Hindawi Publishing Corporation

The Scientific World Journal

Volume 2014, Article ID 526953, 8 pages
http://dx.doi.org/10.1155/2014/526953

Research Article

Hindawi

Toward Sci-¢: A Lightweight Cloud Paa$ for Developing
Embarrassingly Parallel Applications Based on Jini

Patrizio Dazzi

ISTI-CNR, 56124 Pisa, Italy

Correspondence should be addressed to Patrizio Dazzi; patrizio.dazzi@isti.cnr.it

Received 31 August 2013; Accepted 21 November 2013; Published 13 February 2014

Academic Editors: J. M. Corchado Rodriguez, B. Johansson, and J. Pagliuca

Copyright © 2014 Patrizio Dazzi. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Embarrassingly parallel problems are characterised by a very small amount of information to be exchanged among the parts they
are split in, during their parallel execution. As a consequence they do not require sophisticated, low-latency, high-bandwidth
interconnection networks but can be efficiently computed in parallel by exploiting commodity hardware. Basically, this means
cheap clusters, networks of workstations and desktops, and Computational Clouds. This computational model can be exploited to
compute a quite large range of problems. This paper describes Sci-¢, an almost complete redesign of a previous tool of ours aimed at
developing task parallel applications based on Java and Jini that were shown to be an effective and efficient solution in environments

like clusters and networks of workstations and desktops.

1. Introduction

Parallel computing, in a nutshell, is a form of computation in
which many elaborations are performed simultaneously. It is
based on the principle that many large problems can be solved
by dividing them into smaller ones, which are then solved
concurrently to spend less time than their sequential execu-
tion requires. The resulting gain is called speedup. Basically, it
consists in an indication on how much a parallel algorithm is
faster than the corresponding, equivalent, sequential algo-
rithm. Speedup (S) is computed as

T,

Sp=—,
P,

@
where T is the execution time of the sequential algorithm, P
represents the number of processors used for the computa-
tion, and T is the time requested by the parallel algorithm
executing on P processors.

The most favourable scenario is the one in which the
speedup deriving by the parallel execution of a program is
linear (the exploitation of n processing elements reduces the
computation time by a factor of 1/n). Unfortunately, only
a few problems achieve the optimal speedup. In fact, many
parallel solutions and applications show at most a near-linear
speedup and only for small numbers of processing elements.

From a formal point of view, the (maximum) speedup that
an algorithm can provide on a parallel computing platform is
given by Amdahl’s law, which has been originally formulated
by Amdahl in the 1960s [1]. Such law states that the overall
speedup achievable through parallel execution is limited by
the portion of the computation that can not be run in parallel.
Given a program, let us consider «, the time portion to spend
for the computation of parts that can not be run in parallel;
then

! -1 2)

lim —m——
Pooo((l1-a)/P)+a «
is the maximum speedup that can be achieved by computing
the whole program in parallel.

This defines an upper limit on the convenience of adding
more and more parallel execution units for reducing the com-
pletion time of a program.

Besides the parts that can not be executed in parallel,
another key aspect to deal with when implementing parallel
applications consists in the dependencies between program’s
data. In short, no program can run faster than its critical path
(basically, the longest chain of dependent calculations), since
computations depending on previous calculations must be
executed in order. As an example, consider P; and P; to be
two program segments. Bernstein’s conditions [2] specify in

http://dx.doi.org/10.1155/2014/526953

which cases they are independent and, as a consequence,

can be executed in parallel. For P, let I; be all of the input

variables, and O; the output variables, and likewise for P;.
We can state that P; and P; are independent segments if

j
they satisfy the following three conditions:

I;n0; =0,
;n0O; =90, (3)
0;n0; =0.

If one of the first two conditions is violated, then flow
dependencies exist. Thus, one of the segments is expected to
produce data that will be needed by the other segment. As a
consequence, they cannot be run in parallel. The third, and
final, condition represents an output dependency. It means
that when two segments write to the same location, the result
finally stored comes from the logically last executed segment
[3].

In a sense, by using a geometric metaphor we can state
that Amdahl’s law and Bernstein’s conditions define kinds of
horizontal and vertical bounds to parallelism exploitation.
The former indicates the maximum “width” that a (segment of
a) parallel application can assume; the latter defines the mini-
mum “height” of the critical path, namely, the steps to be con-
ducted in a sequential manner to compute an application. In
fact, according to Amdahl’s law, parallel applications are char-
acterised by a very low value of « scale almost linearly, allow-
ing a very wide width. In addition, when Bernstein’s condi-
tions indicate a significant independency between the code
segments composing the program, the height of the parallel
application is low and the computation of most of its parts can
be performed concurrently.

According to our introduced metaphor, if a problem can
be solved by a program whose shape is wide and low, it means
that it can be computed in parallel without a particular effort,
by separating it into a number of tasks to compute in parallel.
This kind of problems is generally referred to as an embarrass-
ingly parallel problems. Often they can be implemented by
programs whose tasks have no dependencies on each other.
Such tasks tend to require little or no communication of
results and are thus different from more complex computing
problems that may require frequent information exchange,
for example, the communication of intermediate results.

Parallel applications realised according to this model are
easier to implement than more complex kinds of parallel
applications; they also do not require high-bandwidth, low-
latency, and expensive communication infrastructures to
scale-up when the number of resources involved in the com-
putation increases significantly. Typically, this kind of appli-
cations can be run on commodity based clusters, networks of
workstations, and, more recently, Clouds and Federation of
Clouds. Basically these environments consist of infrastruc-
tures that allow dealing with a huge amount of computational
resources but are usually characterised by a limited range
of guarantees on network subsystems [4-6] as well as on
the limited reliability of the hardware exploited. Anyway, in
spite of the quite simple structure of this parallel paradigm,

The Scientific World Journal

several different kinds of applications can be effectively and
efficiently implemented by structuring them according to it.

Examples include distributed set processing of queries in
distributed relational databases, web-servers, several types of
fractal calculations (basically all the ones where each point
can be calculated independently), brute-force searches in
cryptography, large scale image recognition software, com-
puter simulations comparing many independent scenarios
(e.g., climate models), genetic algorithms as well as other
evolutionary computation metaheuristics, numerical weather
prediction, and simulations of particle physics.

As can be noticed by reading the above list, there exist
some classes of scientific-related applications that can be
approached by exploiting this paradigm. Indeed, not hav-
ing any particular requirement in terms of data exchange,
embarrassingly parallel problems can be computed on server
farms built with commodity hardware, which do not require
any special communication and data storage infrastructure as
supercomputers require instead. In a previous paper of ours
we presented JJPF [7], a parallel programming framework,
whose main features are recalled in Section 2. Basically, it is
a tool for implementing stream parallel applications, written
in Java and exploiting Jini [8] for resource discovery and job
assignment.

JJPF provides some useful features, like

(i) automated load balancing across the computing ele-
ments participating in the computation;

(ii) automatic resource discovering and recruiting exploit-
ing standard Jini mechanisms;

(iii) automated fault tolerance achieved by substituting
faulty resources with other ones (if any) in a seamless
and automatic way.

Anyway, JJPF has been designed before the Cloud-era
and also before multicore microprocessors became part of
standard configurations of commodity hardware. As a conse-
quence, it is unable to properly exploit the performance gain
derivable from actual CPUs. In addition, it cannot be config-
ured in a modular fashion to let users and system adminis-
trators manage and enforce the partitioning of the available
resources among applications that are actually running in the
same machine. This is a fundamental requirement to realise a
multitenancy Platform as a Service (PaaS) exploiting a private
Cloud for user computations.

In this paper we present Sci-¢. It has been designed to
overcome the JJPF limitations and to be exploited by multiple
tenants at the same time in private Clouds. Sci-¢ also allows
partitioning the application workload in a more efficient way
and exploiting multicore microprocessors.

The remainder of this paper is structured as follows.
Section 2 describes our former contribution and the under-
neath technology for resource discovery: Java Jini. Then,
Section 3 introduces Sci-¢, our proposed next generation
framework that enhances JJPF to make it suitable to be used as
a simple and lightweight Cloud PaaS. Later, in Section 4 are
presented the experiments we conducted to give a prelimi-
nary evaluation of Sci-¢. Similar approaches existing in liter-
ature are presented in Section 5. Finally, in Section 6 we draw

The Scientific World Journal

our final considerations about this work and we present our
thought on the future work that we plan to conduct in the
field.

2. JJPF: Our Former Solution

Our former solution consists of a tool for developing task
parallel applications, written in Java and based on Jini. JJPF
is a framework essentially structured according to a master-
slaves organisation. The JJPF master is able to find and to
recruit in networks and clusters of workstations a set of
available resources to enlist as computing slaves. In order to
be exploited by the JJPF master, these machines have to run
a proper system daemon behaving as a computation service;
it does support the execution of stream applications. In short,
it can be stated that JJPF enacts and exploits a network-based
remote execution service. This is made possible by the under-
neath network layer based on Jini. Basically, it consists in a
network-based approach for the organisation of distributed
systems in the form of modular cooperating services.

2.1. Jini. Sun Microsystems introduced Jini in July 1998.
Essentially, it is a network-centric computational architecture
that has been conceived to be a support for “spontaneous
networking” The Jini approach follows the concept behind
the motto that lasted long under the Sun Microsystems mark
“network is the computer.” In fact, by using Jini, users can plug
printers, storage devices, speakers, and, potentially, any kind
of device directly into a network. Other computer devices and
users connected to the same network are, consequently and
automatically, informed that such devices have been added
and, hence, are available. Each network device, to be found,
has to define itself by means of a specific interface and prop-
erly inform an ad hoc designed network device registry.

When someone (or something) decides to use, or to
access, a resource belonging to the same network, the Jini
support will lead her (or it) to automatically download proper
software, which in turn will make possible the interaction
with the resource and communicate with it without any
particular effort or awareness requirements to the operating
system, which indeed does not require having any particular
software driver preinstalled. Basically, the “Jini promise” has
been enabling hardware manufacturers to make devices that
can be attached to a network and used independently operat-
ing systems and the other devices connected to such network.
This is possible by virtue of the Jini communication and inter-
action model, which is based on customisable software net-
work proxies.

From an operative point of view, a resource, to be found
and used, has to register its proxy in a specific network direc-
tory service called “LookupService” Such service is then con-
tacted by clients, who want to exploit the resources available
in the network, to retrieve the specific software proxies
required for enacting the network interconnection with the
devices. The Jini software architecture consists of four soft-
ware stacked layers:

(i) directory service;

(ii) JavaSpace;

LookupService

Client

(o} O
!!

FIGURE 1 Jini registration and discovery.

(iii) Remote Method Invocation (RMI);

(iv) boot, join, and discover protocol.

When a device is plugged into a Jini-enabled network it
register its own proxy into the lookupService using the API
of the directory service layer. Once it complete this step, it
becomes a member of the network. The Java classes needed to
let other devices to use it are put in the JavaSpace layer to ease
their localisation and download; operations that take place
via RMI. Finally, the bottom layer of Jini is devoted to provide
low-level boot, join and discovery mechanisms. Figure 1
depicts the support provided by Jini to device registration,
discovery and exploitation.

2.2. The JJPF Approach. As we already mentioned, JJPF
benefits from the features provided by Jini to build up a
remote computing service that can be exploited for the com-
putation of task parallel applications. Jini is exploited by JJPF
in a twofold manner: by clients for finding computational
resources to run the tasks composing their parallel compu-
tations and by slaves (servers) to publish themselves in such
a way that they can be found by clients, and, therefore, to
receive tasks to elaborate.

Algorithm 1 shows the steps conducted by a JJPF comput-
ing slave to be found and used by clients. More in detail, when
a slave does start, it searches the Jini discovery service, the
LookupService. Then, it enters in a loop that terminates only
when the slave is turned oft or reassigned to other duties. The
first step conducted inside the loop consists in the registration
into the LookupService. This step allows clients to find the
actual slave. After the registration, the slave waits for requests
coming from clients. When a request arrives, the slave
unregisters itself from the directory service to avoid other
clients to find it. Then, it starts to compute the tasks received
from the client it has been assigned to. If on the one hand this
choice simplifies the resources management, it can potentially
limit the exploitation of JJPF in multitenants scenarios. After

4 The Scientific World Journal

Result: Allow a slave to be found and used by clients
(1) network discovery by LookupService;
(2) While not terminated or reassigned do

(3) register into LookupService;

(4) wait for requests;

(5) unregister from LookupService;
(6) compute the tasks received;

(7) end

(8) terminate the slave activity;

ALGORITHM 1: JJPF server side.

Result: Compute tasks exploiting slaves
(1) network discovery by LookupService;
(2) query LookupService for registered slaves;
(3) if slaves are available then

(12) end

(4) foreach slave do

(5) instantiate a specific ControlThread;
(6) end

(7) wait the end of computation;

(8) else

) register an observer into LookupService;

(10) wait for notifications;
1) jump to line 4;

(13) terminate the program;

ALGoRrITHM 2: JJPF client side.

the completion of the computation, it can either terminate its
activity or restart the main loop.

On the other side, the activity conducted by clients
for finding and exploiting computing slaves is shown by
Algorithm 2. This algorithm, like the previous one, starts with
the discovery of the LookupService. Once it has been found,
the client queries for the available slaves. If they are available
the client recruits each of them by instantiating an ad-hoc
ControlThread whose aim is to “drive” the interaction with the
slaves just found. This means to assign tasks, by fetching them
from the client-defined task vector, to retrieve the results
once computed, and to store them in the results vector. In
case of faults, ControlThread has to signal the problem to the
JJPF client runtime that will reassign the tasks previously sent
to the faulty slave. Then the main client program waits until all
the tasks have been processed and eventually terminates the
computation. If no slave is available, the client registers a spe-
cial object, an observer, into LookupService. By means of this
object the client is alerted if any slave registers itself into the
directory service, so that the client can enlist such computa-
tional resource. Basically, this means that JJPF uses two dis-
tinct mechanisms to support clients in recruiting slaves. One
is synchronous and the other one is asynchronous (in fact
consisting in a sort of publish-subscribe approach). The syn-
chronous mechanism directly queries LookupService about
the available slaves, that is, the computational resources that
JJPF uses for computing tasks. The asynchronous mechanism
works by registering into LookupService an observer object

that will alert the client when new services become available,
so that they can be recruited.

JJPF also achieves automatic load balancing among the
recruited services. This is possible by virtue of the scheduling
approach adopted in the ControlThreads managing remote
services. Each ControlThread fetches tasks to be delivered
to the remote nodes from a centralised, synchronised task
repository.

As we mentioned above JJPF also automatically handles
faults in service nodes. More in detail, it takes care of the tasks
assigned to a slave so that if the node does not respond any
more they can be rescheduled to other service nodes. This is
possible because the only kinds of parallel applications that
are supported in JJPF are the ones relying on stream parallel
computations. In this case, there are natural descheduling
points that can be chosen to restart the computation of one
of the input tasks, in case of failure of a service node. A trivial
choice for the point is the start of the computation of the task.
Provided that a copy of the task is kept on the client side, the
task can be rescheduled as soon as the control thread notices
that the corresponding slave has been disconnected or it is
not responding. This is the choice we actually implemented
in JJPE, inheriting the design from muskel [9, 10].

One of the key advantages deriving from the usage of
JJPF is that all the activities described in the above presented
algorithms are automatically performed by the JJPF run time
support. No code dealing with service discovery or recruiting
is to be provided by application programmers.

The Scientific World Journal

Finally, also the installation is easy and nondisruptive
regarding the installed software and the system configuration.
Indeed, in order to use JJPF on a workstation network or
cluster, just the following three steps have to be performed:

(1) Jini has to be installed and configured,

(2) JJPF services have to be started on the machines that
will be eventually used to run the JJPF distributed
server,

(3) aJJPF client such as the one sketched above has to be
prepared, compiled, and run on the user workstation.

2.3. The Programming Model of JJPF. To write an application
able to exploit the remote execution service realised by JJPE,
programmers need to implement a JJPF client and structure
it as a kind of stream processor in which the stream items
consist of the set of tasks to compute. The tasks composing the
applications are executed by the distributed slaves recruited.

The JJPF clients are essentially structured according to the
task farm pattern. Programmers only need to write two lines
of code to define: which parallel computation to perform, the
input data and the output data.

Consider

BasicClient cm =
new BasicClient (program,
null,
input,
output) ;

cm. compute () ;

input and output are collections of input and output
tasks, respectively. program is an array hosting the code
that slaves have to compute on their sides. The code consists
of a Class object describing the user worker code. Such
code must implement a ProcessIf interface. This interface
requires that three methods were implemented: one to pro-
vide the input task data (void setData (Object task)),
another one to retrieve the result data (Object getData()),
and, finally, a method to compute results out of task data
(void run()).

3. Sci-¢

In spite of the several advantages coming from the exploita-
tion of JJPE, for running stream parallel applications on clus-
ters and networks of workstations, it is not really appropriate
for current computational environment based on commodity
hardware. In addition, with the advent of Cloud Computing,
people want more and more to interact with computational
resources in a way that recalls the one provided by widely
adopted Paa$, just to mention a few, a support for multi-
tenants, a security support (including both authentication
and authorisation), a standard way for expressing resources
features and task requirements, and so forth.

To this end we propose Sci-¢ a complete redesign of JJPF
to let it address the current typical requirements of such kind

of infrastructure via a Paa$ approach but preserving the origi-
nal idea of JJPE Basically, our aim is to provide a full-featured
PaaS for high throughput computations, mainly targeting
embarrassingly parallel applications, able to deal with churn-
ing machines and that can be nonintrusively installed on
clusters and networks of workstations made of commodity
hardware.

In the following of this section we summarise the require-
ments that a next generation tool like Sci-¢ should provide
along with the actual limitations of JJPE

3.1. Modern Commodity Hardware. JJPF has not been
designed for exploiting machines equipped with modern
CPUs, like multicores. In fact, each machine is registered once
into the directory service independently of the number of
processor cores or processors onboard. In addition, the JJPF
client assigns to each slave machine just a task at-a-time, inde-
pendently of the number of cores installed into the slave
machine.

3.2. Classification of Computational Resources. In JJPF the
resources register themselves into the directory service with-
out specifying any of their own features. As a consequence,
user cannot specify any requirement about the desired com-
putational resources. What a user obtains is just a kind of
best-effort computational support.

3.3. Security. JJPF does not provide any kind of security sup-
port, neither for authentication aspects, nor for authorisation
related stuft. This was pretty acceptable when it was firstly
adopted but should be introduced now. In particular if it
would be used as a Cloud PaaS exploiting resources from
multiple Clouds. Indeed, this is a definitely useful aspect in
Cloud oriented scenarios, as also suggested by Takabi et al.
[11].

3.4. Task Description. In JJPF each task needs to implement
an ad hoc interface; this is a pretty simple but limited solution.
By following this approach existing programs to run with
JJPF need to be specifically refactored. If on the one hand
this was almost acceptable when JJPF has been designed (i.e.,
early 2004, when even the Java Callable interface was not
yet available) now something more widely adopted should
be exploited, for instance, Java EE components to integrate
exploiting dependency injection [12] approaches. Another
interesting possibility would be the adoption of the Batch
Applications support of Java EE 7 [13] that defines a batch pro-
gramming model, a job specification language, and a batch
runtime.

3.5. Service Orientation. JJPF is a computing framework in
the strict sense of the term. Applications exploiting it need
to be actually integrated with it. A better approach would be
to make it just a service running on one of the machines it
recruits for a computation. This would introduce the typical
advantages in migrating from application to services [14], for
example, intrinsic interoperability, flexibility, and so forth.

3.6. REST Interfaces. To run a JJPF client on a machine, the
user needs to have a shell access to such machine. This makes
the approach not flexible enough to be exploited by a dynamic
range of users. Indeed, each new user requires the interven-
tion of the system administrator for creating an account on
such machine. This model should be overcome, for instance,
providing widely adopted standard for program execution in
Cloud systems, nowadays mainly based on REST interfaces
[15].

3.7 Task Dependencies. JJPF can be used only for task parallel
applications no task dependency is allowed. This limits the
kinds of applications that can be computed with it. A more
careful design of the client would allow also the computation
of applications in which tasks have dependencies on each
other. For instance such dependencies can be defined by
means of workflow-based solutions or Macro Data Flow
approaches [16].

3.8. Enhanced Communication Subsystem. JJPE exploits the
RMI subsystem embedded in Jini (JERI [17]) both for localis-
ing and recruiting slaves as well as for communicating data
packages and tasks to compute. If on the one hand this is
perfectly in line with the Jini philosophy, on the other hand it
is not a particularly efficient solution when the data to transfer
increases. An alternative would be to couple RMI with other
protocols that are more suitable for high performance data
transfer.

3.8.1. The Actual Implementation of Sci-g. As we stated above,
Sci-¢ has been conceived and designed to overcome JJPF
and to address all the aforementioned requirements. Its
design is modular and flexible, well suited for incremental
implementation of the features required. Anyway, even if the
design of Sci-¢ is essentially complete, so far only a reduced
set of the requirements mentioned above have been fully
addressed. More in detail, we successfully included the sup-
port for multicore microprocessors, as we show in Section 4
presenting the experimental evaluation. Moreover, also a way
to classify resources has been introduced. In order to make
this solution effective we give a resource representation that
fundamentally has been inspired by the one used by Amazon
for EC2 instances.

We are currently working on the development of other
features. Anyway, the current set of implemented fea-
tures allows conducting a preliminary evaluation, that we
described in the next section, and clearly shows that Sci-¢
provides a notable gain with respect to JJPF in terms of per-
formance on current generation hardware.

4. Preliminary Evaluation

Exploiting the actual, prototypal implementation of Sci-¢ we
conducted a preliminary evaluation by developing a program
devoted to the computation of the Mandelbrot set and run-
ning it both using Sci-¢ and JJPE. The experiments have been
conducted by using two clusters owned by our institution.

The Scientific World Journal

Scalability achieved on Novello cluster
300

Seconds elapsed

Number of machines used

—— JJPF
-~ Sci-phi

FIGURE 2: Scalability measured on Novello cluster.

4.1. 'The Test Environment. We tested our proposed frame-
work using two different clusters: Novello and Cannonau. The
first one, Novello, consists of six machines, each one equipped
by a Xeon Quad-core processor (E5520), running at 2.27 Ghz
and sixteen Gigabytes of RAM. The second one consists of
eight machines, each one equipped with two (quite old) Xeon
processors running at 2.0 Ghz and one Gigabyte of RAM.
Both clusters interconnect their machines using a Gigabit
switch. All the machines composing the clusters run Linux
Ubuntu Server Edition.

4.2. 'The Test Application. The application used for our tests
is the well-known Mandelbrot Set. Basically, it consists in a
figure composed by a set of points whose boundary is a two-
dimensional fractal shape. The set is closely related to Julia
sets and is named after Benoit Mandelbrot that made it very
popular. Mandelbrot set images are made by complex num-
bers. For each point a particular computation determines if
the result tends towards infinity after a certain number of iter-
ations. Treating the real and imaginary parts of each number
as image coordinates, pixels are coloured according to how
rapidly the sequence diverges, in case it does.

4.3. The Results Obtained. We conducted our evaluation with
our two clusters by obtaining encouraging results. In both
clusters Sci-¢ obtained a very good scalability. Figure 2 shows
the results we measured by computing the Mandelbrot Set on
Novello cluster. The sequential execution of our test applica-
tion on a single machine in this cluster required about 251
seconds. As it can be observed, JJPE, that exploits just a core
for each machine, provides pretty good scalability results
when the number of enlisted machines increases. Our new
framework Sci-¢ is also able to successfully exploit all the
cores installed in each machine and maintains the ability of
JJPF to scale when additional machines are recruited for the
computation.

The Scientific World Journal

Scalability achieved on Cannonau cluster

500
450
400

)

w

(=}
T

Seconds elapsed
N
g

Number of machines used

—— JJPF
-~ Sci-phi

FIGURE 3: Scalability measured on Cannonau cluster.

Figure 3 shows the results we achieved with the cluster
Cannonau. It is an older set of machines but already charac-
terised by an internal parallel degree. Indeed, each Cannonau
machine has two processors installed making it a good can-
didate for our evaluation. In this case the sequential time for
computing the Mandelbrot Set was around 478 seconds. This
consistent difference with the sequential time obtained with
Novello machines can not be imputed to the slight difference
in the processor frequency. The interpretation we gave to
these phenomena is instead related to the newer processing
architecture of Novellos CPU as well as the faster memory it
is equipped with.

Regarding the parallel processing time, also in this case it
can be noticed that while JJPF is able to scale when the num-
ber of machines raises, Sci-¢ successfully exploits the avail-
able resources in each machine to lower the time required to
compute the Mandelbrot Set.

5. Related Work

Besides JJPF, our Sci-¢ environment is not our first proposal
for providing a stream parallel computing environment.
Another of our previously developed parallel programming
environments, muskel, already provides automatic discovery
of computational resource in the context of a distributed
workstation network. Anyhow, in muskel the discovery was
simply implemented using multicast datagrams and proper
discovery threads. The muskel environment also introduced
the concept of application manager that allocates computa-
tional resource to tasks and provides an autonomic applica-
tion control in such a way that optimal resource allocation can
be dynamically maintained upon specification by the user of
a performance contract to be satisfied [9, 10].

Several other researchers proposed or currently propose
environments supporting stream parallel computations on
workstation networks and clusters. Among the others, we
mention Cole’s eskel library running on top of MPI [18],

Kuchen’s C++/MPI skeleton library [19], and CO,P,S from
the University of Alberta [20]. The former two environments
are libraries designed according to the algorithmic skeleton
concept. The latter is based on parallel design patterns. Other
notable solutions for running embarrassingly parallel tasks
are the BOINC [21] project that is a widely used approach for
volunteer computing as well as the Condor project [22] that
pioneered using the idle time of organisational workstations
to do parallel computing.

6. Conclusions and Future Work

In this paper we presented Sci-¢, an integrated solution sup-
porting the execution of embarrassingly parallel application
on cluster or networks of workstations. Sci-¢ is an evolution
of JJPE our former proposed framework based on plain
Java and using Jini to achieve automatic resource discovery
and distributed task assignment. Computational resources
are discovered and recruited automatically to compute user
applications. Fault tolerance features have been included
in the framework such that the execution of a parallel
program can transparently resist node or network faults. Load
balancing is guaranteed across the recruited computational
resources, even in case of resources with fairly different com-
puting capabilities. Sci-¢ adds to JJPF several features. Some
focusing on performance optimisations (especially when
modern hardware is exploited), others aimed at providing its
functionalities in the form of a Cloud Paa$S solution. These
are particularly interesting because they let Sci-¢ be used as a
building block for more complex parallel environments, like
it happened to JJPF for PAL [23-25]. In the future we plan to
adopt it again, possibly in different kinds of scenarios and
environment. In order to evaluate the Sci-¢ approach we
conducted some preliminary experiments using a prototype
we developed. Even if such prototype does not provide all the
envisioned features characterising our Sci-¢ solution, the pre-
liminary results are nice and encouraging.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work has been partially funded by the FP7 Contrail
Project (FP7-257438).

References

[1] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in Proceedings of
the Spring Joint Computer Conference (AFIPS ’67), pp. 483-485,
ACM, New York, NY, USA, April 1967.

[2] A. Bernstein, “Analysis of programs for parallel processing,”
IEEE Transactions on Electronic Computers, vol. EC-15, no. 5,
pp. 757-763, 1966.

[3] S.H. Roosta, Parallel Processing and Parallel Algorithms: Theory
and Computation, Springer, New York, NY, USA, 2000.

(4]

f—
0 x

(10]

(11]

(12]
(13]
(14]

(15]

(16]

(17]

(18]

(19]

(22]

V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. I. T.
Rowstron, “Bridging the tenant-provider gap in cloud services,”
in Proceedings of the 3rd ACM Symposium on Cloud Computing
(SOCC ’12), p. 10, San Jose, Calif, USA, October 2012.

E. Carlini, M. Coppola, P. Dazzi, L. Ricci, and G. Righetti,
“Cloud federations in contrail,” in Euro-Par 2011: Parallel Proc-
essing Workshops, vol. 7155 of Lecture Notes in Computer Science,
pp- 159-168, Springer, Berlin, Germany, 2012.

M. Coppola, P. Dazzi, A. Lazouski et al., “The contrail approach
to cloud federations,” in Proceedings of the International Sym-
posium on Grids and Clouds (ISGC ’12), Taipe, Taiwan, March
2012.

M. Danelutto and P. Dazzi, “A java/jini framework supporting
stream parallel computations,” in Proceedings of the Parallel
Computing: Current & Future Issues of High-End Computing
(ParCo °05), vol. 33, pp. 681-688, John von Neumann Institute
for Computing Series, Malaga, Spain, 2005.

A. Foundation, “Apache river;” http://river.apache.org.

M. Danelutto and P. Dazzi, “Joint structured/unstructured par-
allelism exploitation in muskel,” in Computational Science—
ICCS, V. N. Alexandrov, G. Dick van Albada, P. M. A. Sloot,
and J. Dongarra, Eds., vol. 3992, pp. 937-944, Springer, Berlin,
Germany.

M. Aldinucci, M. Danelutto, and P. Dazzi, “Muskel: an expand-
able skeleton environment,” Scalable Computing: Practice and
Experience, vol. 8, no. 4, pp. 325-341, 2007.

H. Takabi, J. B. D. Joshi, and G.-J. Ahn, “Security and privacy
challenges in cloud computing environments,” IEEE Security
and Privacy, vol. 8, no. 6, pp. 24-31, 2010.

M. Fowler, “Inversion of control containers and the dependency
injection pattern,” 2004.

C. Vignola, “Batch applications for the java platform,” 2013,
http://jcp.org/en/jsr/detail?id=352.

A. Arsanjani, G. Booch, T. Boubez et al., “The soa manifesto,”
SOA Manifesto, October 2009.

H. Han, S. Kim, H. Jung et al., “A RESTful approach to the
management of cloud infrastructure,” in Proceedings of the IEEE
International Conference on Cloud Computing (CLOUD ’09), pp.
139-142, Bangalore, India, September 2009.

M. Danelutto and P. Dazzi, “Workflows on top of a macro data
flow interpreter exploiting aspects,” in Making Grids Work, M.
Danelutto, P. Fragopoulou, and V. Getov, Eds., pp. 213-224,
Springer, Berlin, Germany, 2008.

E Sommers, “Call on extensible rmi: an introduction to jeri,’
Technical Article, Column Jiniology in JavaWorld, 2003.

M. Cole and A. Benoit, “The eSkel home page,” 2005, http://
homepages.inf.ed.ac.uk/mic/eSkel/.

H. Kuchen, “A skeleton library, in Euro-Par 2002, Parallel
Processing, B. Monien and R. Feldmann, Eds., vol. 2400 of Lec-
ture Notes in Computer Science, pp. 620-629, Springer, Berlin,
Germany, 2002.

S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron,
and K. Tan, “From patterns to frameworks to parallel programs,”
Parallel Computing, vol. 28, no. 12, pp. 1663-1683, 2002.

D. P. Anderson, “BOINC: a system for public-resource com-
puting and storage,” in Proceedings of the 5th IEEE/ACM Inter-
national Workshop on Grid Computing (GRID *04), pp. 4-10,
Washington, DC, USA, November 2004.

M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor-a hunter of
idle workstations,” in Proceedings of the IEEE 8th International
Conference on Distributed Computing Systems, pp. 104-111, San
Jose, Calif, USA, 1988.

(23]

The Scientific World Journal

M. Danelutto, M. Pasin, M. Vanneschi, P. Dazzi, D. Laforenza,
and L. Presti, “Pal: exploiting java annotations for parallelism,”
in Achievements in European Research on Grid Systems, S.
Gorlatch, M. Bubak, and T. Priol, Eds., pp. 83-96, Springer, New
York, NY, USA, 2008.

M. Danelutto, P. Dazzi, D. Laforenza, M. Pasin, L. Presti, and
M. Vanneschi, “Pal: high level parallel programming with java
annotations,” in Proceedings of the Integrated Research in GRID
Computing: CoreGRID Integration Workshop (CGIW ’06), pp.
189-200, CYFRONET AGH, Krakow, Poland, October 2006.

P. Dazzi, “Let’s annotate to let our code run in parallel,” 2013,
http://arxiv.org/abs/1306.2267.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

