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Abstract
The positive impact of arbuscular mycorrhizal symbionts on plant growth and health has been reported for many species, 
and supports their use as biofertilizers and bioenhancers. Here, the potential role of the arbuscular mycorrhizal symbiont 
Funneliformis mosseae in the improvement of chicory (Cichorium intybus L.) nutritional value, in terms of nutrient uptake 
and accumulation of health-promoting compounds, was studied using an in vivo whole-plant system, allowing both plant 
and fungal tissue collection. Biomass and nutrient distribution were determined in plant and extraradical mycelium, and 
photosynthetic pigments and fructooligosaccharide concentrations were evaluated in chicory shoots and roots. Zinc shoot 
concentration of mycorrhizal chicory was significantly increased, as well as the whole-plant Fe uptake, while root Cu con-
centration was decreased, compared with uninoculated controls. F. mosseae extraradical mycelium accumulated Cu, Zn, 
Mn, and Fe at high concentrations, compared with those of the host plant tissues, suggesting that it plays a double functional 
“scavenging-filtering” role, by its ability to balance the uptake of microelements or to limit their translocation depending 
on plant-soil concentrations. The higher Zn and Fe uptake by mycorrhizal plants was significantly correlated with higher 
carotenoid, inulin, and fructose levels, suggesting a relationship among the modulation of micronutrient uptake by mycor-
rhizal symbionts and the biosynthesis of health-promoting molecules by the host. Overall, data from this work may boost 
the implementation of arbuscular mycorrhizal fungal inoculation aimed at inducing plant biofortification and enhancement 
of nutritional value of plant-derived food.
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1 Introduction

Many soils worldwide are affected by macro- and micro-
nutrient deficiencies which can significantly reduce crop 
yields (Vanlauwe et al. 2015). Previous studies reported that 
soil availability in essential micronutrients, such as Zn, Fe, 
Cu, Mn, Mo, and B, affects the nutritional quality of plant-
derived food and feed and, especially when coupled with low 

total food intake, may cause silent metabolic alterations in 
humans (hidden hunger) and animals, with retarded growth 
and development, increased susceptibility to infections, and 
cognitive impairment (Biesalski and Birner 2018; Gödecke 
et al. 2018; Koç and Karayiğit 2022). Biofortification, which 
enhances essential nutrient concentration or bioavailability 
in food/feed crops, can be achieved by using diverse strate-
gies (Szerement et al. 2022): by manipulating plant gene 
expression (Koç and Karayiğit 2022), by selecting crop 
genotypes (Nyiraguhirwa et al. 2022; Swamy et al. 2021) or 
species able to reduce rhizospheric pH, thus increasing root 
nutrient uptake (Bouis et al. 2019), or by using fertilizers, 
lime, or organic manures (Ramzani et al. 2016; White and 
Broadley 2009).

A further practice of agronomic biofortification is the 
use of microbial biostimulants (Liu et al. 2021; Verma et al. 
2021), among which arbuscular mycorrhizal fungi. These 
beneficial soil fungi establish mutualistic associations with 
most land plant species and develop extraradical mycelial 
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networks, functional to increase the volume of explored soil 
and to facilitate the absorption of macro- and micronutrients 
and their subsequent transfer to plant cells (Fellbaum et al. 
2012; Kiers et al. 2011), coupling a “mycorrhizal” uptake 
pathway with the “direct” pathway, operated by root cells. 
A reciprocal reward mechanism, providing plant organic 
carbon to the fungal partner in exchange of mineral nutri-
ents, often results in greater host plant biomass, with higher 
tissue nutrient concentrations and accumulation of second-
ary metabolites with both plant defense and human health-
promoting activities in mycorrhizal plants, compared with 
non-mycorrhizal ones (Jacott et al. 2017; Sbrana et al. 2014). 
Indeed, the stimulation of plant secondary metabolism by 
arbuscular mycorrhizal symbioses induces the biosynthesis 
of phytochemicals such as polyphenols, carotenoids, flavo-
noids, and phytoestrogens, and a higher activity of antioxi-
dant enzymes (Avio et al. 2018; Pedone-Bonfim et al. 2018; 
Rozpądek et al. 2014). Moreover, some studies on the impact 
of arbuscular mycorrhizal fungi on essential micronutrient 
uptake and distribution in edible tissues support their poten-
tial use for the optimization of human diet (Hart et al. 2015).

Arbuscular mycorrhizal fungi are important members of 
the plant microbiome and they influence the plant nutrient 
economics (Averill et al. 2019; Wang et al. 2017). However, 
so far most analyses have focused on the effects of arbuscular 
mycorrhizal fungi on plant nitrogen fixation ability, carbon 
cycling, and phosphorous acquisition strategies (Cornelis-
sen et al. 2001; Jansa et al. 2011; Schütz et al. 2022), while 
less is yet known on micronutrients uptake and distribution. 
Moreover, although the complex architecture of mycorrhizal 
networks and a possible hyphal nutrients transport system 
have been described (Giovannetti et al. 2004; Uetake et al. 
2002), the determination of micronutrient content inside the 
extraradical mycelium (ERM) has been rarely performed, 
due to limitations in hyphal biomass and in the sensitivity 
of technologies suitable for examining such a fragile struc-
ture (Cardini et al. 2021; Chen et al. 2001; Neumann and 
George 2005; Orłowska et al. 2008).

On the other hand, as a consequence of human indus-
trial, agricultural, and military activities, the levels of some 
micronutrients, particularly those that are also trace ele-
ments or heavy metals, dramatically increased in many local 
sites, causing direct toxicity to soil organisms and plants and 
representing a long-term threat to humans when entering the 
food chain (Beygi and Jalali 2019; Järup 2003). Arbuscular 
mycorrhizal fungi may also play a role in tolerance of host 
plants to heavy metals (Lehmann and Rillig 2015; Leyval 
et al. 2002) either directly, by modulating host plant heavy 
metal allocation, or indirectly, by modifying root system 
architecture, thus representing a potential tool in agricul-
tural restoration of contaminated soils (Chen et al. 2007; 
Göhre and Paszkowski 2006; Mnasri et al. 2017). The posi-
tive effects of mycorrhizal symbiosis, combined with the 

associated mycorrhizospheric microbiota (Devi et al. 2022), 
on phytoremediation of heavy metal–polluted soils are of 
great biotechnological interest, because mycorrhizal plants 
can become as effective at extracting metals such as Cu, Cd, 
Pb, or Zn as non-mycorrhizal hyperaccumulator plants (Ebbs 
and Kochian 1998; Leyval et al. 2002), due to heavy metal 
immobilization in the dense extraradical mycelium (Cornejo 
et al. 2017; Joner and Leyval 2001). When the heavy met-
als absorbed are also micronutrients (e.g., Cu, Fe, Zn), the 
mycorrhizal fungus-plant system can represent a source of 
biofortified food/feed; otherwise, it behaves as a phytore-
mediation tool for hazardous pollutants (e.g., Cd, Pb, Hg).

Chicory (Cichorium intybus L.) is a perennial, deep-
rooting herb that can be found as a wild plant in natural 
grasslands, where it represents a useful indicator for toxic 
metal contamination (Simon et al. 1996). Many selected 
varieties of C. intybus are cultivated as leafy vegetable 
crops for human consumption (fresh salad or cooked) and 
for animal feeding, and for their roots, which can be used for 
the production of inulin-type fructans and as coffee substi-
tute. In recent years, chicory has also received more atten-
tion for its bioactive secondary metabolites, such as inulin, 
sesquiterpene lactones, coumarins, and flavonoids, whose 
accumulation was reported to be modulated by mycorrhizal 
symbiosis (Rozpądek et al. 2014), although the involvement 
of arbuscular mycorrhizal symbionts in chicory nutritional 
and nutraceutical traits has yet to be unravelled.

In order to gain information on the ability of arbuscular 
mycorrhizal fungi to facilitate the transfer of key micronu-
trients to the host plant, analyses of the distribution patterns 
of some micro- and macronutrients in plant and fungal tis-
sues of C. intybus in symbiosis with the mycorrhizal sym-
biont Funneliformis mosseae were carried out. As chicory 
accumulates components with therapeutic and nutraceuti-
cal properties, the ability of F. mosseae to enhance health-
promoting plant metabolites was also assessed. Overall, 
data from this work may be useful to implement the use of 
mycorrhizal inoculants aimed at improving food/feed plant 
nutritional value.

2  Materials and Methods

2.1  Fungal and Plant Material

Cichorium intybus seeds (‘Zuccherina di Trieste’ green 
chicory) were surface-sterilized, germinated, and grown 
for 10 days in sterile quartz grit (aquarium gravel, mean 
diameter size 2 mm) and then inoculated with either liv-
ing (mycorrhizal treatment) or autoclaved (non-mycorrhizal 
mock treatment, hereafter control) spores or sporocarps, 
mycelium, and colonized roots obtained from pot-culture 
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soil of Funneliformis mosseae (isolate code IMA1), after 
wet sieving through a 100-µm-mesh size sieve.

2.2  Experiment Design

All plants were individually grown in 5-cm diameter pots 
disinfected by chlorination, filled with the same sterile 
quartz grit, and placed into sun-transparent bags (Merck, 
Milano, Italy) in a growth chamber at 25 °C, with 25 °C day 
and 21 °C night temperature (16 h of light per day, photon 
flux density of 350 μmol  m−2  s−1). The main characteristics 
of plant seeds and substrate used are described in Online 
Resource 1. After 4 weeks’ growth, grit was washed from 
roots, spores and sporocarps adhering to plant roots were 
carefully removed with forceps under a Leica M 205C dis-
secting microscope (Leica, Milano, Italy), and plant root sys-
tems were placed between two semicircular 13-cm diameter 
Millipore™ membranes. Plants were then transferred into 
14-cm diameter Petri dishes containing moist sterile quartz 
grit, with the root-containing lower half of plates wrapped 
into aluminum foil and the plant shoot developing out of 
the plate (whole-plant system; Sbrana et al. 2020). Before 
sealing the plate with parafilm, each plant was fertilized 
with 15 mL of Long Ashton nutrient solution (modified by 
Hewitt 1966), containing 108 µg  L−1 Cu, 78.5 µg  L−1 Zn, 

571.4 µg  L−1 Mn, and 16.8 µg  L−1 Fe. As water loss of this 
growth system was limited by Petri dish parafilm sealing and 
bagging, moisture was maintained by the addition of 5 mL of 
the same solution to each plate, after 3 weeks of culture. For 
each treatment (control and mycorrhizal), 108 whole-plant 
system plates were prepared.

After 4 weeks of culture in the growth chamber, the root 
sandwiches described above were opened in ice-cold ster-
ile water and the extraradical mycelium (ERM) spreading 
on membranes containing mycorrhizal plants (Fig. 1a) was 
harvested in the ice-cold sterile water using a rubber cell 
scraper. Collected mycelium was stored in Eppendorf tubes 
at − 80 °C, after blotting on a filter paper to remove excess 
water. In order to obtain the biomass needed for nutrient 
determination (at least 10 mg of dry weight (DW)), the ext-
raradical mycelium collected from roots of 36 mycorrhizal 
plants for each treatment was pooled, to obtain three repli-
cate tubes for further analyses.

Before preparing plant samples for analytical procedures, 
mycorrhizal status of F. mosseae– and mock-inoculated 
plants was assessed. Each plant root system was observed 
under blue light by using an inverted microscope (Leica 
DM IRB model, Milano, Italy) equipped with epifluores-
cence (Jabaji-Hare et al. 1984), with the aim of ascertaining 
the occurrence of arbuscular colonization in mycorrhizal 

Fig. 1  Pictures showing 
extraradical mycelium (ERM) 
and roots obtained from the 
whole-plant growth system 
where Cichorium intybus 
grew in symbiosis with the 
arbuscular mycorrhizal fungus 
Funneliformis mosseae. a 
Autofluorescence of intraradi-
cal fungal structures in chicory 
roots observed under blue light. 
Scale bar = 120 µm. b Intercel-
lular hyphae and arbuscules 
developed by F. mosseae within 
chicory roots, after Trypan blue 
staining. Scale bar = 50 µm. c 
ERM spreading on the mem-
brane surface outside the nylon 
net which encloses the chicory 
root system. Scale bar = 0.3 cm
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treatment and the absence of any root colonization in the 
mock treatment. In order to quantify root colonization, five 
random replica plants from each treatment were selected for 
root clearing and staining with Trypan blue, using lactic acid 
instead of lactophenol (Phillips and Hayman 1970). Total 
and colonized lengths of stained root systems were measured 
under the dissecting microscope using the grid-line intersect 
method (Giovannetti and Mosse 1980).

2.3  Plant Growth Analysis

Chicory stems were severed using a stainless-steel razor 
blade perpendicularly to the stem axis to separate shoots 
from roots, and leaf number (LN), leaf area (LA), and fresh 
weight (FW) were immediately determined. The LA was 
measured on 20 randomly sampled plants for each treat-
ment, using an imaging analysis software (ImageJ, IJ 1.46r, 
http:// imagej. nih. gov/ ij/). The maximum root length was also 
measured to calculate the root length mass ratio (RLMR), m 
 g−1. Root and shoot samples were oven-dried at 60 °C until 
their weights remained constant to determine the DW and 
nutrient contents. Some growth analysis parameters or indi-
ces such as the leaf mass per area (LMA), in g  m−2, shoot 
and root mass ratio (SMR and RMR, respectively), in g  g−1, 
and RLMR were determined or calculated as described in 
Di Baccio et al. (2009), or otherwise described.

2.4  Nutrient Determination

In order to collect the dry biomass needed for nutrient deter-
mination, single dry roots or shoots were grouped into the 
three replicate pools, each composed by tissues originat-
ing from the same 36 plant samples previously identified to 
pool extraradical mycelium. Shoot and root pools were then 
grinded to a powder in an analytical steel mill (Foss Tecator 
1093 Cyclotec Sample Mill, Sweden).

The percentages of carbon and nitrogen in shoots and root 
pooled samples were determined by an elemental analyzer 
system with autosampler (Carlo Erba model EA1108) by 
using atropine sulfate as a standard for instrument calibra-
tion. Samples (about 6 mg dry material from each pooled 
replicate) were put into a tin capsule (3.5 × 5 mm) closed 
leaving out the air and analyzed. Each capsule falls into 
the combustion column where it reaches a temperature of 
1060 °C, under a constant flow of helium (He, carrier) and 
in the presence of catalysts and excess of oxygen. The flow 
of combustion products is injected into a packed chroma-
tographic column (length: 2 m) for the separation of the 
elements to be analyzed.

For the determination of iron, copper, zinc, and manga-
nese, aliquots of pooled dry shoot or roots (0.25–0.30 g) 
were used for residual water determination at 105 °C. Such 
material was digested in concentrated nitric acid  (HNO3), 

ultrapure water, and hydrogen peroxide (4:3:2, v:v:v) in a 
microwave oven (Excel, PreeKem Scientific Instruments 
Co., China) and analyzed by atomic absorption spectro-
photometry (Varian model SpectrAA 220FS, Australia) 
equipped with appropriate lamps for each element to be 
analyzed. Chemical analyses were validated by blanks and 
reference materials. The concentration of micronutrients in 
shoot and root samples was expressed as µg per g of dry 
matter (µg  g−1 or ppm of DW), and the micronutrient content 
(uptake) as µg per plant tissue.

The pooled extraradical mycelial samples were oven-
dried (60 °C) and ashed in a porcelain crucible in a muffle 
furnace (550 °C). After cooling down, the ash was boiled 
for few minutes in diluted  HNO3; the residue was filtered 
through a membrane filter with pore size of 0.45 μm. The 
contents of Fe, Cu, Zn, and Mn were determined by atomic 
absorption spectrometry with graphite furnace (Varian 
model SpectrAA 220G; limit of detection (LOD): 0.5 µg 
 L−1, limit of quantification (LOQ): 1 µg  L−1) or by induc-
tively coupled plasma optical emission spectrometry (Varian 
model 720 ICP OES; LOD: 5–20 µg  L−1, LOQ: 20–40 µg 
 L−1), depending on interference effects. The standard meth-
ods used followed the procedures described by APAT (Agen-
zia per la protezione dell’Ambiente e per i servizi tecnici), 
in APAT IRSA-CNR (2003): the method 3250 B Man 29 
was used for the determinations by atomic absorption with 
graphite furnace, and the method 3020 Man 29 was used for 
the optical ICP determinations. The concentration of micro-
nutrients in fungal biomass was expressed as µg per g of dry 
matter (µg  g−1 or ppm of DW), and the micronutrient content 
(uptake) as ng per individual plant network.

2.5  Pigment, Fructose, and Inulin Contents

Chlorophylls (a and b) and total carotenoids were measured 
on 5 fresh leaf disk replicates of known area (0.785  cm2, 
about 50 mg in weight), randomly selected among plants 
belonging to mycorrhizal and control treatments, frozen 
in aluminum sheets in liquid nitrogen, and then stored 
at − 80 °C. Subsequently, the samples were homogenized 
in 80% (w/v) cold acetone and centrifuged at 12,000 rpm 
for 10 min at 4 °C. The supernatant was filtered (0.2 μm) by 
Lab Filtration Process (Sartorius Stedim Biotech, Göttingen, 
Germany) and spectrophotometrically analyzed for photo-
synthetic pigments. The absorbance was measured at 663.2, 
646.8, and 470.0 nm against the blank with an UV–Vis 
spectrophotometer (Shimadzu UV-1800, Shimadzu, Italy), 
and the concentrations calculated following the method of 
Wellburn (1994).

The determination of fructose and inulin from shoot and 
root tissues of chicory was performed using the method of 
Kumari et al. (2007), with some modifications for the extrac-
tion and analysis on the basis of Gibson et al. (1995) and 

http://imagej.nih.gov/ij/
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McRary and Slattery (1945) methods. Three aliquots per 
treatment, each containing 10 mg of dry material from the 
pooled replicate samples, were extracted in 1.5 mL of 80% 
ethanol for 6 h. Aliquots (0.5 mL) of extracts were directly 
used for the colorimetric reaction with alcoholic resorcinol 
solution (0.1%); from the same extracts, 0.5 mL aliquots 
were hydrolyzed in HCl in a water bath at 80 °C, and then 
added to alcoholic resorcinol solution. Both sample aliquots 
were read spectrophotometrically at 490 nm. d(-)Fructose 
(F2793 analytical standard, Merck, Italy) and inulin (inu-
lin from chicory, Merck, Italy) were treated as above and 
used in calibration curves covering the ranges of 0–3 mg 
and 0–2 mg, respectively.

2.6  Data Analyses

Data of shoots and roots dry weight and of leaf area of indi-
vidual plants were analyzed by comparing mycorrhizal treat-
ment and control on the whole dataset (n = 108). Concentra-
tions and contents of micronutrients, C and N percentages 
and contents, inulin, and fructose, obtained from homog-
enized dry tissues of the three plant pools, were analyzed 
with three replicate data for each treatment, while 5 replicate 
data were obtained from pigment analyses carried out on 
fresh leaf tissues.

Percentage data were subjected to arcsine transformation 
before carrying out statistical analyses. All datasets were 
checked for fulfilment of ANOVA assumptions (robust 

Levene’s test of homogeneity of variances) and submitted 
to one-way analyses. Data showing unequal variances were 
analyzed by using Welch’s test. Pearson correlation and/
or linear regression coefficients were calculated to reveal 
relationships among the different variables related to con-
centrations or contents of plant nutrients and nutraceutical 
compounds. All statistical analyses were carried out with 
IBM SPSS Statistics version 23. Principal component analy-
sis (PCA) was performed in Canoco ver. 5.

3  Results

3.1  Mycorrhizal Colonization and Development 
of Chicory Plants

After 4 weeks of culture in the whole-plant system with 
standard Long Ashton fertilization, all root systems of F. 
mosseae–inoculated chicory plants observed under blue light 
consistently showed autofluorescent arbuscular colonization 
(Fig. 1a), confirmed by selected sample staining with Trypan 
blue (Fig. 1b). The colonized root length percentages of 
stained root systems were variable among replicates, rang-
ing between 46.2 and 62.8% (Table 1), while control plants 
were not mycorrhizal.

Plant biomass production was significantly higher 
(+ 69.6%) in mycorrhizal plants than in controls (Table 1). 
This was due to a two-fold and 1.5-fold increase of root 

Table 1  Mycorrhizal status 
and growth traits of Cichorium 
intybus plants, in symbiosis 
(mycorrhizal) or not (controls) 
with the arbuscular mycorrhizal 
fungus Funneliformis mosseae, 
grown in a whole-plant 
experimental system. In rows, 
means (± standard error of the 
mean) followed by the same 
letter do not differ significantly 
at P ≤ 0.05 by one-way ANOVA 
(homogeneous variances) or 
Welch’s test (nonhomogeneous 
variances)

DW, dry weight; FW, fresh weight; RMR, root mass ratio (root DW/plant DW); RLMR, root length mass 
ratio (root maximum length/root DW); LN, leaf number; LA, leaf area; MLA, mean leaf area; LMA, leaf 
mass per area (leaf mass/leaf area); SMR, shoot mass ratio (shoot DW/plant DW). DW, FW, and derived 
variables (n = 108); LA and derived variables (n = 20)

Plant growth traits Mycorrhizal plants Control plants ANOVA F Welch’s F P

Mycorrhizal root length (%) 53.03 ± 2.92 Not detected
Root DW (mg) 89.52 ± 3.81 a 45.24 ± 3.52 b 45.62  < 0.001
Root FW/DW 7.07 ± 0.22 a 7.84 ± 0.47 a 2.32 0.137
RMR (g  g−1) 0.46 ± 0.01 a 0.43 ± 0.01 a 3.17 0.076
Maximum root length (cm) 22.41 ± 0.42 a 23.83 ± 0.61 a 4.16 0.111
RLMR (m  g−1) 3.90 ± 0.26 b 5.48 ± 0.34 a 8.25 0.005
Shoot DW (mg) 93.94 ± 3.03 a 63.03 ± 4.51 b 29.00  < 0.001
Shoot FW/DW 7.87 ± 0.20 a 6.94 ± 0.25 b 8.08 0.005
LN 6.73 ± 0.12 a 6.12 ± 0.11 b 4.89 0.092
LA  (cm2) 40.93 ± 1.38 a 25.65 ± 1.24 b 11.15 0.002
MLA  (cm2) 5.96 ± 0.20 a 4.28 ± 0.22 b 7.91 0.008
LMA (g  m−2) 24.80 ± 0.44 b 32.08 ± 0.95 a 5.47 0.025
SMR (g  g−1) 0.54 ± 0.01 a 0.57 ± 0.01 a 3.11 0.079
Plant DW (mg) 183.42 ± 6.12 a 108.24 ± 7.71 b 44.36  < 0.001
Plant FW/DW 7.32 ± 0.18 a 7.21 ± 0.26 a 0.10 0.748
Root/shoot DW 0.95 ± 0.03 a 0.82 ± 0.03 b 4.38 0.038



 Journal of Soil Science and Plant Nutrition

1 3

and shoot biomass, respectively. The shoots FW/DW, LN, 
and LA were also enhanced by the symbiotic status (+ 13.4, 
9.8, and 59.6%, respectively; Table 1), as like the root/shoot 
ratio, which was 1.2-fold higher compared to controls. On 
the contrary, the LMA decreased (− 22.7%) in mycorrhizal 
plants compared to controls.

Mycorrhizal colonization did not affect the root maxi-
mum length or hydration status (FW/DW), although the 
RLMR, indicating the root biomass partitioning for length 
or root density, decreased in mycorrhizal plants compared 
to controls (− 29%).

3.2  Accumulation of Mineral Nutrients, Pigments, 
and Fructooligosaccharides in Chicory Plants

Chicory root and shoot C concentrations and contents did 
not reveal any difference among treatments, although the C 
content in the whole plant was at the limit of significance 
level (P = 0.056) with an increasing trend (+ 28%) in mycor-
rhizal plants. On the contrary, N concentration decreased in 
root and shoot (− 25 and − 14%, respectively) of mycorrhizal 
plants, although such variations did not impact N contents 
(Table 2). The C/N ratio was higher in mycorrhizal roots and 
whole plants (+ 40 and 27%, respectively) in comparison 
with controls (Table 2).

The analysis of micronutrient concentration in chicory tis-
sues showed significant differences between mycorrhizal and 
control plants for Cu in roots (F1,4 = 12.8, P = 0.023) and Zn 
in shoots (F1,4 = 47.1, P = 0.002) (Fig. 2a, b). Compared to 
controls, mycorrhizal plants’ Cu concentration was reduced 
by 60% in roots, while shoot Zn concentration was enhanced 
by 38%. Data computed for micronutrient content confirmed 
the higher Zn uptake in shoot of mycorrhizal plants, com-
pared to controls, with an enhanced Zn accumulation in the 

whole plants (Table 3), while they did not reveal significant 
differences between treatments in root Cu uptake. The root of 
plants grown in symbiosis with F. mosseae showed a higher Fe 
content (1.3-fold) than control plants (Table 3). Interestingly, 
both Zn and Fe contents in the whole mycorrhizal plants were 
significantly higher than those of controls (+ 38 and + 34%, 
respectively; Table 3). In chicory plants, independently on the 
inoculation treatment, a significant positive correlation was 
detected between root Zn and Fe concentrations (Pearson’s 
r = 0.87, P = 0.026).

Carotenoids and carotenoids to total chlorophyll ratio 
were significantly higher (about twofold) in leaves of plants 
in symbiosis with F. mosseae, compared to controls, while 
chlorophyll a and b concentrations did not differ between 
treatments (Table 4).

Concentrations of both fructose and inulin did not differ 
in shoots while they were significantly higher in roots of 
mycorrhizal plants than in those of controls, with 57 and 
48% average increases, respectively (F1,4 = 13.25, P = 0.022 
for fructose and F1,4 = 11.99, P = 0.026 for inulin; Fig. 3).

Regression analyses, carried out independently on the 
inoculation treatment, highlighted the significant positive 
regression between shoot Zn concentration and root fruc-
tose and inulin ones (R = 0.83; F = 9.0 and 8.8, respectively; 
P = 0.04; R2 and regression equations in Fig. 4a) and the 
negative relation between root Cu concentration and those 
of fructose and inulin (R = 0.92 and 0.90; F = 21.2 and 
17.9, respectively; P = 0.01; R2 and regression equations in 
Fig. 4b).

A consistent relationship among Zn, Fe, carotenoid, inu-
lin, and fructose accumulation and mycorrhizal plants is sup-
ported by PCA, which also highlights the opposite behavior 
of control and mycorrhizal plants regarding Cu accumula-
tion (Fig. 5).

Table 2  Carbon (C) and 
nitrogen (N) concentration 
and content in tissues 
of mycorrhizal plants of 
Cichorium intybus, in symbiosis 
with the arbuscular mycorrhizal 
fungus Funneliformis mosseae, 
and of non-mycorrhizal plants 
(controls), grown in a whole-
plant experimental system. In 
rows, means (± standard error 
of the mean, n = 3) followed 
by the same letter do not differ 
significantly at P ≤ 0.05 by one-
way ANOVA (homogeneous 
variances) or Welch’s test 
(nonhomogeneous variances)

Mycorrhizal plants Control plants ANOVA F Welch’s P

C concentration (%) Root 40.21 ± 0.37 a 38.79 ± 0.91 a 2.08 0.223
Shoot 36.92 ± 0.59 a 37.58 ± 0.14 a 1.16 0.384

C content (mg per plant) Root 36.03 ± 5.31 a 16.95 ± 5.74 a 5.58 0.078
Shoot 34.72 ± 3.47 a 23.22 ± 9.20 a 0.47 0.532
Plant 70.75 ± 5.37 a 40.17 ± 14.91 a 7.12 0.056

N concentration (%) Root 0.80 ± 0.08 b 1.06 ± 0.03 a 9.62 0.036
Shoot 1.69 ± 0.06 b 1.97 ± 0.06 a 9.97 0.034

N content (mg per plant) Root 0.70 ± 0.05 a 0.47 ± 0.16 a 1.62 0.272
Shoot 1.58 ± 0.08 a 1.22 ± 0.48 a 1.83 0.248
Plant 2.27 ± 0.07 a 1.69 ± 0.64 a 0.82 0.458

C/N ratio Root 51.36 ± 4.74 a 36.69 ± 1.09 b 9.10 0.040
Shoot 21.93 ± 1.12 a 19.10 ± 0.52 a 5.23 0.084
Plant 31.04 ± 1.48 a 24.47 ± 1.15 b 12.25 0.025
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3.3  Fungal Micronutrient Accumulation

F. mosseae extraradical mycelium (ERM; Fig. 1c) showed 
very high micronutrient concentrations, particularly Fe, 
which exceeded 3000 µg  g−1 dry mycelium (Table 5). The 
concentration of Cu, Zn, Mn, and Fe was higher in mycelium 
than in shoot and root chicory tissues (Fig. 2a, b; Table 5). 
Calculated contents showed that the average contents of 
micronutrients in each individual F. mosseae network, origi-
nating from a single chicory plant, ranged from 22.7 (Zn) to 
904 ng (Fe), depending on the element (Table 5).

4  Discussion

Data obtained in this work showed that the mycorrhizal 
symbiont F. mosseae is able to facilitate biofortification of 
Zn in chicory leaves and Fe in the whole plant, even at an 
early plant growth stage, suitable for the consumption as 
ready to eat “baby leaf.” Interestingly, the fungal symbiont 
also induced young plant leaves to accumulate carotenoids, 
important health-promoting compounds, and enhanced root 
storage of inulin, a bioactive compound with prebiotic, 
hypocholesterolemic, and hypoglycemic properties.

The use of mycorrhizal symbionts as plant biofertiliz-
ers and biostimulants, with the aim of increasing yield and 
nutrient levels in plant-derived food, is supported by studies 
showing that concentrations of both mineral elements and 
important macromolecules may be enhanced in mycorrhizal 
plant tissues (Kaur and Suseela 2020; Noceto et al. 2021).

In the present study, chicory plants in symbiosis with 
F. mosseae showed larger shoot and root biomass, and leaf 
number and area, confirming general issues on the ability of 
arbuscular mycorrhizal fungi to boost host growth. Interest-
ingly, a recent work found that both leaf area index and the 
fraction of intercepted radiation were enhanced in chicory by 
R. irregulare inoculation (Langeroodi et al. 2020).

Here, Zn and, at a lesser extent, Fe uptake were enhanced 
in mycorrhizal chicory, leading to their accumulation in 
shoots. Compared with non-mycorrhizal controls, larger Fe 
concentration in both shoots and roots of sorghum plants 
inoculated with multiple species of arbuscular mycorrhizal 
fungi (Prity et al. 2020), and higher concentration of Mn, 
Cu, and Fe in lettuce leaves produced by plants inoculated 
with Rhizophagus intraradices and F. mosseae (Baslam et al. 
2013) were reported. Moreover, wheat and barley in sym-
biosis with Rhizoglomus irregulare accumulated more Zn 
and Fe in grain (Coccina et al. 2019; Watts-Williams and 
Cavagnaro 2018), various micronutrients showed increased 
concentration in zucchini fruits and leaves when plants were 
treated with commercial mycorrhizal inoculum (Cardarelli 
et al. 2010), and tomato plants in symbiosis with R. irregu-
lare showed higher levels of Zn in fruits (Giovannetti et al. 
2012). The significant effect of the inoculation with myc-
orrhizal fungi on host Zn and Fe accumulation in various 
tissues has been confirmed by meta-analyses carried out on 
data from 263 and 233 experiments, respectively (Lehmann 
et al. 2014; Lehmann and Rillig 2015). Here, notwithstand-
ing the early plant growth stage, both concentration and con-
tent of Zn in shoots of mycorrhizal plants were enhanced, 

Fig. 2  Mean values (± standard error of means) of micronutrient (a 
Cu, Zn, and Mn; b Fe) concentration in roots and shoots of Cicho-
rium intybus plants in symbiosis with the arbuscular mycorrhizal 
fungus Funneliformis mosseae (mycorrhizal) and of non-mycorrhizal 

controls, grown in a whole-plant experimental system. Asterisks indi-
cate significant differences between mycorrhizal and control plants 
by one-way ANOVA: roots Cu F1,4 = 12.82, P = 0.023 (*); shoots Zn 
F1,4 = 47.14, P = 0.002 (**)
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suggesting that the symbiotic Zn uptake efficiency over-
comes the known “dilution effect,” due to mycorrhizal plant 
growth increase (Baslam et al. 2011). Although Zn and Fe 
content is high in most agricultural soils, these elements are 
often not phyto-available due to high soil pH and physico-
chemical characteristics (White et al. 2012). The resulting 
plant deficiencies can severely reduce growth and yield, due 
to the role played by these trace elements in key metabolic 
pathways and enzymatic activities.

At the establishment of mycorrhizal symbioses, the down-
regulation of plant genes involved in direct nutrient uptake 
(Handa et al. 2015; Tian et al. 2017; Vangelisti et al. 2018) 
is balanced by the fungal uptake from soil of both P, the 
main element translocated by arbuscular mycorrhizal sym-
bionts to their hosts, and other nutrients, among which Zn 
and Fe, through the activity of extraradical networks. This 
wide hyphal network is able to actively intake phosphorus, 
through specific fungal phosphate transporters, and metal 
elements, through the expression of metal transporters and 
of genes putatively involved in metallophore-metal uptake 
and in metallophore synthesis (Tamayo et al. 2014). Previous 
studies have also shown that P uptake, positively related with 
the interconnectedness of extraradical mycelium and with 
the density of fungal appressoria on host roots (Avio et al. 
2006; Pepe et al. 2020), increases mycelial acquisition and 
translocation of other metal minerals, as the negative charges 
of polyP synthesized in hyphae may be balanced by the active 
absorption of di- and monovalent species from the soil solu-
tion (Bücking and Shachar-Hill 2005; Kikuchi et al. 2014). 
Moreover, the mycorrhizal mycelium hosts a wide diversity 
of associated microorganisms, among which members of 
phosphate-solubilizing and nitrogen-fixing bacteria, whose 
activity may favor nutrient absorption by the fungal partner 
(De Novais et al. 2020; Emmett et al. 2021; Jiang et al. 2021; 
Rawat et al. 2021; Sbrana et al. 2022; Scheublin et al. 2010).

In this work, elemental analysis showed very high con-
centrations and contents—calculated with respect to the bio-
mass of single plant mycelial networks—of microelements, 
and particularly Fe, in mycelium growing from chicory 
roots. Interestingly, the concentrations of Cu, Zn, Mn, and 
Fe in the extraradical network were higher than those of 
root and shoot of the host plant. Previous studies showed 
high microelement binding capacity of extraradical networks 
produced by F. mosseae, Glomus claroideum, and Rhizo-
glomus (formerly Glomus) intraradices (Gonzalez-Chavez 
et al. 2002; González-Guerrero et al. 2008). Larger Zn and 
Cu concentrations were found in extraradical hyphae of an 
unidentified mycorrhizal fungus, compared with plant root 
cells (Orłowska et al. 2008), and high Fe and Zn concentra-
tions were reported for F. mosseae and Diversispora epigaea 
(formerly Glomus versiforme) mycelium produced in sym-
biosis with maize and clover (Chen et al. 2001). In our study, 
the Zn concentration of mycorrhizal chicory was higher in Ta
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shoot than in root, while Cu concentration was maintained 
unaltered in shoot; this supports the role of F. mosseae 
in modulating element absorption through the promotion 
of Zn and the limitation of Cu translocation from root to 
shoot. The occurrence of genes encoding putative transport 
proteins, mediating the uptake of Cu, Fe, and Zn and their 
compartmentalization in vacuoles, has been detected in R. 
irregularis (González-Guerrero et al. 2005, 2010; Tisserant 
et al. 2013; Tamayo et al. 2014). Moreover, variable heavy 
metal chelating activity, depending on fungal identity and 
growth conditions, was reported for the insoluble glycopro-
tein glomalin extracted from extraradical mycelium of arbus-
cular mycorrhizal fungi, with up to 28 mg Cu  g−1 of glo-
malin for Gigaspora rosea (Gonzalez-Chavez et al. 2004). 
Data obtained from this and previous studies suggest that 
the mycorrhizal mycelium represents a powerful functional 
element of the symbiosis, playing a “scavenging-filtering” 
double role, by its ability to balance the uptake of microele-
ments depending on their soil concentrations: it facilitates 
plant uptake in low-nutrient availability regimes and reduces 

the risks of toxicity by limiting the excess of element trans-
location from below- to aboveground tissues, particularly 
in heavy metal–contaminated soils. Interestingly, the sig-
nificantly lower Cu concentration found here in roots of 
mycorrhizal chicory may be partly explained by a “dilution 
effect,” due to the two-fold larger biomass of mycorrhizal 
roots compared with controls, though it could also be argued 
that Cu accumulation in extraradical networks may limit 

Table 4  Mean values (± standard error of means, n = 5) of photosynthetic pigment concentration in leaf disks of Cichorium intybus plants in 
symbiosis with the arbuscular mycorrhizal fungus Funneliformis mosseae (mycorrhizal) and non-mycorrhizal controls, grown in a whole-plant 
experimental system. In rows, means followed by the same letter do not differ significantly at P ≤ 0.05 by one-way ANOVA (homogeneous vari-
ances) or Welch’s test (nonhomogeneous variances). Chl a, chlorophyll a; Chl b, chlorophyll b; Car, total carotenoids; Chl tot, total chlorophyll

Control plants Mycorrhizal plants ANOVA F Welch’s P

Chl a (μg  g−1 DW) 86.07 ± 27.64 a 95.41 ± 21.37 a 0.07 0.796
Chl b (μg  g−1 DW) 91.56 ± 36.87 a 79.28 ± 19.08 a 0.09 0.775
Chl a / b (μg  g−1 DW) 1.03 ± 0.09 a 1.28 ± 0.19 a 1.32 0.296
Carotenoids (μg  g−1 DW) 12.49 ± 0.89 b 28.84 ± 4.78 a 11.29 0.026
Car/Chl tot (μg  g−1 DW) 0.09 ± 0.02 b 0.18 ± 0.03 a 6.28 0.036

Fig. 3  Mean values (± standard error of means) of fructose and 
inulin concentrations in roots and shoots of Cichorium intybus 
plants in symbiosis with the arbuscular mycorrhizal fungus Fun-
neliformis mosseae (mycorrhizal) and non-mycorrhizal controls, 
grown in a whole-plant experimental system. Asterisks indicate sig-
nificant differences between mycorrhizal and control plants by one-
way ANOVA: root fructose F1,4 = 13.25, P = 0.022 (*); root inulin 
F1,4 = 11.99, P = 0.026 (*)

Fig. 4  Regression curves showing the relationships, independently on 
the mycorrhizal status, among a Zn or b Cu concentrations in plant 
tissues and fructooligosaccharide concentration in roots of Cichorium 
intybus plants grown in a whole-plant experimental system
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metal translocation to roots, as increasing concentrations of 
Cu in fungal mycelium corresponded to decreasing ones in 
mycorrhizal roots, while shoot concentrations were constant. 
This represents an important tolerance strategy for mycor-
rhizal plants growing in heavy metal–contaminated soils, 
as Cu is fundamental as a catalytic cofactor for all primary 
metabolic pathways, including respiration (Kim et al. 2008), 
but when high concentrations are reached it becomes toxic 
by inhibiting protein activity and inducing the formation of 
free radicals and reactive oxygen species (Halliwell 1989).

Growth enhancement of mycorrhizal chicory was here 
accompanied by an increase in root fructose and inulin 
concentrations, compared with controls, according to the 
enhanced photosynthetic carbon (C) flux towards below-
ground tissues due to the greater sink strength of mycor-
rhizal roots. Moreover, the potential intensification of C flux 
and photosynthesis in mycorrhizal plants were consistent 
with the higher chicory leaf amounts of the photosynthetic 
pigment carotenoids, which can play important roles in 
human health due to their provitamin A activity and anti-
oxidant potential. It is known that a side effect of AM symbi-
oses is represented by the modulation of genes encoding for 
key enzymes of both primary and secondary plant metabo-
lism (Handa et al. 2015; Liu et al. 2007), often leading to an 
increase in the accumulation of compounds with nutritional 
and health-promoting activities in plant roots and edible 
parts: sugars, phenolics, anthocyanins, carotenoids, chloro-
phylls, and vitamins were enhanced in mycorrhizal lettuce 
leaves (Baslam et al. 2013; Avio et al. 2017); phenolic acids, 
anthocyanins, and flavonols were accumulated in mycor-
rhizal strawberry fruits (Castellanos-Morales et al. 2010) 
and higher glucose, fructose, β-carotene, lycopene, and 
lutein contents and larger antioxidant capacity were found 
in tomato fruits produced by mycorrhizal plants (Copetta 
et al. 2011; Giovannetti et al. 2012; Hart et al. 2015). Leaf of 
chicory represents a multiple source of health-promoting and 
therapeutic compounds such as terpenoids (e.g., lactucin-
like sesquiterpene lactones) and phenolic compounds (e.g., 
flavonoids and hydroxycinnamates) (Atta et al. 2010; Ahmed 
and Rashid 2019), whose contents vary depending on plant 
genotype and culture systems (Ferioli et al. 2015; Migliorini 
et al. 2019; Sinkovič et al. 2015; Spina et al. 2008). Previ-
ous studies reported higher concentrations of antioxidant 
compounds and hydroxycinnamates and enhanced activity of 
detoxifying enzymes (SOD, CAT, POX) in leaves of mycor-
rhizal chicory, which also showed improved photochemical 
efficiency (Langeroodi et al. 2020; Rozpądek et al. 2014; 
Wazny et al. 2014).

5  Conclusions

This study suggests that high-quality and safe fresh prod-
ucts, either immature leaves (baby leaf) or full-size rosettes, 
and inulin-rich root material for industrial extraction may be 
obtained in controlled conditions by inoculation of arbus-
cular mycorrhizal symbionts. The potential application to 
field cultures of selected mycorrhizal isolates or consortia 
should be assessed by studying the impact of pre-inoculated 
symbionts and their interactions with indigenous microbial 
communities on the development and nutritional contents 
at harvest of field-transplanted chicory plants. Interestingly, 

Fig. 5  Principal component analysis (PCA) biplot, summarizing the 
variability of plant macro- (C and N) and micronutrient (Fe, Cu, Mn, 
Zn) concentration values in Funneliformis mosseae–inoculated (M) 
and non-inoculated control (C) plants of Cichorium intybus grown 
in a whole-plant experimental system. The concentrations of inulin, 
fructose, carotenoids (caroten), and chlorophyll a (Chlor a) and b 
(Chlor b) have been used as supplementary variables. The first and 
second axis explain 85.61% of total variance

Table 5  Mean values (± standard error of the mean, n = 3) of micro-
nutrient concentration and content in dried extraradical mycelium 
(ERM) produced by Funneliformis mosseae in symbiosis with Cicho-
rium intybus plants, grown in a whole-plant experimental system

ERM nutrient concen-
tration (µg  g−1)

ERM nutrient content 
(ng per individual 
plant network)

Cu 121.44 ± 4.41 34.89 ± 0.51
Zn 79.61 ± 8.36 22.69 ± 0.58
Mn 163.33 ± 44.78 46.34 ± 5.02
Fe 3149.90 ± 183.13 903.86 ± 8.42
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the largest inulin accumulation was related to the relatively 
low root Cu and high shoot Zn concentrations in inoculated 
plants, indicating the need of further studies unravelling the 
relationships among the modulation of micronutrient uptake 
by mycorrhizal symbionts and the biosynthesis of health-
promoting molecules by the host. Overall, data from this 
work may be useful to implement the use of mycorrhizal 
inocula aimed at improving plant nutrition and resilience 
and the derived food nutritional value.
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