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An Acoustic Pyrometer System for Tomographic Thermal

Imaging in Power Plant Boilers

Abstract: The paper presents an acoustic pyrometry method for the
reconstruction of temperature maps inside power plant boilers. It is based
on measuring times-of-flight of acoustic waves along a number of straight
paths in a cross-section of the boiler; via an integral 11‘*e1ationship, these
times depend on the temperature of the gaseous mediﬁm along the paths.
On this basis, 2D temperature maps can bé reconstructed using suitable
inversion techniques. The structure of a particular 'system for the
measurement of the times-of-flight is described and two classes of
reconstruction algorithms are presented. The algorithms proposed have
been applied to both simulated and experimental data measured in power
plants of the Italian National Electricity Board (ENEL). The results obtained
appear fairly satisfactory, considering the small data sets that it was

possible to acquire in the tested boilers.

1. Introduction

The availability of maps of the internal temperatures of a boiler is very
important in the design of low NOy combustion systems, as the presence of
hot spots increases NOy generation. However, the mapping of an industrial
boiler with a conventional probe is not an easy task and it is very difficult
to obtain a significant set of data.

Temperature maps can also be obtained using optical technologies, but

these technologies are complex and, moreover, cannot be used with all



kinds of fuel. For example, in coal-fired power plant boilers, optical
instruments cannot be used. |

Fortunately, acoustic pyrometer does not impose limits of this type and
measurements can be performed using a relatively simple instrumentation.
The acoustic pyrometer presented in this paper can function as a stand-
alone system in boilers whose power does not. exceed 80-100 MWe; for
larger boilers, the measurements must be taken by skilled operators.

An acoustic pyrometer system measures the times-of-flight (TOF) of
acoustic waves between several couples of points _placed on the walls of the
boiler. By using these data and suitable reconstruction algorithms, the
temperature map can be reconstruéféd for the entire probed plane.

In this paper, after a'. b'rief\‘ review of acoustic pyrometry theory, the
application of a number of | image reconstruction techniques to the
particular problem being examined is analyzed. Successively, the structure
of a particular acoustic pyrometer, installed at ENEL's Santa Gilla (Sardinia)
power plant, is described and the results obtained by applying the

considered reconstruction techniques to the measured data are presented.

2. Principles of acoustic pyrometry

The measurement of acoustic parameters to determine certain
thermodynamic conditions of a gaseous medium was first proposed in
1873 and has recently been developed by several authors (see [1, 2]). In
particular, if the TOF of an acoustic signal travelling between two fixed
points is known, then we can estimate the velocity of sound in the medium,
which is related to its temperature.

As is known, the velocity of sound in a gaseous medium at an absolute

temperature T is given by:




Vg = dp (2.1)

where P is the gas pressure and p is its mass-density. If the gas is ideal,
with a known temperature and chemical composition, and if we presume
that we have no heat transfer associated with the acoustic wave

propagation, (2.1) becomes:

RT
ve-\ & =zVT . | - (2:2)

where v is the ratio between the specific heats at constant pressure and
volume of the gas, R is the gas constant, and m is the moleculaf weight of
the gas.

Let us now suppose that the gas is contained in a power plant boiler, of
which we consider a particular cross-section with an associated two-
dimensional coordinate system x-y. If f(x,y) is the slowness function,
defined as the reciprocal of vg, the TOF of a sonic signal over a path p is

given by:

T = J f(x1), y)) dl | (2.3)
p
where 1 is a suitable curvilinear abscissa chosen on p. On the basis of TOF
measurements and of the knowledge of the path lengths, we can thus
evaluate the mean sound slowness over each path, and give an estimate of
the mean temperature in the boiler. If we have sufficient data available,
we can also apply reconstruction techniques to estimate function f(x,y) and
to map the behaviour of the temperature T(x,y) using relation (2.2). This

possibility will be discussed in Section 3.




Unfortunately, there are various sources of uncertainty that reduce the
reliability of the reconstruction. Apart from inaccuracies in the evaluation
of the physical parameters involved in (2.2), in practice each TOF will be
the result of a measurement procedure and will be affected by a
measurement error. Furthermore the sound paths in the boiler cannot be
known accurately as, by Fermat's principle, they depend upon the sound
velocity distribution in the medium, and this 1s ‘unkno“Wn. The only data
that we can obtain with true accuracy are the coordinates of the ends of
each sound path. Bending in these paths, which is due to the nonuniformity
of the velocity field, can be treated ﬁsing nonliﬁear imagé reconstruction
techniques (see, for example, [3])’: However, in our case, it has been
evaluated that this error source can be ignored providing the path does not
form large angles with the direction of the temperature gradient in those
regions where its magnitude assumes large values (typically in proximity
of the boiler walls). For this reason, in the following we will consider the
paths to be rectilinear. If necessary, this error can be corrected iteratively.

An analysis of the various error sources is reported in [2].

3. The reconstruction problem

As previously explained, an estimation of the temperature map requires
a reconstruction of the slowness function f(x,y) over the cross-section D of
the boiler probed by the sonic signal. The Ny TOF measurements available:

are related to the unknown function via the following line-integrals:

Sy = 1_" f(x,y) dlx +nx, k=1,.., Ny (3.1)
k



where, for any k, 1, is a straight path contained in D (see Figure 1) and n, is
the system noise, which is the sum of the various error terms affecting the
measurement. .

Our problem consists in the estimation of function f(x,y), given the data
vector g and the integration paths, and can be seen as a particular case of
the more general problem of image reconstruction from projections, widely
studied in medical imaging and in several other applicak‘tion fields [1, 3-6].
In our case, as the data set is norfnally very small, this problem can be

seen as image reconstruction from sparse samples of sparse projections.

3.1 Standard regularization approaches

The reconstruction of images is an inverse problem and is generally
recognizable as being ill-posed in the sense of Hadamard [7], in that the
existence, uniqueness and stability of the solution cannot be guaranteed. In
this case, the ill-posedness of the problem is mainly due to the non-
uniqueness and instability of the solution. Indeed, since the solution space
is infinite-dimensional while the number of data is finite, there will be an
infinite set of functions yielding the same data. Moreover, the presence of
the noise on the data can result in very poor solutions even if the
dimensionality of the solution space is restricted to that of the data space.

A possible step towards the computation of a unique solution might be
to expand f(x,y) over a finite set of continuous basis functions hm(x,y),'

namely to parametrize the solution:

N
fxy) = i a, h (xy) (3.2)

m=1




where a_ are the parameters of the model. By (3.2), we can re-write Eq.
(3.1) as:

N
g = i a, J. h_(xy) dl+n,, k=1,.,Ng ’ (3.3).
m=1 ]‘k

In this discrete formulation, our reconstruction problem becomes the
resolution of the linear system (3.3), where the N, para{ﬁleters a,, are now
the unknowns to be determined. In this case, the noise can also include a
third term resulting from the possibly inadequate parametrization.

Let us write Eq. (3.3) in vector form:

g=Ha+n . : (3.4),

where H is an Ng x Np matrix. If we ignore the noise, least squares or
pseudo-inverse solutions for (3.4) exist; however, these solutions are in
general highly noise sensitive, due to the typically ill-conditioned nature of
this kind of problem [8].

The basic strategy for selecting a solution that is unique and robust
against noise (i.e. regularizing the problem), is to restrict the class of
feasible solutions by imposing constraints that exploit any additional
information concerning the properties of the solution and/or the noise. The
most popular approach to regularization consists in reformulating the
problem as a well-posed, well-conditioned, constrained optimization.
problem [8, 9]. In practice, a cost functional, or stabilizer, representing
some measure of regularity in the solution, is optimized on the set of
images satisfying certain requirements, in the form of constraint maps.

As prior information, we assume that the variance & of the system

noise, assumed to be Gaussian, is known. This knowledge leads to the




formulation of a constraint relation on the vector a to be estimated. If C(a)

is the cost functional chosen, the problem may be formulated as:
minimize C(a) (3.5 a)

subjectto  lig - Hall? < Ng o2 ' (3.5 b).

The constraint (3.5 b) defines the set of feasible solutions as the set of
vectors a such that the residual, lig - HalP, is 1o greater than Ng o’ [6]. If
C(a) is a convex functional, then problem (3.5) has a unique solution, which
can be computed as the solution of an equivalent unconstrained

optimization problem:

min (g - Hall® + 2 C(a) (3.6)
a -

for a particular non-negative value of the regularization parameter A[7,
10]. Instead of calculating the exact value of A, we consider it simply as a
weight that determines a compromise between the regularity of the solu-
tion and its fit to the data. As a particular solution to (3.6) in the case Ng>
Np we have, for A = 0, the unconstrained least squares solution; in the case
Nq < Np, if C(a) = llall? and we let & go to O, we find the pseudo-inverse
solution [11]. |

We considered the stabilizer to be a quadratic functional of the form:

C(a) = liBall? (3.7).

In this case, if matrix (HTH + XBTB) is nonsingular, solving (3.6) results in [8,
111

4= ([ETH + xBTB)-l HT g (3.8).




Let us observe that H'H and BTB are positive semi-definite matrices and A
is a positive parameter; thus a sufficient condition for (H'H + ABTB) to be

nonsingular is that the intersection of the null spaces of H and B contains

only the null vector.

In our experiments, we chose the form of B so that the stabilizer (3.7)
represents an energy measure for the gradient of function f(x,y). Adopting
this stabilizer, the solution to (3.6) for a nonzerb {/alue o‘f" A will be forced to
be slowly varying. This smoothness constraint is normally assumed in
image reconstruction and, for the particular case of sonic pyrometry
considered here, has an evident physical meaning.

Matrices H and B assume differéht forms depending on the particular
parametrization chosen. In our case, we adopted either a 2D Fourier
parametrization [1, 2], or a uniform sampling.

With reference to Fourier parametrization, let us suppose, as shown in
Figure 1, that the support D of f(x,y) is rectangular, with dimensions Ly and
Ly. If we consider f(x,y) on D as part of a function that is symmetric with
respect to the x and y axes and, furthermore, periodic with periods 2Ly and
2Ly in x and y directions, respectively, then we can expand it as a double

Fourier series with only cosinusoidal terms:

f(x,y) = 2 2 Ay cos(mu) cos(jmv) (3.9).
i=0 j=0
where
X A
YT VL

The integrals (3.1) become:




gk = 2 Z Ajhgy +nk, k=1, ..., Ng (3.10)
=0 j=0

with

hy g = j cos(imu) cos(jnv) dlx.
I

By physical considerations on f(X,y), we can limit the mammum orders for i
and j, and obtain a finite parametfization for f, with Ny parameters. If we
order the double-indexed coefficients Ay to form a single indexed vector a
(am = Aig jpm = 1, ... , Np), Eq. (3.9) will assume the form of the linear
system in (3.4). In [1] and [2], this éysté.m is solved using an unconstrained
least-squares approach.' However, we have observed [12, 13] that the
problem is highly ill-conditioned, with a condition number highly
dependent on the number and positions of the integration paths. In
particular, any symmetry between different paths should, if possible, be
avoided to prevent nearly equal rows and/or columns in matrix H. The
condition number decreases as the number of integration paths increases;
furthermore the integration paths should cover support region D as
uniformly as possible.

The appropriate form of B to obtain the gradient stabilizer for the case of
Fourier parametrization has been calculated through integration of the
function V{12, expressed by way of (3.9), over the image support D.
Ordering the indices as shown above, we obtain a pure quadratic form of

the coefficients, characterized by a diagonal Np-order matrix, whose m-th

element is:




(o [ L .
NG I%nfi/_ if jm = 0

T L - L e . .

It can easily be observed that for this choice the solutlon in (3.8) is
defined, since the square matrix (HTH + aBTB) is nonsmgular Indeed, the
null space of matrix H represents all the functions with null integrals over
the selected paths, while the null space of B represents all thé constant
functions over D. Note that the vectors representing constant functions do
not belong to the null space of H, except for the null function; therefore the
intersection of the null spaces of H and B contains only the null vector.

Uniform sampling is a rather obvious way to represent a continuous
function through a finite set of parameters. This is normally done in
algebraic methods for tomographic reconstruction, especially in medical
applications. This parametrization consists in assuming that function f(x,y)
is constant over each pixel of an MxN rectangular grid. Following this
approach, the basis functions in (3.2) assume the form (see Figure 2):

1 if (xy) € Om
hm(xy) = , m=1,.., MN (3.12)
0 otherwise -
Adopting the notation previously introduced, we have N, = M- N and f(x,y)
is represented by the vector f = {f;, i =1, ..., Np} of samples ordered as

shown in Figure 2. In this case, (3.1) becomes:
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N .
gk= i fm : dmk+nk, K= 17 veey Nd (313)

m=1

where dpk is the length of the intersection of Qy with the k-th integration
path.

Note that in our application this approach normally leads to the
condition Np>N 4 and a unique least-squares solution qus not exist. Even
the pseudo-inverse solution can beyery unsgtisfactory if N p>>N a4

Using the sampling parametrization we have:

C(E) = 1Ay flI2 + lIAy 1112 ) ’ (3.14)
with:

" [ved] [voond] [Ovsad] - [Owoae] [Oroad]

An - [Ons [Tvscm]  [-Twx M| o [Omsad] [Omaun] (3.15 2)

_[Omsa] [Onav] [Ovaa] - [Tvscn] [~Ivix M|

and

[ [Aotnxm] [Opaixm] o [Opanxm] |

O(M-1)x AM-DcM | oo 1OM-1)x
Ao [(M 1) M] [ (M-1) M] [(M 1) M] (3.15D)

L [Op-1ym] [Oovtym] v [Aixm]

where Ay is a block-band matrix of size [M:(N-1)]x[M-N] and Ay is a block-
diagonal matrix of size [(M-1)N]x[MN]. Imxu is the identity matrix of size M,
Oksx. is the null matrix of size KxL and the band matrix A, of size (M-1)xM

is:

11




1 -1 0 .. 0 O
o 1 -1 .. 0 O
AM-1)xM = (3.15¢)

o o0 0 .. 1 -1

As can be easily seen, Apf and A f are approximations of the horizontal

and the vertical components of Vi(x,y) respectively.

Problem (3.60) has thus a solution in the form.(3.8), given by:

- [HTH + 2 (ATAn + ATA) [THT g (3.16)

Again, in this case, the bracketed NpxNp matrix is nonsingular, in that the

null spaces of H, A and Ay only intersect in the null vector.
3.2 A particular successive-steps procedure

The reconstruction procedures described above present some
drawbacks, which will be discussed in Section 5. To partially overcome
these drawbacks, a particular reconstruction technique has been
developed. This technique is based on two steps: the reconstruction of the
temperature function along each path, followed by a suitable interpolation
procedure to obtain the temperature map over the whole region D. This
approach gave noise-robust results in the cases experimented. We assume
that the data set contains the times-of-flight, as defined in Section 2, and

the temperature values at the ends of the integration paths:

{gk’ TOk = T(XOK’ yOk)> le = T(X1k7 ylk)}’ K= 1: ceey Nd (317)

where (XOk, yOk) and (xlk, ylk) are the coordinates of the ends of the k-th

path on the domain D (see again Figure 1). The mean velocity of sound over
the k-th path will be:

12




Ly

mG:‘—é; | (318)

where L, is the length of path lx. Using the same notation as in Section 2,
let us now assume as a first approximation of mean temperature over the

path the following quantity:

T =22 (3.19)
Knowing TOk, le and T oo we can compute a three—par’ame’ter
approximation '/fk(x,y) of the temperature function along the k-th
integration path. On the basis of this approximation, we can calculate a new
estimate of the mean velocity by th'e:fre'l‘ation:

z V(xy) di (3.20)

|l

Ly
1

v =7
mk Lk 0

and consequently a new value for the mean temperature, T;nk, and a new
approximation function, ﬁ\“;( (X,¥). A new value v;k can then be calculated
through (3.20): the iterative process stops when the difference between
the latest computed mean value and the previous one is below a
preassigned threshold value. The procedure described above allows us to
obtain a temperature profile for each integration path; already available
interpolation procedures can then be applied to predict the value of the
temperature over the entire region D [14-16].

In a first implementation of this method, the temperature profile has

been chosen as a parabola:

"/f‘k(x,y) = Ax s + Bk sk + Ck (3.21)
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where s, is the curvilinear abscissa along the k-th integration path. After

trivial manipulations, we have:

6 (Tox + Tix
Mm iz (U T
_ 5 Tix + 2Tok L (3.22)
Bk = Lliz (ka - 3 )
Cx = Tok

The reconstruction of the temperature values over the entire domain has
been obtained using the estimated values along ‘the propagation paths to
calculate the temperature value on a grid with a suitable size. T he value at
each node of the grid is estimated by weighting, in accordance with an
inverse square distance law, the values that are inside a circle of radius R
(searching radius) centered on the node itself. The thus reconstructed

function can be successively smoothed to avoid possible "ridges" in the

final maps.
4. The measurement system [17-20]

In Figure 3, a logic diagram of the system (PYRA) used for TOF
measurements, relative to a pair of T/R transducers, is shown. This system
basically consists of two acoustic transducers with matching exponential
horns, a signal generation system, which supplies a coherent sinusoidal
pulse sequence, and a receiver for suitable signal conditioning and TOF
estimation. The operation of the entire system is governed by a
microprocessor-based controller.

The signal generator sythesizes a coherent sinusoidal pulse sequence

with a 1800 Hz carrier, pulse duration © = 6.6 ms and PRF = 1 pulse per
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second, which, after a suitable power amplification, drives the transmitting
transducer T1. The starting time ty; of the n-th burst is thus known and
stored by the controller. The receiver front-end contains a signal amplifier
A2 whose gain is automatically controlled by the microprocessor, a time-
gating circuit K (killer) and a narrow-band filtering system; this filter is
intended to remove the out-of-band noise component affecting the signal
and to shape the signal itself. The time-gating circuit connects the amplifier
output to the filter only during the time intervals when the sonic pulses
are actually received. For this purpose, the gate is enabled at a'time iy

related to the time t(n-1)max When the highest relative maximum is

detected. We have

tkn = t(n_]_)max +'T"‘ KS (4‘.1)

where T is the pulse repetition period and KS is a suitable constant related
to the Q-factor of the filters, the number of their poles and the number of
periods of the received signal to be supplied to the band-pass system. In
. this case, at the end of an iterative process based on the above criteria, the
gate is enabled 1 ms before the time of arrival of the signal and disabled 6
ms later. The frequency response of the band-pass filtering system is
designed to produce an output signal with a Hamming-type envelope [18].
The output of the filter is then digitized and the time instant associated
with the highest relative maximum is identified. This instant is strictly
" correlated to the arrival time ty, of the received signal. The computation of

the TOF can be thus obtained using the relation

TOFD = t?_n '—tln (4.2)
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The system described above allows us to determine the TOF with high
accuracy even in the presence of considerable noise, as is usually the case
inside the boiler. The method used is also independent of the carrier

frequency of the transmitted signal.

5. Experimental results

The performances of the different reconstruttibn algorithms considered
have been first assessed using numerical simulations, in order to c_:arry out
a complete quantitative analysis. The TOF data have been numerically
evaluated on the basis of a supposedly perfectly .known te.mperature field.
We investigated the features of the reconstruction algorithms with respect
to the number and positio'ns of the propagation paths, the conditioning of
the reconstruction problem and, for the case of the Fourier technique, with
respect to the choice of the order of the coefficients to be evaluated and
the influence on the solution of the regularization parameter A. The results
of this analysis are reported in [21, 22], and have been used as guidelines
for the choice of the reconstruction parameters used here.

The experiments were performed, with both simulated and
experimental data, assuming a fixed measurement geometry. The
temperature field assumed for the simulation ;ug%gtaiqed from a thermal
analysis of the boiler; the results of this analysis are very important, in
| that it is impracptical and probably'impossible to directly measure the
temperature over the entire probed plane. The measurement geometry
considered is relative to boiler # 1 of the ENEL power plant located in Santa
Gilla, Sardinia, Italy. This boiler has a rectangular cross-section of size
5.929 x 5.313 m,and it is schematically shown in Figure 4, where the

probed plane is also indicated. In Figure 5, the locations of the transmit-
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receive devices on the boiler walls are shown together with the assumed
propagation paths. As can be noted (see again Figure 4), one of the walls is

not accessible and thus does not contain any measurement point.
5.1 Reconstruction from simulated data

In Table I, we report the temperature \{glues resulting from the
numerical thermal analysis and adopted for the ’s'i'mulati‘i'cns. These values,
distributed on a regular 12 x 13 grid, have been interpolated td obtain
the map in Figure 6. On the basis of this map, we Calculatgd the exact TOF
data for the paths shown in Piguré 5. These data have been used to
evaluate the performances of the rééulérized Fourier technique and of the
section-interpolation te’.chniq\ue described in 3.2. The results of the
regularization technique with 'sampling parametrization are not reported
here, as they are substantially equivalent to those obtained by the Fourier
technique.

In Figure 7 we show an example of Fourier reconstruction. In this case
we reconstructed the following Fourier coefficients: Ago, Ao1, Asos Aoz, Al
Ay, Aoz, Asp. The regularization parameter A has been set to 1. The choice of
the above conditions was made assuming the erfors in the maximum and
mean estimated temperature values and the root-mean-squared error of
the reconstructed map‘ as quality indexes for the reconstructions. The

percent root-mean-squared error E has been defined by the following

expression:

M
1 i ) A, . 2
Py T(G,K) - TG,k
s {1650 - )]
T

m

x 100 (5.1)
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where NM is the size of the sampling grid and Ty is the true mean
temperature. The first two indexes have an evident physical meaning, in
that they affect the production of pollutants and the thermal efficiency of
the boiler, respectively.f In Figure 8, the reconstruction obtained from the
same data by the section-interpolation technique is shown. The values
found for the quality indexes for the cases in Figures 7 and 8 aré shown in
Table II. The domain of the reconstruction ha'é.. been reduced to 4.5 m in
the y direction as the reconstructed-values are unreliable in the _re;maining
region due to the lack of propagation paths (see again Figure 5). As can be
seen, both the reconstruction methods yield gdod Valueé for the quality
indexes. It is also to note that the terhperature maps in Figures 7 and 8 are
sufficiently close to that in Figure 6, except for the dip in the central region
of the boiler, which is just pefceivable in Figure 8. This inconvenience is
due to the low spatial resolution permitted by the small data set available.
Furthermore, in the Fourier case, the contour lines tend to intersect almost
orthogonally the boiler walls; this is in contrast with the map shown in
found to be a typical drawback of the Fourier reconstruction.

The two techniques considered have also been Acompared with respect to
their robustness against additive noise oh the data. For both methods, the
mean reconstructed temperature was found to be highly insensitive to
noise, with errors less than 10 C for noise standard deviations up to about
0.15 ms. A greater noise-sensitivity was found for the reconstruction of the
maximum temperature value, with some advantage fof the section-
interpolation method; this technique yields excess variations less than 50 C
on the maximum temperature for noise standard deviations up to about
0.06 ms.

18




5.2 Reconstruction from real measurements

The measurement system PYRA, described in Section 4, has been
installed in accordance with the geometry shown in Figure 5. The data set
which has been considered for our reconstructions is shown in Table III.
Each TOF has been corrected for the systematic error related to the sound
path inside the horn, between the aperture ,iflfthe boiler wall and the
acoustic transducer. We considered }:his error to be 0.5 ms Maintaining the
same thermal conditions in the béiler, som‘e temperature mea'su"fements
have also been made by means of a suction pyrometer placed at different
depths in correspondence with apertures # 24, 25 and 26. The fesults are
shown in Table IV. -

In Figures 9 and 10, the temperature maps obtained through the Fourier
and section-interpolation methods, respectively, are shown. In the case of
Figure 9, the number and the orders of the Fourier coefficients and the
regularization parameter are those already specified in Section 5.1. In the
case of Figure 10, the same smoothing factor and search radius used in
Section 5.1 have been adopted; from available data and physical
considerations on the boiler under test, the following temperatures have
been imposed at the measurement ports: 1050 °C (port 21), 1070 °C (port
23), 1070 °C (port 24), 970 °C (port 25), 820 °C (port 26), 820 °C (port 27),
1070 °C (port 29). In this case too, the reconstruction domain has been
limited as in Figures 6 and 7 and for analogous reasons. In this case, the
reliability of the reconstructed values is also questionable in the regions
adjacent to the plane y = 4.5 m, where we can observe a physically

meaningless increase in the temperature values when approaching the

boiler wall.
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The two different reconstructions show a fairly good agreement (within
a 30 °C range) in the estimated mean and maximum temperatures. A
greater difference exists between the minimum values, essentially due to
the temperature imposed at ports 26 and 27 in the section-interpolation
method. Comparing the shapes of the two contour plots, a substantial
agreement can also be observed in the centyal region of the probed
domain, with the exception of the peculiar behavior of the contours in the
Fourier reconstruction already observed in Section 5.1. In Figures 11 and
12, we show the comparison between the temperatures reconstructed by
the two methods and the measurements reported in Table IV. Again in this
case, we can observe a .good agreement between reconstructed and

measured values.
6. Conclusions

The measurement of the temperature of the gas inside power plants
boilers is an important and not yet completely solved problem. An
approach towards its solution is the reconstruction of 2D temperature maps
over cross-sectional planes, located in significant positions inside the boiler.

In this paper, we discuss a particular non invasive technique which can
be used for this purpose, based on measuring the propagation times of
acoustic waves through the considered medium. The architecture of the
measuring system consists of transmitter/receiver pairs placed at suitable
ports along the walls of the boiler, so that the time-of-flight between the
various pairs can be measured. Two techniques for the reconstruction of
temperature maps over the entire probed plane have been presented: one

is derived from general image reconstruction techniques based on standard
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regularization; the other is a procedure that has been designed ad hoc for
the specific problem. |

A comparison of the reconstructed values with the temperature data
obtained from a numerical simulation of the thermal process or from direct
measurements showed good performances for both of the reconstruction
methods described. The quality of our results,).;‘.a.nd thus the efficiency of
our methods, should be evaluated taking intd éccount"" the following two
factors: the extremely small data Set available in the case under exam,
mainly due to the impossibility of increasing the access ports to the boiler;
the fact that the positions of thesé ports are heavily conditioned by
thermal and mechanical constréﬁnfé. In our opinion, a significant
improvement in temperéfure map reconstruction can only be obtained if
greater number of TOF data is évailable. While this condition can hardly be
fulfilled when an acoustic pyrometer system is installed on an already
working boiler, as in the case here experimented, far better prospects are

possible if the installation of such a measuring system is planned for on the

design of the boiler.
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Captions

Figures

1.

i A W N

o

10.

11.

12.

Schematic cross-section of the boiler with the k-th propagation
path.

Grid used for uniform sampling of f(x,y) on D.
Logic diagram of the PYRA system.
Schematic view of the Santa Gilla Boiler #1.

Schematic view of the probed plane of the Santa Gilla boiler #1
showing the measurements ports and the propagation paths.

a) contour plot and b) surface plot of the data in Table L.

a) contour plot and b) surface plot of the reconstructed

temperature field by the Fourier technique from simulated
data. ‘

a) contour plot and b) surface plot of the reconstructed

temperature field by the section-interpolation technique from
simulated data.

a) contour plot and b) surface plot of the reconstructed
temperature field by the Fourier technique from real data.

a) contour plot and b) surface plot of the reconstructed

temperature field by the section-interpolation technique from
real data.

Comparison between measured and reconstructed

temperatures by Fourier technique: a) port #24; b) port #25; ¢)
port #26.

Comparison between measured and reconstructed
temperatures by section-interpolation technique: a) port #24;
b) port #25; ¢) port #26.

Tables

L.
II.

III.

Simulated temperature values (°C)
Quality indexes relative to Figures 7 and 8.

TOFs measured in the boiler #1 of Santa Gilla plant in
accordance with the configuration of Figure 5.

Temperature measurements by suction pyrometer.
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Table I




Mean Maximum
temperature temperature

(<) (€

% rms error

Original 1330 1400 -
Fourier 1335 1401 3.21
Secton-Interp. 3.16

1339 1444

Table I




Path 2 TOF (ms)
1 6.80
2 7.48
3 9.00
4 9.32
3 7.96
6 4.56
7 6.68
8 8.24
9 9.20
10 6.88
11 4.88
12 7.40
13 7.06

Table III

R )



Depth Temperature (C)

(cm) Port #24 Port #25 Port #26
35 1210
50 | 1317 1068
75 1333 1231 1105
100 1353 | 1133
115 1280 |
125 1388 1169
135 | - 1300 |

150 1415 | 1200

155 1335
175 1420 1360 | 1227
195 | 1380
200 1413 1252
215 1389
295 | 1280
935 1395

Table IV




