently strong
pressure rise, as in the present case, separated; i) upstream the oblique shock impinging
location, the boundary layer growth induces a compression fan, which eventually degenerates
in a shock; iii) another compression fan originates downstream where the boundary layer
thickness decreases; iv) between these two compression waves, the impinging shock reflects
as an expansion fan, indicating that the boundary layer reacts as a constant pressure surface.
The recirculating bubble presents an extremely flat structure, corresponding to a plateau
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Figure 2: Comparison of the pressure distributions along the plate in the two simulations
discussed with the experimental and simulation data reported by Degrez

in the pressure distribution along the plate (Fig. 2). The wall shear stress has generally a
peculiar behaviour inside the reverse flow region where a local relative maximum appears
corresponding to an asymmetric structure of bubble.

We compare the numerical results obtained with two different grids: i) 100 x 80 grid,
highly stretched in the y—direction, uniformly spaced in the z—direction, and a minimum cell
(Az, Ay)=(1.6 x 1073,5.0 x 1079); 4i) 416 x800 grid, uniform resolution in both direction (its
features are given in fig. 1). In the latter case the integration domain has been reduced and,
therefore, the resolution increases by a factor of 10, considering the number of cells enclosed
in the separation bubble as a criterium for measuring the fineness of the grid.

The pressure distribution at the plate (Fig. 2) shows that the fine grid furnishes only
minor improvement with respect to the coarse one; particularly the critical region at the
end of the recirculating bubble, where flow reattaches, is not sufficiently resolved. A strong
discrepancy in the reattachment region is exhibited with respect to the numerical solution
presented in [6], where a grid corresponding to the present coarse mesh was adopted, using
a quite different integration tecnique. The difference appearing in the inflow region depends
on the fact that the integration domain for the fine grid starts on the plate and the boundary
layer solution is assumed as inflow conditions, whereas for the coarser grid the integration
domain starts upstream of the plate and a weak shock occurs at the plate leading edge causing
a small pressure rise. The dimension of the separation region in the present computation is
egual to 36.8 mm to be compared with 40 mm reported in [7] and 35.2 mm reported in [6].
The analysis of the friction coefficient confirms that the major differences are located in the
reattachment region.



4 Conclusions

The preliminary numerical results obtained have shown that the resolution needed for a sat-
isfactory simulation of S.W.-B.L. interactions has to be increased. The solution is deeply
influenced by the boundary conditions, in the sense that a higher resolution reduces the nu-
merical dissipation and emphasizes the strenght of the reflected waves at the boundaries: this
fact opens some questions about the technique adopted for imposing the boundary condi-
tions and more numerical experiments are required. The stability limit has been progressively
reduced for increasing grid resolution: at present we are not able to give any explanation,
although we charge the dimensional splitting nature of the discrete model.

The implementation on the Quadrics architecture can be improved. A new version is in
the works, taking full advantage of the capability of the Quadrics TAO language [8] to be
freely modified and augmented in the source code. The new version, written in an object
based fashion, has one fourth the lines of codes than the original one, is highly modularized
and more flexible. The preliminary results show that this approach allows for efficient and
localized optimizations in the code of the newly defined operators, thus allowing for a better
exploitation of the Quadrics power. A 3D version of the code is also planned.
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