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Abstract: The aim of this study was the evaluation of two different procedures for the one-pot 
transformation of oil extracted from Citrus limon seeds to a mixture of fatty acid methyl esters (FAMEs) 
and glycerol derivatives for application as a potential biofuel. Lemon seed oil was obtained by Soxhlet 
extraction. The first procedure was realized by efficient irreversible transesterification of the oil in 
hexane by lipase B from Candida antarctica (Novozym 435®) using dimethyl carbonate as the alcohol 
donor. For the realization of the second methodology an acid-catalyzed transformation was carried 
out, dissolving the seed oil in methyl tert-butyl ether in a microwave tube using Amberlyst®-36 dry form 
catalyst. Both procedures, in optimized conditions, led to the complete conversion of the triglycerides 
to give the corresponding FAMEs and a mixture of glycerol derivatives. The absence of free glycerol in 
the final mixtures makes the two herein described procedures considerably advantageous in terms of 
both cost and sustainability since they enable performance of the production of FAMEs without requiring 
steps to remove glycerol. These final mixtures may be used in the energy chain and exploited as biofuels. 
© 2022 The Authors. Biofuels, Bioproducts and Biorefining published by Society of Industrial 
Chemistry and John Wiley & Sons Ltd.
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Introduction

T
he genus Citrus with its 1300 species can be considered 
as one of the largest fruit crops worldwide, with a 
global year production in 2019 of 143 755.6 million 

tons (2864.97 million tons of which were in Italy), 11% of 
which comprised lime and lemon.1 Southern Italy plays an 
important role, covering up to 6.5% of world production. 

About 33% of the whole world production is destined for 
processing for the production of juice and essential oils. 
This turns into a huge production of Citrus processing waste 
(CPW), representing peel, seeds and residual pulp, amounts 
to 50–60% of the processed fresh fruit.2 Since the origins of 
the Citrus processing industry, CPW has been used mainly as 
animal feed.3 However, its use is limited by the high degree 
of humidity, which makes transfers from production sites 
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to those of use expensive. Moreover, the variable availability 
linked to its seasonal production leads to costs to have it 
available throughout the year.4 Citrus processing waste can 
also be used for agronomic purposes as a soil conditioner or 
as a base for the production of compost.

The use of CPW for biogas production has been 
investigated. However, both its rapid acidification and 
inhibiting effect owing to the presence of limonene remain 
problems to be overcome.5 Recently novel extraction/
purification techniques for obtaining bioactive compounds 
such as polyphenols, fibers, pectins, carbohydrates, sugars, 
citric acid, vitamins and limonoids have been developed, but 
at present they manage to transform only limited quantities of 
product. For these reasons, much attention is still being paid 
to the design of new forms of exploitation of this waste, using 
innovative and environmentally sustainable strategies.6,7 
Citrus processing waste from lemon can contain up to 5% by 
weight of seeds,8 which can be considered as an interesting 
source of quality seed oil9 and different extraction methods 
have been investigated. The yields and properties of cold 
pressed vs. solvent-extracted Citrus limon L. seed oils were 
recently compared10 as well as supercritical carbon dioxide-
extracted oil.11,12

Citrus seed oil has experienced increasing interest in 
relation to its chemical composition, but especially for its 
content of fatty acids and in particular for the high content 
of polyunsaturated fatty acids that makes it a potential and 
interesting source of vegetable oil.13 Conversely, the presence 
of substances with a strong bitter taste, such as flavonoids 
and limonoids,14 is a serious limiting factor for direct 
human consumption.15 For this reason, it is necessary to 
hypothesize a different use for this type of oil, such as using 
as a high added value active ingredient in the nutraceutical 
and cosmetic field. On the other hand, in an era in which the 
substitution of fossil fuel sources pushes us toward the search 
for new renewable energy sources, it is reasonable to consider 
non-edible seed oils also as a potential source for biodiesel 
production.16,17

Biodiesel is an advanced and renewable clean-burning 
biofuel alternative to conventional petroleum diesel because 
it can be used directly in conventional diesel engines.18,19 
The performance, efficiency and long-term preservation 
of diesel engines depend on the lubricity of the fuel itself. 
In traditional petroleum diesel the lubricity is due to the 
content of polycyclic aromatic hydrocarbons; however, their 
combustion generated pollutant emissions.20,21 Despite 
having a negligible aromatic content, biodiesel has a good 
lubricating power and an high cetane number, which 
are parameters linked to its high combustion efficiency 
with low emission from polycyclic aromatic hydrocarbon 

combustion.22–24 Furthermore, biodiesel has a low sulfur 
and nitrogen content, which is in line with the mandatory 
environmental specifications for fuels introduced by the EU 
Directives in terms of low emissions of sulfur and nitrogen 
oxide (NOx) pollutants.20,25–28

Biodiesel consists of fatty acid alkyl esters produced by the 
catalytic transesterification of triglycerides with an alcohol, 
such as methanol or ethanol. Most current industrial 
transesterification processes use alkaline chemical catalysts 
that are inexpensive and give high levels of conversion 
in short reaction times, but are not directly suitable 
for vegetable oils with high contents of free fatty acids, 
leading to the formation of soaps and causing both the 
catalyst deactivation (neutralization) and serious problems 
concerning the recovery of the final desired product. Usually, 
for such cases, it is necessary to use a two-step process: the 
first step converts the free fatty acids by acid catalysis to 
the corresponding fatty acid methyl esters (FAMEs) and 
then the second leads to transesterification through a basic 
catalysis.29–34 A further issue to address is the inevitable 
production of glycerol as the co-product (about 10% of 
produced biodiesel), which must be removed and whose 
formation impacts on the cost of the entire process.35,36

Enzymatic transesterification eliminates several of these 
drawbacks and yields a high-purity product, with the 
catalyst often readily recovered and re-used.37,38 The use 
of non-edible oils for biodiesel production from a circular 
economy point of view has additional benefits such as 
treatment of a waste product and the efficient use of a 
resource.

The aim of this study was to develop two different strategies, 
an enzymatic and a chemical one, for the production of 
glycerol-free biodiesel, using as starting material C. limon L. 
seeds oil.

Experimental section

Plant material

Seeds of C. limon L. were kindly supplied by Ditta Lucchesi, 
Aci Catena (CT), Italy.

Chemicals

All purchased chemical reagents were of analytical grade 
and used as received. Lipase B from Candida antarctica 
(Novozym® 435; CALB) and Amberlyst®-36 dry form were 
kindly gifted by DowDuPont™ (thanks to Dr Klaus-Dieter 
Topp and Dr Antonio Arzu), and diethyl carbonate was 
supplied by Fluka.
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Seed oil Soxhlet extraction

Citrus limon seeds were washed, finely crushed and then 
freeze-dried. The dry material (100 g) was subjected to 
Soxhlet extraction with hexane (1 L) for 3 h. The solvent was 
then removed with a rotating evaporator providing 19.34 g of 
C. limon seeds oil.

Transesterification of seed oil by solid 
acid catalysis

A sample of the selected oil extracted from C. limon seeds 
(1.5 g) was dissolved in methyl tert-butyl ether (MTBE; 
1.6 mL, d 0.744 mg/mL; 24.5 mmol). It was poured into a 
microwave tube and Amberlyst®-36 dry form (30 mg) was 
added to the resulting solution. The reaction mixture was 
irradiated in a microwave reactor, pre-set at 20 W (in the 
preferred conditions, the maximum temperature limit was 
set at 130°C) until the complete conversion of the substrate 
(3 h). The trend of the reaction was monitored by the HPLC 
method as previously described.

The GC analysis of the final mixture showed the FAME 
composition and the presence of both di- and mono-tert-
butyl glycerol ethers.

Enzymatic transesterification of seed oil 
by an irreversible procedure

To a 12 mL vial containing 2.5 mL of hexane were added 
50 mg of seed oil (0.55 mmol) and 10 μL (0.11 mmol) of 
dimethyl carbonate as the alcohol donor. Then 25 mg of 
Novozym® 435 and 1 μL of methanol were added to start 
the reaction. The mixture was kept in shaker at 45°C and 
300 rpm. The course of the reaction was monitored with 
TLC analysis of the reaction mixture using as eluent a mix of 
hexane–ethyl acetate with a 9:1 ratio. After 15 h, the complete 
conversion of triglycerides to the corresponding FAMEs was 
observed and the reaction was stopped by filtering off the 
lipase. The GC analysis of hexane solution showed the FAME 
composition.

HPLC procedure for monitoring the 
biocatalyzed transesterification

The course of the reaction was carried out with an HPLC 
procedure using a Varian 9010 instrument equipped with an 
Alltech 3300 evaporative light scattering detector (ELSD). A 
Luna C18 column from Phenomenex (250 × 4.6 mm, 5 μm 
particle size) was used for the separation of triglycerides and 
FAMEs. The HPLC conditions were as follows: eluent A, 
MeOH; eluent B, CH2Cl2; gradient: 0–3 min (A–B/80:20), 
3–18 min (A–B/30:70), 18–23 min (A–B/30:70); at a flow of 

1 mL/min. The ELSD was set to a probe temperature of 40°C, a 
gain of 16, and the nebulizer gas nitrogen adjusted to 1.5 L/min.

GC analysis of FAMEs

An aliquot of the reaction mixture was injected on a 
Shimadzu GC-17A equipped with a fused-silica capillary 
column from J&W Scientific (INNOWAX, 30 m, 0.25 mm, 
0.25 μm); nitrogen was the carrier gas. The reaction mixture 
was analyzed using the following temperature program: 
160°C for 1 min; 160–250°C at 2°C/min; and 250°C for 5 min. 
The injector and detector temperatures were 250 and 280°C, 
respectively. The identification of different FAMEs obtained 
by the enzymatic transesterification process was achieved by 
referring to the chromatograms of standard compounds.

Results and discussion

FAME production by irreversible 
esterification with C. antarctica lipase B 
(Novozyme 435)

Biodiesel is becoming ever more attractive because of its 
environmental benefits and the fact that it is made from 
renewable resources. Classically, the literature reports four 
primary ways to make biodiesel from vegetable oils: direct 
use by blending or microemulsions, and transformations by 
thermal cracking (pyrolysis) or transesterification.39,40 The 
most commonly used method is the basic- or acid-catalyzed 
transesterification of vegetable oils (and animal fats), which 
is affected by many parameters such as the molar ratio of 
glycerides to alcohol, the reaction temperature, the reaction 
time, the need for catalysts and the free fatty acid and water 
content of the lipids.

In general, biodiesel production via this commonly 
established chemical transesterification is an energy-intensive 
process, with difficult downstream operations owing to the 
formation of soaps when operating in basic conditions, and 
the further disadvantage of being a reversible process (Fig. 1), 
which does not allow exhaustive conversion.

An alternative to chemical transesterification is represented 
by the enzyme-catalyzed process that is often considered 

Figure 1. Progress of triglyceride trans-esterification by 
conventional chemical transformation.



C Drago et al. Original Article: Glycerol-free biodiesel from lemon seed oill

4 © 2022 The Authors. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.  

|  Biofuels, Bioprod. Bioref. (2022); DOI: 10.1002/bbb.2412

more advantageous than the other methods because of its 
mild reaction conditions, higher quality of products, no 
wastewater generation, no saponification and easy product 
recovery. The main component of this reaction is an enzyme 
called lipase which can catalyze the trans-esterification of a 
wide variety of substrates, including free fatty acids. Biodiesel 
preparation catalyzed by the enzyme is affected by many 
factors, such as lipase specificity and immobilization, the 
oil composition and purity, the oil to acyl acceptor molar 
ratio, acyl acceptors, temperature and the water content, and 
while it remains an equilibrium process, we have developed 
strategies that allow to lipase biocatalyzed esterifications of 
fatty acids to be carries out in an irreversible way through 
the use of specific alcohol donors, such as alkyl carbonates or 
trialkyl hortoformates, that consume the water that originated 
in the reaction, pushing the equilibrium of the reaction 
toward an irreversible trend.41–43

Analogously in this work, a procedure for the 
transesterification of triglycerides of lemon seed oil with 
dimethyl carbonate as an alcohol donor and immobilized 
lipase B from CALB as the catalyst has been applied. The 
aforesaid process is irreversible because the intermediate 
compound, namely carbonic acid monoacyl ester, 
immediately decomposes to carbon dioxide and an alcohol 
(Fig. 2), and no glycerol by-product is obtained since it is 
transformed into glycerol carbonate that is completely soluble 
in the final mixture, being consequently homogeneous and 
representing an interesting potential biodiesel additive.44

An HPLC procedure was used to monitor the progress 
of the transesterification reaction. Aliquots of the reaction 
medium were taken at different times and analyzed by HPLC. 
After 24 h, 98% of the triglycerides had been converted to 
FAMEs (Fig. 3).

The biodiesel characterization by GC analysis (Fig. 4) 
showed the following relative concentrations of FAMEs: 
21.4% palmitic-Me; 3.7% stearic-Me; 29.2% oleic-Me; 36.3% 
linoleic-Me; 8.9% linolenic-Me; and 0.5% arachidic-Me. The 
biocatalyst used for the process of transesterification kept its 
activity unchanged for five cycles. It is interesting to note that 
the unsaturated fraction represents 74.4% of the fatty acids, 
making this oil very interesting and potentially valuable also 

for other applications in the nutraceutical or pharmaceutical 
fields.

FAME production by microwave-assisted 
heterogeneous catalytic transformation

In parallel to the biocatalyzed transesterification process, we 
developed an alternative microwave-assisted heterogeneous 
catalytic route for the production of biodiesel from lemon 
seed oil, applying a procedure developed in our laboratories 
some years ago: a one-pot microwave-assisted transformation 
of vegetable oils to a mixture of FAMEs and glycerol ether 
derivatives, using commercially available MTBE.36 This 
transformation was reported to be catalyzed by amorphous 
silica oxide functionalized with 10 wt% sulfonic groups. 
In this process, MTBE represents the single source both as 

Figure 2. Irreversible triglyceride trans-esterification by 
lipase-catalyzed transformation.

Figure 3. Progress of triglyceride transesterification by 
enzymatic transformation.

Figure 4. GC profile of fatty acid methyl ester production by 
enzymatic transformation.
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a transesterification and as a trans-etherification reagent, 
with the success of the process depending on the acidic 
catalyst’s ability to perform simultaneously and effectively 
three distinct processes: the decomposition of MTBE; 
the transesterification of the triglycerides; and glycerol 
etherification (Scheme 1). The process was also found to be 
suitable for the transformation of acidic vegetable oil without 
any preliminary treatment. To optimize this reaction, we have 
investigated many kind of heterogeneous acid catalysts45 and, 
according our results, the commercially available polystyrene 
sulfonic acid resins (beads) such as Amberlyst®-36 dry form 
are a very good compromise between efficiency and stability.

Therefore, we moved on to the investigation of the 
microwave-assisted heterogeneous catalytic transformation of 
two different kinds of oil extracted from C. limon seeds using 
analogous reaction conditions of the previously developed 
process, and Amberlyst®-36 dry form as the catalyst.

The mixture of each of the two oil samples and MTBE 
in the presence of a catalyst (1.5–2.0% w/w) was treated 
under microwave irradiation. The maximum temperature 
and pressure limits on the microwave reactor were set at 
130°C and 20 bar, respectively, starting from a power of 
20 W. The process quickly reached the limits of pressure and 
temperature thanks to the rapid decomposition of MTBE into 
isobutene and methanol, while the trend of the microwave 
power varied between 15 and 20 W along the entire process 
time. After 3 h, the complete conversion of triglycerides into 
a mixture of FAMEs and glycerol derivatives was observed 
(Fig. 5), mainly composed of m-GBTE [(±)-3-tert-butoxy-
1,2-propanediol[ and d-GBTE {1,3-bis[(2-methyl-2-
propanyl)oxy]-2-propanol, ratio ~60:40}. No trace of glycerol 
was detected, as required by our primary objective. While 
the miscibility of oil and MTBE makes the reaction faster, the 
driving force behind the efficiency of the whole process is due 
to many interrelated factors that limit the reversibility of the 
entire process as we have previously described.36

As for the modulation of the operating conditions, keeping 
the oil–MTBE ratio constant (almost 1:12 mol/mol), the 
quantity of catalyst of 2% (w/w) seems to be a reasonable 

compromise since, by reducing it, the reaction takes longer 
to complete, otherwise increasing it will not improve the 
process.

Finally, concerning the modulation of the microwave 
operating conditions, by reducing the pre-set maximum 
temperature, a decrease in internal pressure was observed, 
partly owing to the lower rate of isobutene formation, which 
slows down the entire transformation process. At a pre-
set temperature below 100°C, after 3 h, we observed just a 
negligible triglyceride transformation to the corresponding 
FAMEs.

Conclusions

Herein, two different and efficient processes to convert oil 
extracted from C. limon seeds to a glycerol-free biodiesel 
have been reported. There are several reasons making 
these processes very attractive, in terms of both cost and 
sustainability.

Fatty acid methyl ester production by irreversible 
esterification catalyzed by CALB is a very convenient 
procedure, in fact, it is possible to use oils of different origins 
also with a high degree of acidity, as the mild reaction 
conditions allow transesterifications to be obtained without 
side-products, and above all for the simplicity of the process.

The commercially available polystyrene sulfonic acid 
catalyst, in combination with microwave radiation, is able to 
provide an effective transformation of the above-mentioned 
extracted oil to a mixture of FAMEs and glycerol ethers, 
without any pre-treatment. The obtained mixture, which 
is glycerol free, is separated from the solid catalyst through 
a very simple filtration. The excess of both TBME and 

Scheme 1. Decomposition of methyl-tert-butyl ether, trans-
esterification of triglycerides and glycerol etherification.

Figure 5. GC profile of fatty acid methyl ester production 
and glycerol ethers by microwave catalytic transformation.
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isobutene is simply recovered by a proper distillation, and 
then reused.

In conclusion, the absence of free glycerol in the final 
mixtures makes the two described heterogeneous catalytic 
processes remarkably advantageous in terms of both cost 
savings and sustainability since they allow the production of 
FAMEs to be carried out without requiring steps to remove 
it. Both processes allow for easy recovery and the reuse of 
the catalyst itself, and the heterogeneity of both catalysts 
allows for easy reactor design and an affordable potential 
industrial process. In both examples, the final blends obtained 
are suitable for direct exploitation in the energy chain as a 
biofuel because they have the advantage of avoiding the post-
treatment that is otherwise required on traditional plants for 
biodiesel production.
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