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Abstract—Detecting the dynamics of the social interaction
represents a difficult task also with the adoption of sensing devices
able to collect data with a high-temporal resolution. Under this
context, this work focuses on the effect of the body posture
for the purpose of detecting a face-to-face interactions between
individuals. To this purpose, we describe the NESTORE sensing
kit that we used to collect a significant dataset that mimics some
common postures of subjects while interacting. Our experimental
results distinguish clearly those postures that negatively affect
the quality of the signals used for detecting an interactions, from
those postures that do not have such a negative impact. We also
show the performance of the SID (Social Interaction Detector)
algorithm with different settings, and we present its performance
in terms of accuracy during the classification of interaction and
non-interaction events.

Index Terms—Social Interactions; Proximity; Bluetooth Low
Energy

I. INTRODUCTION

Mobile sensing devices offer the possibility of collecting
networking information with high temporal resolution. This is
the case of Bluetooth Low Energy (BLE) beacons, commonly
available on smartphones and wristbands. BLE beacons can be
used to estimate the proximity between devices, by analyzing
how the Received Signal Strength Indicator (RSSI) varies
along the time. Proximity can be used as a valuable proxy
for inferring if two subjects are interacting as discussed in
[1], [2]. An increasing number of commercial applications
rely on the proximity, in order to increase the user experience
(i.e., location-based services), but most of the solutions can be
affected by the way users wear the emitting and the receiving
device (e.g., smartphone, wristband, or a tag). In this context,
we measure the effect of the human posture on BLE beacons
emitted and collected with a wearable device.

People interact in the real-world very differently. As for ex-
ample, people can stand face-to-face during the whole duration
of the interaction, they can interact while walking standing
side-to-side, or they can dispose in circle. Furthermore, users
can change their posture suddenly in response to an external
event. With the term posture we refer to the body orientation
of the subjects involved, such as face-to-face, side-to-side or
a combination of them. The variety of such postures is quite
extended and it is not the intention of this work to cover all
the possible combinations. Our goal is rather to focus on some
common postures that subjects assume during an interaction,
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with the goal of measuring how the beacon’s signal strength
is affected by such postures.

In particular, we report our experience with the NESTORE!
sensing kit, specifically designed to collect and advertise BLE
beacons. The wristband listens and stores BLE beacons, while
BLE tags emit beacons. This work firstly describes a data
collection campaign that we carried out in our working place.
The dataset has been collected during three working days,
during which we reproduced interactions by varying how
the body position of the users. The dataset also provides a
pure-calibration session during which subjects wearing the tag
assumed 16 different postures. The analysis of this dataset
shows that some postures increase the signal strength of
beacons collected, as for example postures in which emitter
and receiver are on the same line of sight. We also found some
disrupting postures that reduce the quality of BLE beacons
recorded by the wristband. The results of our analysis with
the calibration session highlight the importance of considering
also the posture for the purpose of detecting proximity between
users. This work also presents the performance assessment
of the Social Interaction Detection (SID) algorithm. SID is a
cloud-based service, designed to periodically fetch and analyze
beacons collected with the NESTORE sensing kit. Data are
elaborated by extracting some statistical features of the bea-
cons collected. As a result, SID returns a time series of social
events (i.e., start and end of the interaction for every dyad) as
well as a summary of some useful metrics of the interactions
detected. The rest of the paper is structured as follows. Section
IT surveys recent advances from the literature addressing the
identification of social interactions with wearable devices.
Section III describes the experimental settings, we describe
the NESTORE kit and the dataset we collected. Section IV
analyzes how the posture affects the RSSI of BLE beacons
collected. Finally, Section V introduces the SID algorithms
and its performance in terms of accuracy.

II. RELATED WORK

Automatic proximity detection is usually based on wearable
technologies, mostly as custom hardware (e.g., the SocioPat-
terns® platform [3], [4], based on RFID emitters/receivers, the
Sociometric Badge [5], [6], based on RFID and voice detec-
tors, and the Rhythm badge [7], based on custom Bluetooth).
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This kind of approach relies on a custom hardware design
which makes it difficult to think to a large-scale experiment.
Furthermore, both of the badges are based on the RFID
technology not always available on commercial smart phones
or wearable smart devices. A different approach is described
in [8] that uses a custom wristband based on standard BLE
beacons to detect social interactions. This approach is in line
with the architectural approached used in our work and it rep-
resents a step forward an easy integration in available off-the-
shelf devices [9], [10]. It is worth to notice another interesting
project named the Copenhagen Networks Study [11]. Such
study involved approximately 800 students from University
of Denmark for a period of two years. The study aims to
collect different kind of data through a mobile app. Among the
data collected, also the proximity among students is detected
by exploiting Bluetooth periodic scans and WiFi signals as
reported in [12]. Such work increases the dimension of the
experiments with a large dataset collected over the years.
Another interesting dataset collection is provided by [13], with
a fine-grained location estimates as ground truth and different
socialization scenarios.

Traditionally, the study of the effect of human body on the
signal propagation in the 2.4 GHz band is a trend topic in
the networking research area [14], [15]. This is still valid for
the BLE technology [16]-[18], but a study on the effects on
proximity and, in particular, in the social interaction detection
scenario is, to our knowledge, still missing.

ITII. EXPERIMENTAL SETTINGS

Data analyzed in this work are obtained by adopting the
NESTORE sensing kit. Such kit is the result of the design
and implementation phase carried out in the context of the
NESTORE EU project. Section III-A describes the hardware
we used, while Section III-B describes the resulting dataset.

A. The NESTORE sensing kit

The NESTORE sensing kit is composed by a wearable
device equipped with various kind of sensors, and two different
kind of BLE tags, as shown in Figure 1. The NESTORE
wearable device is a custom wristband specifically designed
for the purpose of this project. The device is powered by
a lithium battery with a wireless charging system and it
embeds a 32-bit MCU with BLE interface and various sen-
sors like a Heart rate PPG sensor, a 3-axis accelerometer
and a barometric altimeter. Thanks to the sensors set, the
NESTORE wristband can monitor constantly various user’s
parameters like instantaneous heart rate, steps count, climbed
steps, calories and then store all these information inside
the on-board flash memory. The heart rate parameters are
detected using a high-performance PPG sensor that, thanks to
the embedded algorithms, can precisely evaluate the kind of
activity, burnt calories and various information like HR zone,
HR recovery, resting HR, step rate and count, Vo2. Besides
this, the device periodically scans for the presence of nearby
beacons and, in case of positive detection, it stores all the
gathered information inside the flash memory. All the beacons

TABLE I: Hardware features of the NESTORE wristband.

Hardware features
32-bit Ultra Low Power MCU, with BLE interface
512 Mbit, NOR Flash memory
Valencell Benchmark Wrist, 1.2 PPG sensor

Core
Non-volatile memory
Heart rate sensor

Accelerometer Low Power 3-Axis 2g to 8g, MEMS Accelerometer
Barometer MEMS Digital Pressure Sensor, 300 to 1100 hPA
Display 0,96” TFT LCD with,80x160 dot resolution

Battery 95 mAh rechargeable polymer,lithium battery

MAC addresses are also stored inside the device memory, so
that the beacons detected can be precisely identified. Table I
reports the hardware features of the NESTORE wristband.

There are two kind of NESTORE BLE tags: environmental
and social. The first are designed to be deployed in different
locations (e.g. the fridge door, the entrance door, living room
or meeting office). Every environmental tag is equipped with
a 3-axis accelerometer used to detect any movement of the
object to which the beacon is attached (i.e door opened).
Moreover, tags periodically monitor temperature and humidity
by exploiting the on-board digital sensor. All the sensor
information and the battery level are periodically advertised
through the BLE interface.

Social tags are designed to detect interactions between
people. They can be locked on the key-chain. This kind of
tags are not equipped with any environmental sensor, rather
they periodically advertise BLE beacons as well as the battery
level through the BLE interface.

Fig. 1: The NESTORE wristband and BLE beacons.

The beacon advertising and the beacon scan are two opera-
tions with a high power consumption of the tag and the wrist-
band, respectively. In order to reduce the battery consumption,
both of the operations have to be optimized. In particular, the
scan period should be kept as short as possible, but at the
same time, enough to guarantee to collect enough beacons for
the analysis. Similarly, the beacons advertising should also be
reduced. An acceptable compromise of the duration of the two
operations is given by the following configuration:

o Wristband: scan duration 758 milliseconds, scan period

3 seconds;

o Beacons: advertising interval 350 milliseconds.
Therefore, every 3 seconds the wristband performs a beacon
scan of duration 758 milliseconds. While, tags advertise bea-
con every 350 milliseconds. With such a setting, our prelimi-



nary results show a balance between battery consumption and
an acceptable reduction of the beacon loss. More specifically,
we performed several runs of wristband’s scan period with the
goal of minimizing the battery consumption and maximizing
the amount of beacons collected. We report in Figure 2
the life-cycle of the advertisement and scan operations (both
environmental and social tags).
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Fig. 2: The life-cycle for emission and reception of BLE
beacons.

B. The Experimental Dataset

The dataset we collect comprises a calibration session and
two interaction sessions.

The goal of the calibration session is to collect BLE
beacons by varying the posture of the users involved. More
specifically, the first user stands in the same posture during all
the calibration session, while the second user assumes different
postures: 4 positions: North (N), East (E), South (S), West
(W) and 4 orientations: 0°, 90°, 180°, 270°, as reported in
Figure 3. As a result, we tested 16 different postures that,
in our opinion, cover the majority of the layouts commonly
adopted when users interact in the real-world. Users stand on
the same posture for 4 minutes, as a result we collected a
total of 64 minutes of monitoring. The blue user in Figure 3
stands with the same posture for the whole duration of the
calibration session, while the user depicted in black moves
according to the different postures. Every row of Figure 3
reports the 4 positions, while columns report the 4 orientation.
During the calibration session, users stand 1 meter distance,
so that to mimic a volunteer interaction. Both of them wear
the wristband and one social tag. The user depicted in blue
wears the wristband of the left arm, while the user depicted
in black on the right arm. Both of them also wear a social tag
locked on their key-chain located front-side.

Differently, the interaction sessions reproduce a sequence
of face-to-face interactions between a pair of subjects. Such
sessions comprise a set of tests, and each test is designed
to mimic three common stages of a social interaction: Non
interaction, Approaching and Interaction as reported in Figure
4. More specifically, during the Non Interaction and Approach-
ing stages we assume that subjects do not interact, while only
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Fig. 3: Layouts of the calibration session.
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Fig. 4: Stages of a social interaction.

during the Interaction stage subjects are considered interacting.
Each test follows this protocol:
o Non Interactions: subjects stand at 3.5 meters distance
face-to-face for 1 minute;
o Approaching: subjects move at 2.5 meters distance face-
to-face for 1 minute;
« Interaction: subjects stand at 1 meter distance face-to-face
for 4 minutes;
o Approaching: subjects move back at 2.5 meters distance
face-to-face for 1 minute;
o Non Interactions: subjects move back at 3.5 meters dis-
tance face-to-face for 1 minute.
As a result, each test lasts for 8 minutes of which 4 minutes of
absence of interaction (stages: Non Interaction and Approach-
ing) and 4 minutes of Interaction. Each session is repeated for
5 tests. Tags are positioned differently for the two sessions:
o Session 1: tags locked on the key-chain front-side;
o Session 2: tags put on the back pocket.
Finally, we also tracked the ground-truth of the interaction
sessions, corresponding to the time periods during which the 2
users were actually interacting face-to-face. The ground-truth
is obtained by annotating the timstamp of the start and end
time of the social interaction.



IV. EVALUATION OF THE SIGNAL STRENGTH WITH
DIFFERENT POSTURES

The calibration session has the goal of analyzing how the
different postures, commonly assumed during a real-world
interaction, influence the quality of the collected data. In
particular, we focus on the effect of the body on the attenuation
of the RSSI of received BLE beacons. Figure 5 shows the
mean of RSSI values collected at the four positions (S, E,
N, W) and at the four orientations (0°, 90°, 180°, 270°)
of the moving user (depicted in blue), with respect to the
standing user (depicted in back). The four points on each grid
represent the mean values of RSSI collected by the receivers
of both the moving and standing user. The red dots represent
the position of the device on the user. As can be seen from
the figure, the RSSI drops from a max value of -65 dBm
(as average over the 4 minutes of data collection per each
posture) to -80 dBm, in the best configuration (receivers facing
the emitters) and worst configuration (bodies back to back),
respectively. It should be noted that the calibration session has
been carried out at 1 m distance between the two users, but
nevertheless the inherent characteristics of the BLE signal’s
propagation (i.e., multipath fading) strongly affects the quality
of the signal in terms of overall power, especially in the
reference scenario configuration (i.e., low power transmitting
and receiving antennas in order to optimize energy). Besides
the effects of the cluttered environment in which the dataset
has been collected, Figure 5 confirms a clear attenuation effect
of the human body when interrupting the line of sight of the
devices, like in the combinations (position, orientation): (W,
0°) and (S, 0°) in Figure 5a, (E, 90°) in Figure 5b, (N, 180°)
and (E, 180°) in Figure 5c. Furthermore, we can observe that
also the position of the device influences the signal strength
of the BLE beacons: it is explanatory the case of orientation
270°n Figure 5d in which we can see how, even when the
moving user faces the standing user, the RSSI fluctuation
remains similar, with low values, in all the positions.

V. DETECTING SOCIAL INTERACTIONS

We now analyze the effect of different user’s postures for
the purpose of automatically recognize a social interaction. To
this purpose, we first describe the SID algorithm that we used
for this analysis (see Section V-A) and then we study how tags
positioned differently can affect the performance of SID (See
Section V-B).

A. The SID Algorithm

SID has been designed and developed in the context of
the NESTORE [19] project. SID has been implemented by
exploiting the experience gained with the SME-D algorithm,
originally presented in [20], but with a complete different
architecture, design and hardware adopted. SID performs two
core operations:

o to fetch BLE Beacons from the backend;

« to analyze the data collected and to recognize the inter-

actions.

SID can fetch data by using different data providers. We imple-
mented three providers: CSV, MongoDB, and the NESTORE
provider. All of them are supposed to provide a sequence
of beacon readings with the following format: timestamp,
identifier of the receiving device, identifier of the emitting
device and RSSI in dBm. SID is implemented as a Cloud-
based service. It is deployed on a virtual machine and it
periodically performs the two operation previously described.
SID provides a set of Java Management Extension (JMX)
interfaces in order to control remotely its behaviour.

SID analyses the beacons’ readings in order to detect when
two subjects are co-located. e.g. they are close to each other
at the same time. In turn, the co-location is used to infer the
existence or the absence of an interaction event as analyzed in
[1]. SID firstly starts a profiling operation, during which the
algorithms retrieves the list of users wearing a wristband and
the tags. Such information are used in order to retrieve from
the NESTORE provider all the beacon readings from each of
the users. Then, SID analyzes for each user the data its device
provides. More specifically, SID analyzes two properties of
the beacons collected from the NESTORE wristbands, namely
the loss rate and the RSSI of the beacons received. The
beacon loss rate allows SID to consider chucks of data with
at least the p% of the expected beacons. While the second
properties checks for some statistics about the RSSI of the
beacons received, in particular we consider the mean value
that is expected to exceed p dBm. If the two properties hold,
then SID logs an interaction, by reporting the following infor-
mation: [timestamp, user, partner, start/endinteraction)].
SID checks that the interactions is preserved along the time
up to its end.

B. Effects of Posture on the SID Algorithm

We now further investigate the effect of the position of
the Bluetooth tag presented in Section IV. To this purpose,
we execute the SID algorithm with the 2 interaction sessions
described in Section III-B. Our goal is to show those differ-
ences emerging from 2 positions of the Bluetooth tags: front
and back pocket. More specifically, the sessions reproduce
a sequence of interactions between two users in an indoor
environment. During the first session, users place the tags on
the front pocket while on the latter case, users wear the tag
on their back pocket. We analyze the performance of SID, by
comparing the ground truth of the interaction sessions with
respect to the results provided by SID.

We measure the performance of SID by varying the beacon
loss rate p% and the threshold p. More specifically, we vary
p% with steps of 20 points, ranging from 10% to 90%, and
we vary p with steps of 2 dBm from -90 dBm to -60 dBm. For
each of the previous configurations, we compute the Accuracy
metric of SID. Figure 6a shows the results of SID with the
first session, while Figure 6b shows the results with the second
session. Each of the figures, shows the results from the 2 users
separately. Results from session 1 are plotted with values of p
ranging from -73 to -62 dBm since the Accuracy outside such
ranges is meaningless. In this case, the maximum Accuracy is
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Fig. 5: Postures of users at different positions (N,E,S,W) and different orientations (0°, 90°, 180°, 270°). The red dot represents

the position of the receiving device on the user.

of 85% and it is obtained with p = —66 dBm and p = 90%
(for both of the users). Differently, results from session 2 show
a very different behaviour with the two users. We plot the
Accuracy in a wider range with respect to session 1, ranging
from -90 dBm to -65 dBm. In this range, the Accuracy varies
more widely, the optimal Accuracy is obtained with different
values of p and p for the two users (user 1: p = —85 dBm, and
p = 70%, user 2: p = —75dBm and p = 30 %), but in both of
cases p and p remarkably differ from the optimal ones found
with scenario 1. In particular, we observe that the maximum
Accuracy in scenario 2 is obtained with p = —66 dBm and
p = 90% is 75%, about 10% lower than that of scenario 1.
We consider that such differences are mainly caused by the
attenuation of the RSSI due to the position of the tag.

VI. CONCLUSIONS AND ONGOING WORKS

Detecting social interactions at realistic conditions is chal-
lenging. A promising approach, consists in inferring the exis-
tence of social interactions between subjects, by detecting their
proximity. This approach can be implemented by exploiting
short-range network interfaces such as Bluetooth Low Energy.
Under this context, BLE beacons are a cheap, commercial and
energy-saving solution. We study in this work the effect on
the signal strength of beacons collected with the NESTORE
sensing kit. We first describe our experimental dataset and then
we show how 16 different postures affect the quality of the
BLE beacons recorded with the NESTORE wristband. As a
further analysis, we show the impact of two typical scenarios
to the performance of the SID algorithm designed to detect
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Fig. 6: Accuracy of the

automatically social interactions. We show how the Accuracy
varies when the emitting device is positioned on the front and
on the back pockets, and we show how the optimal setting
for a scenario does not fit with respect to the second one.
The analysis done along this work, gives rise to further lines
of investigation. On the one hand, we are interested in under-
standing automatically the user’s posture, at least being able to
distinguish between standing user, walking user or sitting user.
Such contextual information can be exploited by SID in order
to adapt its settings to the current situation. Moreover, we are
also interested in combining learning mechanisms in order to
self-calibrate SID, so that to avoid to select an optimal setting,
rather to let SID decides the best configuration that minimizes
false positive and false negative answers.
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