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ABSTRACT

A microwave sky map results from a combination of signals from various astrophysical
sources, such as cosmic microwave background radiation, synchrotron radiation and galac-
tic dust radiation. To derive information about these sources, one needs to separate them
from the measured maps on different frequency channels. This task is made difficult by
our insufficient knowledge of the weights to be given to the individual signals at different
frequencies. Recent work on the problem led to only limited success due to ignoring the
noise and to the lack of a suitable statistical model for the sources. In this paper, we de-
rive the statistical distribution of some source realizations, and check the appropriateness
of a Gaussian mixture model for them. A source separation technique, namely indepen-
dent factor analysis, had been suggested recently in the literature for Gaussian mixture
sources in the presence of noise. This technique employs a three layered neural network
architecture which allows a simple, hierarchical treatment of the problem. We modify
the algorithm proposed in the literature to accommodate for space-varying noise and test
its performance on simulated astrophysical maps. We also compare the performances of
the expectation-maximization and the simulated annealing learning algorithm in the es-
timation of the mixing parameters. The simulation results demonstrate the success of
the independent factor analysis approach with simulated-annealing learning, which proves
better than the expectation-maximization learning especially for higher noise levels and

when the independence of the performance from starting points is considered.
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I. INTRODUCTION

The microwave signal coming from the celestial sphere contain very important informa-
tion about our Universe. Unfortunately, this information cannot be obtained in an easily
interpretable way. A radiometric image taken at any working frequency is a superposition
of radiations coming from different sources, corrupted by the detector noise, which is nor-
mally space-varying and difficult to remove. The classical components of the microwave
sky radiation are the cosmic microwave backgorund (CMB), the galactic dust radiation,
the synchrotron radiation, extra galactic radio sources and the free-free radiation. Each
of these radiations has its own interest in astrophysics. For example, an important open
problem in cosmology is the measurement of the CMB anisotropies at high angular resolu-
tion. The CMB radiation is a strong affirmation of the hot big bang model. According to
this model, the Universe was once hot and dense and has been expanding and cooling since
then. After the discovery of CMB it was realized that the presence of density fluctuations
at the last scattering epoch would induce angular anisotropy in the CMB intensity. A
high-resolution and high-sensitivity measurement of CMB anisotropies would enable cos-
mologists to assess the validity of the present competing cosmological theories. Similarly,
maps of the synchrotron emission of the galaxy carry information about the structure of
the magnetic field, the spatial and energy distribution of relativistic electrons and the vari-
ations of electron density, of electron energy and of magnetic field induced by supernova
shocks. To explore correlations between magnetic fields and the matter distribution, it
is also vital to obtain the snychrotron map. Since each source has its own importance,
rather than just looking for a CMB map as clean as possible, we should try to extract
each source from the mixture maps. At each measurement frequency, the data map is a
superposition of the individual sources, multiplied by mixing coefficients depending on the
instrument features and on the radiative properties of the source processes. The mixing
coefficients are normally unknown, and this is the main difficulty in solving our separation
problem: we need to perform a blind source separation.

One classical approach to blind source separation is based on the independent compo-
nent analysis (ICA) concept [13]. Assuming that all the source processes are statistically

independent, any ICA technique transforms the observed data in order to ensure that the
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output signals are independent. It can be shown that these outputs provide an estimate
for the initial sources. Most of the ICA formulations have been derived in the case where
the number of sources and the number of sensors are equal and when the observations
do not contain noise. Unfortunately, the assumption of negligible noise is invalid for our
problem. There exist attempts in the ICA literature to include the noisy case in the anal-
ysis. One of them led to the so-called noisy fastICA algorithm [6] [7]. Unfortunately, our
earlier work on source separation of astrophysical images has shown that this algorithm
has significantly deteriorating performance when the noise level is increased [10].

The fact that ICA has a completely blind estimation approach is another reservation
we have about this technique. Indeed, we possess some crucial information about the
statistical distributions of the sources and the noise and we believe that all the available
prior knowledge should be exploited to reach a good solution to the separation problem.
In this paper, we present a method that incorporates prior information about the sources
in a very generic way. The method is called independent factor analysis (IFA) and has
been introduced recently by two papers, one in signal processing [11] and one in neural
networks literature [1]. The novelty of the technique is in proposing a generic model for the
source densities, namely the Gaussian mixture model, and in providing a neural network
architecture that is specially convenient for learning through an expectation maximization
(EM) algorithm. The noise is also taken into account in the mixture generation model in
a very natural way. Therefore, IFA provides an alternative to noisy ICA for solving our
particular problem.

Despite this attractive appearance of IFA, the numerical studies reported in the litera-
ture are only limited to some simple toy problems, and the potentials and the drawbacks
of the technique are not well understood yet. In this paper, we study this technique in
the context of simulated but realistic sky radiation maps and try to identify its potentials.
The data maps we used for our experiments simulate the ones expected from the Planck
Surveyor Satellite mission, which will be launched in 2007 by the European Space Agency.
The aim of this mission is to accurately map the CMB anisotropies over the entire celestial
sphere and on nine measurement channels in the millimeter and submillimeter-wave range,

with working frequencies from 30 to 857 GHz. Our data are totally synthetic or extrapo-
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lated from other data sets, with different frequency ranges or spatial resolutions, but are
considered realistic for the Planck application, especially as far as the location-dependent
noise maps are concerned. We constructed our mixture data on this basis and tested the
IFA technique against them.

In our work, we also addressed the points where IFA, as suggested in [11] and [1],
has clear drawbacks. In particular, we extended the IFA algorithm to accommodate for
the location-dependent noise. Moreover, we developed a globally convergent simulated
annealing alternative to the EM learning algorithm, which in our case demonstrated some
difficulties with its locally convergent behavior.

The rest of the paper is organised as follows: in Section 2 the statistical distributions of
some important radiation sources are studied, and the suitability of a Gaussian mixture
model is shown. We also show a typical noise pattern for high-resolution radiometric sky
maps. Section 3 briefly describes the IFA algorithm and provides details about its im-
plementation. Section 4 provides simulation studies first on synthetic data and then on
simulated astrophysical data, using the EM learning algorithm. In Section 5, the alterna-
tive simulated annealing (SA) learning algorithm is presented. Section 6 summarizes our

remarks and our research program for the future.

II. SOURCE MODELS

As mentioned above, our data images contain radiation from various sources. The im-
portant ones include cosmic microwave background radiation, synchrotron, galactic dust,
radiation from extra galactic radio sources, free-free emission and thermal clusters. In this
section we will look into the amplitude distributions of the most important ones, to see

whether we can suggest a generic statistical model for all of them.

A. CMB Radiation

The standard inflationary cosmological theory tells us that the CMB anisotropies are
Gaussian distributed. In Figure 1.a, we show a synthetic CMB map, generated following

the standard theory, on a square sky patch with a 15° aperture.
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Fig. 1. a) A patch of CMB data, b)Histogram of a typical CMB patch

B. Galactic Dust

The galactic dust emission is expected to be significant in the high-frequency region of
our measurement band. The simultaneous study of dust and free-free emission would be
useful to investigate the relationships between different phases of the interstellar medium.

A map of the galactic dust radiation is shown in Figure 2.a. The sky-patch assumed is
the same as the one used for the CMB radiation shown above, and the temperature values
have been extrapolated from available measurements at frequencies outside our range. The
histogram of this dust map is shown in Figure 2.b.

It is clear from the histogram that the amplitude distribution of galactic dust is non-
Gaussian. The curve actually is multimodal and unsymmetric. Motivated by the fact that

radial basis function networks are universal approximators [12], we attempted to model
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Fig. 2. a) A patch image showing galactic-dust intensity, b) Histogram and the Gaussian mixture model

fit for the galactic-dust intensity

the histogram by a mixture of Gaussian densities. The parametric model used to fit the

experimental curve is thus the following:

px(z) = Eiwi% exp(—%). (1)

2Ty,
where the parameters to be estimated are the weights w;, whose sum over ¢ must be equal
to one, the mean values y;, and the standard deviations v;. Although Gaussian densities
are symmetric functions, it is possible to represent unsymmetric curves by choosing the
mixture parameters carefully [12].
We used an expectation-maximization (EM) algorithm to fit a Gaussian mixture to the

histogram. The details of the EM algorithm can be found in [5]. The result is shown in
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Figure 2.b, plotted with the dashed curve. As can be seen, the fit is very close to the
histogram. It is also interesting to note that we used only three Gaussian components in
the mixture, which is far less than we expected. We repeated our experiments on about
15 different sky patches of the same size and in all cases we have seen that the Gaussian
mixture model provides very good fits using less than five components. We conclude that
Gaussian mixture models are very efficient for modelling galactic dust intensity distribu-
tion. Since the dust emission is only related to our galaxy, its distribution varies sensibly
in those regions that are far from the galactic plane, and the mixture parameters are

normally different for every different sky patch.

C. Synchrotron

The galactic synchrotron emission carries information about the structure of the mag-
netic field, the spatial and energy distribution of relativistic electrons and the variations
of electron density, of electron energy and of magnetic field induced by supernova shocks.
Since this radiation has a power-law spectrum, its influence on the total measured field is
significant in the low-frequency measurement channels. In Figure 3.a a synchrotron map
extrapolated from already available observations is shown. The related histogram is given
in Figure 3.b, plotted with solid curve.

Again, we tried to fit the curve by a Gaussian mixture using the EM algorithm. The
result obtained by fitting a Gaussian mixture of only four components is given in Figure 3.b,
plotted with the dashed curve. As can be seen, the fit is very good. We tried this
procedure for 15 different patches of the same size from different locations in the sky, and
observed that in all cases the Gaussian mixture model provides a good fit with less than
five components. Hence, we conclude that Gaussian mixtures are good representatives of

the amplitude distribution of synchrotron emission.

D. Noise distribution

Although noise is significant in our application, in our earlier research we assumed a
noiseless model and adopted the ICA approach [2]. Even when noise is taken into account,

it is normally assumed to be Gaussian and space-invariant. In our problem, however, noise
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Fig. 3. a) The synchrotron intensity from the same patch, b) histogram and the Gaussian mixture model

fit of the synchrotron intensity image

is considered Gaussian but space-varying, since the value given to each pixel of the data
maps is obtained from multiple measurements in the same direction, and the number of
measurements is normally different for different pixels. To clarify this characteristics, we
provide a plot of the noise samples (Figure 4.a) and the RMS map (Figure 4.b) from the
same sky patch we have been considering for various sources in the previous sections. The

pattern due to non-uniform scanning of the sensor is apparent.

III. INDEPENDENT FACTOR ANALYSIS

The model we assumed to describe the relationship between the astrophysical source

processes and our data maps is a simple instantaneous linear combination, which holds
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Fig. 4. a) Noise samples (one realization), b) RMS map of the underlying space-varying Gaussian

distribution.

true for any pixel:

Yi :E]L:lHijfj-i-’l’Li, 1= 1,...,N (2)

For the generic pixel considered, y; is the value of the mixture signal over the i-th of the N
channels, z; is the contribution of the j-th source process to the i-th channel measurement,
n; is the noise over the ¢-th channel. We would like to obtain H;; and z; from observations
y; only; this is the classical blind source separation problem. Various efforts have been
made to solve this problem in the last decade. In particular, an important approach has
been independent component analysis [3], [4], which aims at decomposing the observations
into independent sources and has been studied widely in the literature. The ICA model

is highly idealized: the mixing is often assumed to be square (L = N) and invertible, and
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the possible presence of noise is not considered. However, in real situations noise is always
present, and the number of observations is often different from the number of sources.
Efforts have been made to include noise into the analysis: in his negentropy maximization
approach, Hyvarinen suggested employing suboptimal nonlinearities to approximate the
negentropy function [6], [7]. He suggested using a simple preprocessing strategy and
particular contrast functions that are not sensitive to Gaussian noise in the data. However,
his formulation is not optimal and we observed a deteriorating behavior when the noise
level increases [10].

Moreover, existing algorithms usually employ a source model that is either fixed or
has limited flexibility. One should instead use a flexible model, whose parameters can
be estimated with the maximum likelihood estimation method. Also, most of the ICA
algorithms use gradient maximization methods, which result in slow convergence.

Towards removing these drawbacks, Moulines et al. (1997) [11] and, later, Attias (1999)
[1] suggested modeling the sources with mixtures of Gaussians and employed EM-based
techniques to estimate the mixing and the noise-covariance matrices, and the source dis-
tribution parameters. Attias named this formulation independent factor analysis (IFA).
IFA is performed in two steps: in the first one, the IF model is trained to learn the
mixing matrix, the noise covariance and the source density parameters. To make the
model analytically tractable and yet flexible, a Gaussian mixture model is adopted for
the source densities. Note that this is well in accordance with our problem, since in the
previous section we demonstrated that the main source components are well approximated
by Gaussian mixture models. This formulation enables one to use the EM algorithm for
the estimation of the parameters. In the second step the sources are estimated by using
the posterior source densities obtained in the first step.

The IFA mixture model can be represented as in Figure 5. Following the figure, we pro-
vide here a brief intuitive description of IFA rather than a lengthy derivation, for which the
readers are referred to [11] and [1]. The top level of the neural network provides a collec-
tion of Gaussian kernels, each parametrized by a mean p; ,, and a standard deviation v; 4,
and weighted by the coefficient w; 4,. To have a normalized probability density function for

each node, the sum of the w;, for each 7 must be equal to one. The hidden middle level
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Fig. 5. IFA model

nodes contain the independent sources x;, which are assumed to have Gaussian mixture

distributions.
p(x0) = T p(x]60;) = SqueG (x — piq; Vo) (3)

where 0; = {w; g, fig; Vig; }>» Wq 18 the vector of the active weights for each mixture, and G
represents the L-dimensional Gaussian density with mean vector 114 and covariance matrix
V.

The transition from the top hidden level to the middle hidden level is characterized
by the probability distribution p(q), where q is a random vector indicating the index of
the Gaussian kernel which the current sample of the source z; comes from. The marginal

probability of the i-th element of q is
p(QZ) :wi,qq;: i:1,...,N, (4)

As already said, to form a proper probability function, the coefficients p; 4, should sum up

to 1 for any 3.
> wig =1, 1=1,...,N. (5)
ai

Summarizing, the collective hidden states are given by:

q = (q,---,4qz) (6)

_ L R
wy, = I Wig = Wig X ... X WLy, (7)
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:U’q = (/’1’1,(11’ .. a:U’L;IIL) (8)
Vo = diag(vig, -, Vig,)- (9)

The middle hidden layer is characterised by the conditional probability of generating a

particular source vector x given q:
p(x|q) = G(x — g, Vq)- (10)
The observations are simply a linear mixture of the sources summed with noise.
y = Hx + n, (11)

In our case, we assume that the noise is zero-mean Gaussian and location dependent. Its
probability density function is

p(n) = G(n, A), (12)
The transition from the middle level to the bottom level, which contains the observations,
is thus characterized by the mixing matrix H and the noise covariance matrix A(.,.), which
is assumed to be space dependent. This means that Equation 11, as Equation 2, holds
true for each pixel of the data maps, but in general each pixel is affected by a different
noise amount. Denoting the collective parameters as W = (H, A, 6), the resulting density

for the observations is

W) = [ dx plyix) p(x) (13)
_ /dx G(y — Hx, A) TIX p(z:160;) (14)

and can be calculated conveniently from

p(y|W) = Xqp(a) / dx p(x|q)p(y|x) = Xq p(a) p(yla) (15)

where
p(Y|Q) = g(y — Hpg, HVqHT + A) (16)

Next step is to define an error function that measures the difference between the data den-
sity in Equation 15 and the density calculated from the actual data maps. The Kullback-

Leibler (KL) divergence has been chosen in both [11] and [1] to evaluate this measure:

P(y)
( W)

W) = [ dy p°(y)log = —Ellogp(y|W)] — Hyp. (17)
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To minimize this divergence, Moulines et al. [11] and Attias [1] have suggested techniques
which are extensions of the EM algorithm. The details can be found in the respective
papers. Although attractive, this algorithm shares the important drawbacks of the EM
algorithm, that is, the convergence is local and slow. Additionally, their algorithm was
developed without taking special care of the time (or space)-varying noise.

We developed a simple extension of their derivation to take the space-varying noise into
account [8]. This extension, however, further slows convergence down, since the pixels

must be considered one by one.

A. Source estimation

The next step is the estimation of the source maps, using the parameters estimated by
minimizing the KL-divergence in Equation (17). Attias suggests two schemes to perform

this step [1], namely, least squares and MAP estimation.

A.1 Least squares estimation of the sources

This estimate is given by the expectation of the sources, given the observation data. If

< +|- > denotes the conditional expectation operator, we have

st(y) =<xly >= /dx x p(x|y, W) (18)
where

p(xly, W) = Zgp(aly)p(x|a,y) (19)

Evaluating the integral, we obtain:

x"(y) = Eq(Aqy + bg) (20)

where
A, = (HATH+V ) 'HTA! (21)
by = (H'ATH+Vy) 'Vq lug (22)

February 19, 2002 DRAFT



SOURCE SEPARATION USING IFA 15

A.2 MAP Estimator

The posterior density of the sources given the observation data is maximized

xM4P (y) = argmaz,[log p(y|x) + 1, log p(z;)]. (23)

Attias suggests solving this equation by a gradient ascent technique, where the estimate

is incremented at each iteration by
0% = nH" A\ (y — HX) — 6(x) (24)
where 7 is the learning rate and

0log p(x;) n; Ti — Mig;
() = T on _E(h:lp(%mi)Tiq (25)

IV. SimuLATION RESULTS WITH EM LEARNING

In this section, we report our IFA performance study, first with synthetic data and then

with our simulated astrophysical data.

A. FEzxperiments with Synthetic Data

As a first step, we aimed at understanding the behavior of IFA on the recovery of
synthetic sources sampled from Gaussian mixture densities. We generated two synthetic

source sequences of length 30000 with the following parameters:

p=1[01 —1], pe =100 2 -2,
o1 =[0.010 0.200 0.200], o5 = [0.020 0.300 0.300],
w; = [0.5385 0.23080.2308], w» = [0.5714 0.2143 0.2143]. (26)

The noise in both channels generated from a Gaussian distribution with mean u, = 0 and
standard deviation o, = 0.01.
We tried to estimate all parameters using the EM algorithm suggested by Attias [1].

The mixing matrix was

0.7000 0.5000
0.6000 0.8000

(27)

February 19, 2002 DRAFT



SOURCE SEPARATION USING IFA 16

g|channel| w W

1 1 0.5385]0.1403

2 0.571410.0000

2 1 0.2308]0.7105

2 0.214310.0000

3 1 0.2308|0.1492

2 0.2143|1.0000

TABLE 1

COMPARISON OF REAL AND ESTIMATED MIXTURE COEFFICIENTS

and the result obtained

0.4686 0.7347
H= . (28)
0.3622 1.1483

Although the estimated mixture matrix is different from the actual one, one should keep in
mind that IFA can estimate only up to a scale factor. If we take the ratio of the elements

of H and H; we obtain:
H 0.6695 1.4695
— = (29)
Ho | 0.6037 1.4354
Note that the elements in the same column are scaled with approximately the same factors.
This good performance is not repeated in the estimation of the source parameters. The
results are provided in Tables I, II, and III. These estimates are clearly very poor.
Although the above results could seem encouraging as far as the estimation of H is
concerned, we observe that the noise level was in this case very low. Increasing o,, would
also result in an unsatisfactory estimate for the mixing matrix.
In real situations, some prior knowledge could be available on the source distribution.

This is the case, for example, with the particular application we are considering here. Then,

we assumed to have a perfect knowledge of the coefficients in the source model, and assessed
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g|channel| u il

1 1 0.0 | 1.6902

2 0.0 | 3.6228

2 1 1.0 {-0.0321

2 2.0 | 3.6228

3 1 -1.0|-1.7308

2 -2.010.4244

TABLE 11

COMPARISON OF REAL AND ESTIMATED MEANS OF THE MIXTURE COMPONENTS

g|channel| o o

1 1 0.01]0.1382

2 0.02]0.0014

2 1 0.2 {0.1537

2 0.3 {0.0014

3 1 0.2 |0.1664

2 0.3 {1.0000

TABLE III

COMPARISON OF REAL AND ESTIMATED STANDARD DEVIATIONS OF THE MIXTURE COMPONENTS
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the performance of IFA with EM learning in the case where the only mixing matrix H is
left unknown. We thus fixed the source parameters at the values shown in Equation (26),
calculated the data maps by using the same mixing matrix as in Equation (27), and
finally tried to estimate H by means of the EM algorithm. In Figure 6, we give the source
histograms before and after mixing, and the histograms of the estimates after 100 EM

iterations, again, with o, = 0.01. The estimated mixing matrix was

0.6690 0.4600
H-= . (30)
0.5692 0.7515

H 0.9557 0.9200
= = . (31)
Ho | 0.9487 0.9394

It is clear that this is a very good estimate. The performance of this algorithm as a

function of noise was studied by defining the following matrix
J=(H"H)"'H"H,. (32)

The ratio between the mean square value of the off-diagonal elements to the mean square
value of the diagonal elements in J is assumed as an indicator of the estimation error. In

Figure 7, we show the behavior of this indicator as a function of the noise level.

B. Experiments with realistic Data

We also investigated the performance of the EM learning algorithm on our simulated
astrophysical images. We started with experiments on mixtures of two sources only, first
on mixtures of CMB and galactic dust, then on mixtures of CMB and synchrotron. The
noise was assumed space-variant, with an RMS map of the type shown in Figure 4.b.
When all the parameters are assumed unknown, the technique is not able to separate the
source maps. Figure 8 gives one particular result as an example. We have also seen that
the mixing matrices were not estimated correctly. We believe that the reason for this
behavior is that EM algorithm got stuck at a local minimum.

We then ran simulations for the case where all mixture parameters were fixed and the
mixing matrix was left unknown. The mixture parameters were set to the values suggested

by our prior knowledge about the sources. We observed that the convergence of the EM
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learning algorithm depends on the initial points. Although the convergence is fast, it

might be to a local optimum. The original mixing matrix was as follows:

1.0000 1.0000
1.1400 0.6800

And, for a good initial estimate, the algorithm converged to the following matrix

1.1623 1.2985

= (34)
1.3251 0.8109
The ratio of the estimated to the original matrix is
H 1.1623 1.2985
= . (35)

Hy | 11624 1.1925

Figure 9 shows the CMB and dust sources, their mixtures, and the source estimates
obtained by IFA. One should also note that we modified the IFA algorithm given in [1] to
take non-stationary noise into account.

The results shown in this section suggest us that EM learning is not an ideal technique
for realising IFA estimation when the number of unknown parameters is too large. On one
hand, EM is known only to assure convergence to a stationary point. This means that,
when a large number of unknowns increases the number of local minima, the choice of the
starting point is crucial for a correct convergence. As mentioned above, this consideration
has been confirmed by our experiments. Based on these observations, we decided to
attempt minimizing the error function using a global optimization technique, such as

simulated annealing.

V. SIMULATION RESULTS WITH SA LEARNING

The simulated annealing (SA) optimization strategy was suggested in the 80’s as a
global optimization algorithm and obtained success in wide application areas [9]. The IFA
formulation specifically lends itself to be implemented by a simulated annealing algorithm.
We are carrying out simulations on synthetic data, but at present we are still having
problems to tune the annealing schedule for the case where all the parameters are left

unknown. We observed, however, that SA is more robust than EM against noise when the
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only the mixing matrix is to be estimated. As an example, when the noise RMS value was
set at 20% of the RMS measured signal, EM did not obtain any useful result. Conversely,
a fairly good estimate of H was obtained by SA.

For one case, with CMB-synchrotron mixtures, the true matrix was

1.0000 1.0000

0= (36)
1.1400 2.8100
and the estimation result was
1.0266 0.7122
= (37)
1.1616 2.4025
and
H 1.0266 0.7122
= (38)

Ho | 1.0189 0.8550

For one case with CMB-dust mixtures, we had

1.0000 1.0000
H, = , (39)
1.1400 0.6800

0.9630 0.7450
H= , (40)
1.1035 0.3834
H 0.9630 0.7450
— = (41)
Ho | 0.9680 0.5638
As is easily seen, the first column of H, which contains the mixing coefficients for CMB
is always estimated fairly well. The second column contains the mixing coefficients for
the synchrotron and the dust maps, respectively, in the two cases. These radiations are
sensibly weaker, and thus more affected by noise, than the CMB radiation. For this reason,

the errors in the estimation of the second column of H are larger than the ones for the

first column.
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VI. DISCcuUSSION

In this paper, we studied the performance of the independent factor analysis technique
for component separation in astrophysical images. We first studied the statistical dis-
tributions of some typical astrophysical sources and showed that the Gaussian mixtures
provide a very suitable model. Then, we studied the performance of IFA with an EM
learning algorithm on synthetic data and showed that, although it is very successful when
the parameter space is small, it shows a severe performance degradation when the size
of the problem increases. When all the parameters are left unknown, this observation
has been confirmed by our experience with images that realistically simulate astrophysical
data. In this case, choosing good starting points could improve the estimation, but our
experience showed that the error surface is too complicated to make feasible the search for
such starting points. However, if the mixture parameters are fixed to a priori known values
the convergence is reasonably fast and accurate, even though it results highly degraded
when the noise level increases.

We are not yet able to say whether an SA learning is capable to avoid these drawbacks.
As far as noise is concerned, we noted that SA performs better than EM, independently
of the starting point chosen.

Another side issue is that, in our discussions, we ignored the spatial correlation in the
images. Actually, the correlation between neighboring cells potentially carries important
information, and the inclusion of spatial dependence in the source model is one of our

future research directions.
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Fig. 6. Experiments with synthetic Gaussian mixture sources. Top row: Densities of two Gaussian
mixture sources; middle row: densities of the observations after mixing and addition of noise; bottom

row: density of the estimated sources.
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Fig. 7. Noise-dependence of the IFA algorithm performance.
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Fig. 8. Separation of CMB+Dust mixture with all the IFA parameters unknown. Noise as in Fig. 4,

average SNR=30dB. Top: original sources. Middle: Mixtures. Bottom: source estimates.
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Fig. 9. Separation of CMB+Dust mixture with fixed mixture parameters. Noise as in Fig. 8. Top:

original sources. Middle: Mixtures. Bottom: source estimates.
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