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Abstract: A “watch and wait” strategy, delaying treatment until active disease manifests, is adopted
for most CLL cases; however, prognostic models incorporating biomarkers have shown to be useful
to predict treatment requirement. In our prospective O-CLL1 study including 224 patients, we
investigated the predictive role of 513 microRNAs (miRNAs) on time to first treatment (TTFT).
In the context of this study, six well-established variables (i.e., Rai stage, beta-2-microglobulin
levels, IGVH mutational status, del11q, del17p, and NOTCH1 mutations) maintained significant
associations with TTFT in a basic multivariable model, collectively yielding a Harrell’s C-index of
75% and explaining 45.4% of the variance in the prediction of TTFT. Concerning miRNAs, 73 out
of 513 were significantly associated with TTFT in a univariable model; of these, 16 retained an
independent relationship with the outcome in a multivariable analysis. For 8 of these (i.e., miR-582-3p,
miR-33a-3p, miR-516a-5p, miR-99a-5p, and miR-296-3p, miR-502-5p, miR-625-5p, and miR-29c-3p), a
lower expression correlated with a shorter TTFT, whereas in the remaining eight (i.e., miR-150-5p,
miR-148a-3p, miR-28-5p, miR-144-5p, miR-671-5p, miR-1-3p, miR-193a-3p, and miR-124-3p), the
higher expression was associated with shorter TTFT. Integrating these miRNAs into the basic model
significantly enhanced predictive accuracy, raising the Harrell’s C-index to 81.1% and the explained
variation in TTFT to 63.3%. Moreover, the inclusion of the miRNA scores enhanced the integrated
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discrimination improvement (IDI) and the net reclassification index (NRI), underscoring the potential
of miRNAs to refine CLL prognostic models and providing insights for clinical decision-making. In
silico analyses on the differently expressed miRNAs revealed their potential regulatory functions of
several pathways, including those involved in the therapeutic responses. To add a biological context
to the clinical evidence, an miRNA–mRNA correlation analysis revealed at least one significant
negative correlation between 15 of the identified miRNAs and a set of 50 artificial intelligence (AI)-
selected genes, previously identified by us as relevant for TTFT prediction in the same cohort of CLL
patients. In conclusion, the identification of specific miRNAs as predictors of TTFT holds promise for
enhancing risk stratification in CLL to predict therapeutic needs. However, further validation studies
and in-depth functional analyses are required to confirm the robustness of these observations and to
facilitate their translation into meaningful clinical utility.

Keywords: microRNA; prognosis; CLL; time to first treatment (TTFT); IGVH mutations; del11q;
del17p; Beta-2-microglobulin (B2M); Rai stage; NOTCH1

1. Introduction

Chronic lymphocytic leukemia (CLL) is a B-cell disorder characterized by the mon-
oclonal accumulation of CD5/CD23-positive lymphocytes at multiple sites [1–3] and a
clinical heterogeneity [4,5] which has been correlated with different cytogenetic and molec-
ular features of leukemic cells [6–9].

Many CLL patients do not require immediate therapeutic intervention, and for the
majority, therapy can be initiated after a variable period of disease progression. To avoid
useless treatment and to limit treatment only to the progressing cases, a “watch and
wait” strategy is generally adopted in which only patients who progress, according to
defined clinical criteria, are treated [1]. Due to the aforementioned variability of CLL,
prognostic studies aimed at defining the risk of disease progression, warranting therapeutic
intervention, have a relevant clinical impact [10,11].

While single prognostic factors, although relevant, may have a limited prognostic sig-
nificance, the evaluation of multiple biomarkers with varying prognostic power may lead
to more definite prognostic models [12]. To this end, prognostic scores have been developed
that incorporate different biomarkers into comprehensive models. The CLL-International
Prognostic Index (CLL-IPI) has emerged as one of the well-established models, demon-
strating its efficacy in predicting overall survival, as well as time to first treatment (TTFT)
and progression-free survival prediction in the context of chemo-immunotherapy [13,14].
Furthermore, our group has documented the predictive value of CLL-IPI for TTFT in
early-stage CLL. In the same setting of Binet stage A CLL, Condoluci et al. introduced the
International Prognostic Score for Early CLL patients (IPS-E) [15]. Further validated by
Smolej et al. [16], the IPS-E and its alternative version (AIPS-E) effectively predicted TTFT
and therefore may provide valuable guidance for clinical decision-making in early-stage
CLL patients. In our prospective O-CLL1 study, evaluating newly diagnosed Binet stage A
patients, both AIPS-E and IPS-E accurately predicted the need for therapy in early-stage
CLL patients [17].

The advent of next-generation sequencing (NGS) has facilitated the discovery of
an unprecedented number of gene mutations with potential prognostic and predictive
value [9]. A recent study found that mutations were detected in roughly 35% of CLL
patients, with frequencies ranging from 2.3% to 9.8% of cases, and that NOTCH1 mutations
were the most common [18]. When the predictive impact of nine recurrently mutated genes
was tested, eight of them (BIRC3, EGR2, NFKBIE, NOTCH1, POT1, SF3B1, TP53, and XPO1)
were independently associated with shorter TTFT [18].

In recent years, the role of microRNAs (miRNAs) in CLL has garnered increasing
attention (reviewed in [19–21]). MiRNAs are evolutionarily conserved, single-stranded non-
coding RNA molecules that can redundantly and simultaneously regulate the expression
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of multiple genes. Acting post-transcriptionally, miRNAs bind to the messenger RNA of
target genes, affecting translation or inducing degradation [22,23].

Several miRNAs have been described to be associated with CLL prognosis [24–30]
and pathogenesis [31,32]. In addition, miRNAs may contribute to the deregulation of
apoptosis [31–33], BCR signaling [34–36], or metabolism [37] in CLL cells, and treatment of
CLL patients with chemotherapy or BCR inhibitors was shown to affect the expression of
miRNAs involved in these processes [38–40]. However, the pathways regulated by most
miRNAs remain to be elucidated.

MiRNA expression profiling studies have disclosed correlations between certain
miRNA signatures and cytogenetic features and/or IGHV gene mutational status [30,41],
which are recognized prognostic markers in CLL. Finally, certain miRNA signatures are
associated with disease progression and outcome [24,30,34,42,43] or with the onset of
Richter’s transformation [44–46], a lethal condition characterized by the development of
aggressive lymphoma in CLL patients [1,47].

Specifically, miR-15a and miR-16-1, which are located on 13q14 [31], act as tumor
suppressors and were the first miRNAs used to predict outcomes in CLL [24]. Consistent
with the notion that miR-15 and miR-16 regulate cell apoptosis and proliferation [33,48],
our group showed that transfection of miR-15 and miR-16 mimics into del(13)(q14) CLL
cells significantly hindered their growth in NOD/Shi-scid, γ(c)(null) (NSG) mice, resulting
in substantial tumor regression [49]. Moreover, our previous research revealed that CLL
has a miRNA expression profile that closely resembles that of antigen-experienced B cells;
some miRNAs in this profile are likely to influence disease progression, as suggested by
their correlation with the clinical outcomes [30,50].

In the context of our prospective O-CLL1 study, we herein explored the predictive role
of 513 miRNAs on TTFT by (i) incorporating significant miRNAs into a basic prognostic
model including IGHV mutational status, del11q and del17p, beta-2-microglobulin (B2M),
NOTCH1 mutation, and Rai stage, which are known to predict TTFT in CLL [51–54],
and (ii) analyzing their potential association with 50 genes involved in TTFT that we
previously identified by an artificial intelligence (AI)-based model. Our approach identified
16 out of 513 miRNAs independently associated with TTFT. Moreover, enrichment analysis
was performed to evaluate biological processes regulated by the selected miRNAs, while
correlation analysis and multiple bioinformatics software were used to evaluate possible
interactions between the 16 prioritized miRNAs and the 50 genes selected as a CLL TTFT
predictive signature, defined by an AI model [54].

2. Results
2.1. TTFT Prediction by the Basic Model

The estimated median TTFT for the 224 CLL cases from our prospective O-CLL1
study was 105.2 months (95% CI, 94.2–116.1 months), with 4-year and 8-year cumulative
first-treatment-free survival of 76.8% (95% CI, 71.1–82.5) and 57.4% (95% CI, 50.1–64.6),
respectively (Figure 1). Only six out of nine univariable predictors (i.e., Rai stage, B2M,
IGVH and NOTCH1 mutational status, 11q and 17p deletions) remained significantly
associated with TTFT when tested in a Cox multivariable model adopting a backward
elimination strategy. Univariable and multivariable Cox analyses, focusing on established
TTFT predictors, are detailed in Table S1A,B. The six variables together gave a prognostic
value for TTFT (i.e., a Harrell’s C-index) of 75% and an explained variation of 45.4%.

2.2. TTFT Prediction by miRNAs

Of the 513 available miRNAs tested, 73 were found to be significantly associated with
TTFT in univariable Cox regression analyses (all p ≤ 0.05) (Table 1). These 73 miRNAs were
then simultaneously included in the same multivariable Cox regression model, and those
significantly associated with TTFT were identified by a backward elimination strategy.
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140-3p 1 0.991 0.986 0.996 0.001 
144-3p 1 1.004 1.002 1.006 0.002 
144-5p 1 1.024 1.008 1.041 0.003 

146b-5p 1 0.991 0.983 0.998 0.019 
148a-3p 1 1.006 1.002 1.010 0.007 
150-5p 1000 0.925 0.858 0.997 0.041 
150-3p 1 1.035 1.009 1.062 0.008 
151-3p 1 0.971 0.946 0.996 0.026 
151-5p 1 0.996 0.993 0.998 0.001 
155-5p 100 1.058 1.014 1.104 0.009 
15a-5p 100 1.074 1.034 1.117 <0.001 

184 1 1.472 1.126 1.925 0.005 
193a-3p 1 1.132 1.026 1.250 0.014 
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Figure 1. Kaplan–Meier curve of TTFT in the 224 CLL cases from our prospective O-CLL1 study.

Table 1. Cox univariable analyses of miRNAs significantly associated with TTFT.

miRNA-ID Units of
Increase 1 HR 95%CI

Lower Limit
95% CI

Upper Limit p-Value

1-3p 1 1.166 1.006 1.352 0.041

103a-3p 1 0.998 0.996 1.000 0.05

106a-5p 1 1.438 1.003 2.062 0.048

10b-3p 1 1.239 1.055 1.456 0.009

1224-5p 1 1.064 1.024 1.105 0.002

1225-5p 100 1.062 1.001 1.126 0.046

124-3p 1 1.458 1.178 1.805 <0.001

125b-5p 1 0.744 0.56 0.989 0.042

138-5p 1 0.599 0.4 0.896 0.013

140-3p 1 0.991 0.986 0.996 0.001

144-3p 1 1.004 1.002 1.006 0.002

144-5p 1 1.024 1.008 1.041 0.003

146b-5p 1 0.991 0.983 0.998 0.019

148a-3p 1 1.006 1.002 1.010 0.007

150-5p 1000 0.925 0.858 0.997 0.041

150-3p 1 1.035 1.009 1.062 0.008

151-3p 1 0.971 0.946 0.996 0.026

151-5p 1 0.996 0.993 0.998 0.001

155-5p 100 1.058 1.014 1.104 0.009

15a-5p 100 1.074 1.034 1.117 <0.001

184 1 1.472 1.126 1.925 0.005

193a-3p 1 1.132 1.026 1.250 0.014

20a-3p 1 1.049 1.007 1.093 0.022
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Table 1. Cont.

miRNA-ID Units of
Increase 1 HR 95%CI

Lower Limit
95% CI

Upper Limit p-Value

21-5p 1000 1.152 1.056 1.257 0.001

222-3p 1 0.946 0.907 0.988 0.012

223-5p 1 0.819 0.712 0.943 0.006

24-1-5p 1 1.312 1.013 1.698 0.04

26a-5p 100 0.901 0.813 0.999 0.047

28-5p 1 1.005 1.001 1.009 0.012

296-3p 1 0.570 0.348 0.934 0.026

298 1 1.307 1.022 1.670 0.033

29c-3p 100 0.951 0.923 0.980 <0.001

29c-5p 1 0.952 0.924 0.982 0.002

301a-3p 1 1.038 1.005 1.073 0.024

30c-5p 100 0.621 0.400 0.962 0.033

323-3p 1 0.646 0.426 0.979 0.04

338-5p 1 0.785 0.643 0.960 0.018

339-3p 1 0.689 0.521 0.910 0.009

33a-3p 1 0.375 0.220 0.639 <0.001

361-3p 1 0.989 0.978 0.999 0.034

370 1 1.058 1.028 1.088 <0.001

371-5p 1 1.082 1.016 1.152 0.014

373-5p 1 1.071 1.006 1.14 0.031

376b-3p 1 1.523 1.046 2.218 0.028

491-3p 1 1.766 1.331 2.343 <0.001

500-3p 1 0.817 0.717 0.931 0.002

502-3p 1 0.872 0.796 0.955 0.003

502-5p 1 0.673 0.504 0.898 0.007

513a-5p 1 1.007 1.002 1.012 0.008

518c-5p 1 1.148 1.033 1.276 0.01

520b 1 1.234 1.067 1.426 0.005

532-3p 1 0.898 0.841 0.959 0.001

532-5p 1 0.939 0.891 0.989 0.018

552 1 1.556 1.014 2.388 0.043

557 1 1.197 1.099 1.303 <0.001

566 1 1.616 1.188 2.197 0.002

574-3p 1 1.030 1.006 1.055 0.015

582-3p 1 0.465 0.274 0.789 0.005

584-5p 1 1.162 1.022 1.32 0.022

596 1 0.597 0.391 0.913 0.017

601 1 1.069 1.01 1.131 0.022

603 1 1.552 1.023 2.356 0.039



Non-Coding RNA 2024, 10, 46 6 of 19

Table 1. Cont.

miRNA-ID Units of
Increase 1 HR 95%CI

Lower Limit
95% CI

Upper Limit p-Value

625-5p 1 0.960 0.940 0.981 <0.001

628-3p 1 0.630 0.417 0.952 0.028

631 1 1.180 1.006 1.385 0.042

645 1 1.604 1.091 2.358 0.016

659-3p 1 1.114 1.01 1.228 0.03

661 1 0.579 0.342 0.981 0.042

665 1 1.145 1.008 1.300 0.037

671-5p 1 1.046 1.014 1.079 0.004

877-5p 1 1.245 1.031 1.503 0.023

9-3p 1 1.086 1.015 1.163 0.017

99a-5p 1 0.615 0.421 0.898 0.012
1 To provide a clinically meaningful magnitude of the effect of each miRNA on the study outcome, the units of
increase (1, 100, or 1000) were chosen according to the data distribution of the variable.

Sixteen miRNAs retained an independent association with TTFT (Table 2). For eight
miRNAs (i.e., miR-582-3p, miR-33a-3p, miR-516a-5p, miR-99a-5p, and miR-296-3p, miR-
502-5p, miR-625-5p, and miR-29c-3p), lower expression levels were associated with a higher
likelihood of treatment (i.e., shorter TTFT). Conversely, for the remaining eight miRNAs
(i.e., miR-150-5p, miR-148a-3p, miR-28-5p, miR-144-5p, miR-671-5p, miR-1-3p, miR-193a-3p,
and miR-124-3p), a higher expression was associated with shorter TTFT.

Table 2. 16 miRNAs independently associated with TTFT after a multivariable Cox regression analysis
using a backward elimination strategy.

miRNA-ID Units of
Increase 1 HR 95% CI

Lower Limit
95% CI

Upper Limit p-Value

582-3p 1 0.278 0.145 0.535 <0.001

33a-3p 1 0.334 0.16 0.697 0.003

516a-5p 1 0.490 0.297 0.810 0.005

99a-5p 1 0.512 0.341 0.769 0.001

296-3p 1 0.539 0.301 0.967 0.038

502-5p 1 0.623 0.43 0.905 0.013

625-5p 1 0.958 0.937 0.98 <0.001

29c-3p 100 0.936 0.903 0.970 <0.001

150-5p 1000 1.112 1.005 1.231 0.039

148a-3p 1 1.009 1.004 1.014 <0.001

28-5p 1 1.01 1.005 1.014 <0.001

144-5p 1 1.049 1.026 1.072 <0.001

671-5p 1 1.075 1.027 1.125 0.002

1-3p 1 1.261 1.047 1.517 0.014

193a-3p 1 1.343 1.186 1.52 <0.001

124-3p 1 1.536 1.233 1.913 <0.001
1 To provide a clinically meaningful magnitude of the effect of each miRNA on the study outcome, the units of
increase (1,100, or 1000) were chosen according to the data distribution of the variable.
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Using these 16 miRNAs, a risk prediction score (ranging from 0 to 100%) was derived
(Figure 2).
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Inclusion of the miRNA scores into the basic model (i.e., a Cox model including Rai
stage, B2M, IGVH and NOTCH1 mutational status, 11q and 17p deletions) significantly
increased both the Harrell’s C-index (from 75.0% to 81.1%) and the explained variation in
TTFT (from 45.4% to 63.3%). Remarkably, the inclusion of the miRNA scores into the basic
model also yielded an IDI and an NRI of +14.9% and +44.2%, respectively (Table 3).

Table 3. Prognostic performance of the basic and the expanded models.

Basic Model Expanded Model

Harrell’s C-index 75.0% 81.1%

Explained variation in TTFT 45.4% 63.3%

IDI 1 - 14.9%, p < 0.001

NRI 2 - 44.2%, p < 0.001
1 IDI: integrated discrimination improvement; 2 NRI: net reclassification index.

Supplementary Figure S1 illustrates the survival curve derived from the multivari-
able Cox proportional hazards model, which closely aligns with the Kaplan–Meier curve
presented in Figure 1, thereby confirming the robustness and calibration of the model for
predicting TTFT.

2.3. Correlation and Interaction Analysis between miRNAs and Genes Found to Be Related to
TTFT by an AI Model

Next, we analyzed the relationship between the 16 miRNAs identified as predictive of
TTFT and the previous 50 AI model prioritized genes (AI genes) that we found significantly
associated with TTFT in the same patients of the O-CLL1 cohort [54]. Fifteen out of
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sixteen miRNAs showed at least one significant negative correlation with the AI genes;
in particular, eight miRNAs (i.e., miR-29c-3p, miR-625-5p, miR-150-5p, miR-144-5p, miR-
28-5p, and miR-516a-5p) showed a relationship with one of the top ten genes selected by
the neural network (i.e., CEACAM19, PIGP, FADD, FIBP, IGF1R, COL28A1, QTRT1, MKL1,
GNE, SLC39A6) (Figure 3). Only hsa-miR-124-3p showed no correlation with any of the
AI genes; in addition, miR-29c-3p had a significant negative correlation with the highest
number of genes prioritized by the AI model.
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cantly associated with TTFT in the 224 CLL cases from our prospective O-CLL1 study and the 50 AI
genes from the same cohort. AI genes are sorted by significance magnitude from the bottom to the
top. The first 10 genes represent the top AI-based selected genes that were significantly associated
with TTFT. The greater intensity of the color in the circle shapes corresponds to a higher magnitude
of the negative correlation measured by a Spearman test. rho (or Spearman’s correlation coefficient,
measured using a Spearman test) is a non-parametric measure that evaluates the strength and direc-
tion of a monotonic relationship between two ordinal or quantitative variables using the ranks of the
observations instead of their absolute values.

Comparing the previous correlation analysis with the miRComb model, this analysis
retained only five miRNA–mRNA annotated interactions, displaying a mild to moderate
correlation index. miR-29c-3p showed again the highest number of interactions, three of
which were previously predicted; specifically, miR-29c-3p’s interaction with PRICKLE1
was annotated in the microCosm database, while interactions with ANKRD52 and ZBTB34
were annotated in the TargetScan database. miR-29c-3p’s interaction with KDM5B was also
predicted by TargetScan with experimental validation, although with less strong evidence.
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MiR-625-5p was found to be significantly anti-correlated with IGF1R, an interaction anno-
tated by miRTarBase with a strong validation score (Table S2). Interestingly, the MiRComb
regulation score suggested an association between IGHV mutational status and the interac-
tions between miR-29c-3p with the previously identified AI model-selected genes KDM5B,
ANKRD52, ZBTB34, PRICKLE1; this dysregulation was not evident when considering the
interaction between miR-625-5p and IGF1R (Figure 4). Although the magnitude of the
effect of IGHV mutational status on the former interaction is strong, this is largely due to
an over-expression of miR-29c-3p in the IGHV mutated group compared to the unmutated
one and, to a lesser extent, to a slightly not significant downregulation of the previous four
AI-selected genes in the IGHV mutated group compared to the IGHV unmutated one.
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Figure 4. Interaction analysis between miRNAs and genes which were found to be associated with
TTFT. Interaction networks between has-miR-29c-3p with 4 AI genes ANKRD52, KDM5B, PRICKLE1,
and ZBTB34 or hsa-miR-625-5p with IGF1R are shown. Arrows, circles, and squares indicate the
miRNA–mRNA interaction scores, miRNA, and mRNA log-transformed fold-change (Log FC),
respectively. Log FC values for miRNA (#) and mRNA (□) are indicated by a color gradient scale.
Regulation score parameter values related to the IGHV mutational status (arrows) are highlighted
by a scale color gradient from light gray that represents a midpoint value of 0 to red that indicates
positive values (interaction score).

The aforementioned miRNA–mRNA interactions represented by the miRComb model
were found to be specific for CLL. Although the statistical power might be affected by the
small sample size, miRNA and mRNA expression profiles of tonsil B cells from normal
individuals did not reveal any significant interactions between any of the 16 miRNAs and
50 AI-selected genes.

2.4. Pathways Regulation by the 16 miRNAs Linked to TTFT

To further investigate the biological significance of the 16 identified miRNAs, an
enrichment analysis was carried out, showing that selected miRNAs are involved in cancer
and cellular processes associated with disease progression and drug resistance.

Specifically, Kegg term overrepresentation analysis revealed a significant pathway
(i.e., hsa05206) corresponding to the “MicroRNAs in cancer” pathway, associated with
the miRNA genes MIR1-2, MIR28, MIR29C, MIR99A, MIR124-3, MIR150, and MIR625
encoding for miR-1-3p, miR-28-5p, miR-29c-3p, miR-99a-5p, miR-124-3p, and miR-150-5p,
respectively (Table 4).
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Table 4. Summary of significantly enriched ontologies in the 16 analyzed miRNAs displaying
ontology-associated miRNAs and the corresponding adjusted p-values and q-values.

Enrichment ID Term Specification Associated
miRNA Genes

Adjusted
p-Value q-Value

KEGG ORA
summary hsa05206 MicroRNAs in cancer

MIR1-2, MIR28,
MIR29C, MIR99A,
MIR124-3, MIR150,

MIR625

1.41 × 10−10 7.41 × 10−10

WikiPathways ORA
summary WP299 Nuclear receptors in lipid

metabolism and toxicity MIR33A 0.03 0.009

WP430 Statin inhibition of
cholesterol production MIR33A 0.03 0.009

WP1545 miRNAs involved in DNA
damage response MIR29C 0.04 0.01

WP1601 Fluoropyrimidine activity MIR29C 0.03 0.009

WP2023 Cell differentiation
expanded index MIR150 0.04 0.01

WP2249 Metastatic brain tumor MIR29C 0.03 0.009

Overrepresentation analysis using Wikipath revealed six significant terms associated
with the miRNA genes MIR29C, MIR33A, and MIR150 (Table 4). The terms WP1601,
WP2249, and WP1545, signatures of “Fluoropyrimidine activity”, “Metastatic brain tumor”,
and “miRNAs involved in DNA damage response”, respectively, were enriched in the
MIR29C gene product; the terms WP299 and WP430, signatures of “Nuclear receptors in
lipid metabolism and toxicity” and “Statin inhibition of cholesterol production”, respec-
tively, were enriched in the MIR33A gene product. Finally, the WP2023 term, the signature
of the “Cell differentiation expanded index”, was enriched in the MIR150 gene product.

3. Discussion

Predicting overall and progression-free survival in CLL is a dynamic field of research
that adapts to advances in biology and therapeutics, providing insights to personalized
patient planning and guiding clinicians in tailored treatment decisions. Conversely, models
predicting TTFT, which is not influenced by the treatment choice, play a pivotal role in
counseling, family planning, surveillance, and identification of high-risk candidates for
potential early intervention in clinical trials [55,56]. Indeed, several predictive models have
been published for this purpose [57–59]. Recently, the European Research Initiative on CLL
(ERIC) introduced a score that categorizes patients based on IGHV mutation and somatic
hypermutation status [18].

Nevertheless, most of these predictive models typically require a combination of
clinically accessible factors and molecular factors, which are relatively straightforward
to assess. In the O-CLL1 trial, multivariable analyses identified a foundational model
comprising Rai stage, B2M, IGHV, and NOTCH1 mutational status, in addition to 17p
and 11q deletions [51–54]. This model also served as the basis for validating the improved
prognostic efficacy of lymphocyte doubling time (LDT) [53] and, more recently, for in-
corporating our previously discovered AI gene expression data into an enhanced model
predicting TTFT [54].

The current study focused on analyzing the profile of miRNAs at the time of diagnosis
among treatment-naive CLL cases enrolled in the prospective O-CLL1 trial. The primary
aim was to identify specific miRNAs that could function as predictive markers to better
identify patients in need of early treatment. The establishment of a risk prediction score
based on 16 miRNAs identified as independently associated with TTFT emphasizes the
significant impact of miRNA data in predicting TTFT in CLL. Specifically, lower expression
of eight miRNAs (i.e., miR-582-3p, miR-33a-3p, miR-516a-5p, miR-99a-5p, miR-296-3p,
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miR-502-5p, miR-625-5p, and miR-29c-3p) was associated with a shorter TTFT, while for
the remaining eight miRNAs (i.e., miR-150-5p, miR-148a-3p, miR-28-5p, miR-144-5p, miR-
671-5p, miR-1-3p, miR-193a-3p, and miR-124-3p), the higher expression was associated
with a shorter TTFT.

Importantly, the integration of these miRNAs into the basic model significantly im-
proved predictive accuracy, as reflected by the improved Harrell’s C-index from 75.0% to
81.1% and explained variation in TTFT from 45.4% to 63.3%. Additionally, this integration
yielded an IDI of +14.9% and an NRI of +44.2%. This suggests that miRNA expression data
may provide meaningful insights, offering a promising opportunity for counseling, and a
more reasonable follow-up scheduling through early identification of cases with a higher
likelihood of requiring early therapy.

To date, miR-15a and miR-16-1, localized on chromosome 13q14 and functioning
as bona fide tumor suppressors [31,33,48], have been utilized as pioneering prognostic
indicators in CLL [24]. Subsequent investigations have highlighted the potential of miRNA
profiling in enhancing the accuracy of CLL prognostication. Specifically, the expression
levels of dysregulated miR-155, miR-181b, miR-29a/b/c, and miR-34a have been sys-
tematically correlated with established prognostic biomarkers, including IGHV and TP53
mutational status, as well as ZAP70 expression, thereby exerting a discernible impact on the
clinical outcomes of CLL patients [25,28,41,43,60,61]. Indeed, our previous study unveiled
several dysregulated miRNAs in CLL, indicating their potential role in the pathogenesis
of the disease and their contribution to its progression, ultimately influencing the initia-
tion of therapy [30]. In particular, 8 miRNAs (i.e., miR-146b-5p, miR-222-3p, miR-26a-5p,
miR-29c-3p, miR-29c-5p, miR-502-3p, and miR-503-5p) out of 15 dysregulated miRNAs
demonstrated a significant role in predicting TTFT, with miR-26a-5p and miR-532-3p
remaining significantly associated with TTFT after data adjustment for confounders.

Notably, in our current study, only miR-29c-3p was found to be significantly associated
with TTFT after applying the Cox multivariable regression model. However, it is essential to
consider that, in contrast to our previous analyses and other published studies, our current
investigation diverges from the conventional focus based on dysregulated miRNAs. Instead,
we opted for a broader statistical strategy, encompassing the evaluation of all the assessable
miRNAs to gain a more comprehensive understanding of the miRNA landscape in the
context of TTFT prediction. In the present investigation, we have delineated a distinctive
signature comprising 16 miRNAs that influence the risk of initiating therapy in CLL. Of note,
elevated levels of eight of them correlated with higher treatment likelihood, suggesting their
role in disease progression, while the remaining showed an inverse relationship, lowering
treatment initiation likelihood, indicating their dual ability to act either as promoters of
oncogenic processes or as regulators of tumor suppression.

We reasoned that the understanding of the regulatory networks involving the identi-
fied 16 miRNAs could be of interest to further elucidate the CLL pathogenesis; therefore, we
adopted a comprehensive in silico approach employing correlation, interaction, and enrich-
ment models to validate and refine miRNA–mRNA analyses in our O-CLL1 dataset. The
miRNA–mRNA correlation analysis revealed at least one significant negative correlation
between 15 of the identified miRNAs and the set of 50 AI model-based genes we previ-
ously identified, with miR-29c-3p being the one with the highest number of correlations as
confirmed by multiple tools. miR-625-5p was found to be significantly anti-correlated only
with IGF1R; interestingly, IGF-1R was functionally validated as a direct target of miR-625-5p
also in melanoma cancer cells, being positively modulated by the long non-coding RNA
LINC01291 via miR-625-5p sponging [62]. Of particular interest, miR-29c was previously
found to exhibit differential expression based on the IGHV status [24,30], which corre-
lated with the expression of some of its specific target genes [61,63]. The present study
expanded this observation to four AI-generated genes (ANKRD52, KDM5B, PRICKLE1, and
ZBTB34) previously described to be strongly associated with TTFT in CLL [54]. Regulation
of KDM5B by miR-29c was described in endometrial carcinoma, showing a correlation
between elevated levels of KDM5B and tumor grade and paclitaxel resistance [64]. Finally,
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the enrichment analysis revealed the multifaceted involvement of miRNAs in cellular
activities, from tumor development and resistance to lipid metabolism regulation.

Our previous investigation demonstrated that IL-23R expression on CLL cells inde-
pendently estimated TTFT in the O-CLL1 cohort, supporting the notion of an essential
IL-23 autocrine loop driving CLL expansion [65]. Furthermore, we found that miR-146b-5p
modulates IL-12Rβ1 expression, which influences TTFT, with lower levels associated with
shorter TTFT duration [50]. Notably, in the current study, miR-148a-3p emerged as an
independent prognostic factor in the multivariable model, showcasing a striking comple-
mentarity of 18 out of 21 bases with a sequence within the interleukin 23 subunit alpha
(IL-23A) mRNA (miRWalk: refseq ID NM_016584, http://mirwalk.umm.uni-heidelberg.
de/human/gene/51561/ accessed on 21 August 2024), thus expanding the exploration of
IL23A gene regulation.

In conclusion, the identification of specific miRNAs as predictors of TTFT in CLL
represents a promising avenue for refining risk stratification and predicting therapeutic
needs. The integration of miRNA data into predictive models holds the potential to improve
the accuracy of clinical decision-making in CLL management. However, further validation
studies and comprehensive functional analyses are needed to confirm the reliability and
robustness of these findings.

4. Materials and Methods
4.1. Patient Population and Study Design

In the observational O-CLL1 study (clinicaltrials.gov identifier NCT00917540),
224 newly diagnosed Binet A CLL cases from 40 Italian institutions were prospectively
enrolled for miRNAs analysis [30]. The miRNA expression data are deposited in the Na-
tional Center for Biotechnology Information (NCBI) Gene Expression Omnibus repository
(http://www.ncbi.nlm.nih.gov/geo/ accessed on 21 August 2024) and are accessible via
GEO Series accession number GSE40533. The gene expression data are accessible through
GEO Series accession number GSE40570.

All participants gave written informed consent, and the study was approved by the
appropriate institutional review boards. Detailed inclusion and exclusion criteria have
been previously outlined [54]. Specifically, the recruitment was limited to cases diagnosed
within 12 months, age ≤ 70 years, and at Binet stage A [30].

4.2. Assessment of Biological Markers

The diagnosis was confirmed by flow cytometric analysis, which assessed the propor-
tion of CD5/CD19/CD23 triple-positive B cells; monoclonal antibodies (mAbs) against
CD19-FITC (BD Biosciences Pharmigen, San Jose, CA, USA), CD23-PE (BD Biosciences,
San Jose, CA), and CD5-PC5 (Beckman Coulter Immunotech, Marseille, France) were used
for this purpose. CD38-positive leukemic cells were quantified through triple staining
with CD19 FITC (BD Biosciences), CD38 PE (BD Biosciences), and CD5 PC5 (Beckman
Coulter Immunotech) mABs. CD38 positivity was defined with a cutoff of ≥20%, following
previous reports [30].

ZAP-70 was detected by flow cytometry using a ZAP-70-FITC (clone 2F3.2, Millipore,
Temecula, CA, USA) or an isotype control mAb (mouse IgG2a-FITC, BD Biosciences) as
previously described [30]. Briefly, peripheral mononuclear cells purified from fresh hep-
arinized CLL samples by Ficoll-Hypaque gradient were first incubated with CD3 PE-CY7,
CD19 PE, and CD5 PC5 mAbs (BD Biosciences, San Jose, CA, USA), fixed, permeabilized
with fix and perm reagents (Caltag Laboratories, Buckingham, UK), and exposed to ZAP-70
or the isotype control mAb. A cutoff value of more than 30% for ZAP-70 positivity was
used, as previously reported [30] and calculated by receiver-operating characteristic analy-
sis as the most suitable ZAP-70 cutoff value to discriminate IGHV-Unmutated (UM) from
IGHV-Mutated (M) cases. All flow cytometric analyses were performed on a FACSCalibur
flow cytometer (BD Biosciences).

http://mirwalk.umm.uni-heidelberg.de/human/gene/51561/
http://mirwalk.umm.uni-heidelberg.de/human/gene/51561/
http://www.ncbi.nlm.nih.gov/geo/
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Cytogenetic abnormalities, including chromosome deletions 11q23 and 17p13, were
examined by fluorescence in situ hybridization (FISH) in a purified CD19-positive popula-
tion, according to established protocols [30]. The mutational status of the IGHV gene was
assessed on cDNA samples [30] by aligning sequences to the IMGT directory and by analyz-
ing them using IMGT/V-QUEST software(version: 3.6.3 (30 January 2024). The NOTCH1
mutation hotspot was determined by next-generation deep sequencing, as previously
outlined [51].

4.3. miRNAs Analysis

Total RNA was extracted from CD19-positive purified B-cell samples using TRizol reagent
(Life Technologies, Carlsbad, CA, USA). Subsequently, RNA quality was evaluated through
the Agilent 2100 Bioanalyzer (Agilent Technologies). Any RNA sample with poor quality, as
indicated by an RNA integrity number < 7, was excluded from microarray analyses. After
sample collection, processing was performed according to the guidelines of the Agilent manual
for the Human miRNA Microarray V2 platform (Agilent Technologies, Palo Alto, CA, USA),
which includes miRNAs from the Sanger miRBase (v10.1). Expression values of miRNAs were
computed using Agilent Feature Extraction Software 10.1, followed by summarization and
background subtraction. MiRNAs with low expression (all detection calls missing), non-human
miRNAs, and miRNAs expired according to Sanger miRBase release 15 (April 2010) were
excluded. The obtained raw data underwent quantile normalization, conversion to positive
values with a minimum value of 1, and log2 transformation using the R-2.14 statistical environ-
ment (http://www.r-project.org/ accessed on 21 August 2024) [30]. Array old identifiers were
converted to the last version with Mirbase (i.e., miR-33a* = miR-33a-3p, miR-miR-99a = 99a-5p,
miR-625 = miR-625-5p, miR-29c = miR-29c-3p, miR-150 = miR-150-5p, miR-148a = miR-148a-3p,
miR-144* = miR-144-5p, miR-1 = miR-1-3p, and miR-124 = miR-124-3p).

4.4. miRNA–mRNA Correlation, Interaction, and Enrichment Analyses

To elucidate potential relationships between the miRNAs significantly associated with
TTFT and the previously identified 50 genes implicated in TTFT as detected by an AI-based
model [54], a Spearman correlation analysis between miRNA and mRNA expression pro-
files was performed using the O-CLL1 database [30]. To retain miRNA–mRNA correlations
implicating an miRNA–mRNA interaction, an additional Spearman correlation analysis
between expression profiles was performed using the miRComb model [66], selecting
significant correlations that were suggestive of an interaction annotated in at least one
of the following prediction databases, namely microCosm (version 5.18) and TargetScan
6.2. The sensitivity of the previous model was improved by extending the annotation
query to the miRTarBase database [67], which annotated experimentally proven miRNA–
mRNA interactions accompanied by a qualitative validation score including the two values
“Low evidence” and “Strong evidence” based on the experimental techniques involved in
the validation protocol. At the same time, the specificity of the model was increased by
selecting correlations with a corresponding p-value, adjusted for multiple comparisons
inherent to the whole gene expression and miRNA profile analysis, below a threshold of
0.05. Additionally, the mirComb model was applied to the expression dataset to calculate
an miRNA–mRNA regulation score, which allowed the assessment of the effect of IGHV
mutational status on each miRNA–mRNA interaction retained; the regulation score was
calculated as follows:

score = −2(log2 ratiomRNA · log2 ratiomiRNA)

where log2 ratiomRNA and log2 ratiomiRNA equal to the log-transformed fold changes of
mRNA and miRNA expressions of a given interaction pair, respectively, calculated by
comparing the IGHV mutated group with the unmutated group. Specifically, the previous
score measured the magnitude of interaction deregulation between an miRNA and an
mRNA as a result of the effect mediated by a categorical variable: a positive score implied
interaction deregulation, while a negative score indicated a preserved interaction. To

http://www.r-project.org/
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ensure the specificity of the miRNA–mRNA interactions detected from the O-CLL1 cohort
for CLL pathogenesis, a prior correlation analysis was also carried out on a control set
of normal B-cell sample subpopulations collected from tonsils of healthy individuals. In
particular, miRNA and mRNA expression profiles were collected for 3 samples of Naive B
cells, 2 samples of Marginal Zone-like B cells, and 3 samples of memory cells (GSE51529).

To elucidate the biological significance of the identified miRNAs that are correlated
with clinical outcomes, we conducted an over-representation analysis (ORA) of Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Wikipathways terms. This analysis
was performed using the R package ClusterProfiler, a versatile tool designed for the
interpretation of omics data [68]. ORA allows the identification of enriched biological
pathways or processes associated with a given gene set, thereby providing insight into the
potential functional roles of the miRNAs under investigation.

4.5. Statistical Analyses

TTFT was calculated during the watch-and-wait period, which lasted from the date of
diagnosis to the start of therapy or the last follow-up. The prognostic impact of standard risk
factors and miRNAs for TTFT was preliminarily investigated by univariable Cox regression
analyses, with data presented as hazard ratios (HRs) with 95% confidence intervals (CIs).
To obtain parsimonious models, all univariate predictors of TTFT (i.e., variables with
p ≤ 0.05) were tested in Cox analyses with a backward elimination strategy to identify
relevant prognostic variables among standard risk factors or miRNAs. Harrell’s C-index,
the explained variation in TTFT (an index combining calibration and discrimination), the
integrated discrimination improvement (IDI), and the net reclassification index (NRI) were
used to assess the accuracy of prognostic models and to measure the gain in prognostic
accuracy attributable to relevant miRNAs. To generate a risk prediction rule based on
miRNAs, a logistic regression model was fitted with TTFT as the dependent variable
and the miRNAs which remained significantly associated with the study outcome by
the backward elimination strategy as independent variables. This analysis resulted in an
miRNA score (ranging from 0 to 100%), which was then used for further analyses. Statistical
calculations were performed using SPSS for Windows v.21 (IBM, Chicago, IL, USA) and
Stata 16 (StataCorp, College Station, TX, USA).
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derived from the multivariable Cox proportional hazards model incorporating the risk score.
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