
1 
 

A new Infrared True-Color approach for visible-Infrared 1 

multispectral image analysis 2 

 3 
Emanuela Grifoni1,2, Beatrice Campanella1, Stefano Legnaioli1,2, Giulia Lorenzetti1, 4 
Luciano Marras3, Stefano Pagnotta1, Vincenzo Palleschi1,2*, Francesco Poggialini1, 5 
Emanuele Salerno4, Anna Tonazzini4 6 

 7 
1 Applied and Laser Spectroscopy Laboratory, Institute of Chemistry of Organometallic Compounds, Research 8 

Area of CNR, Via Giuseppe Moruzzi 1, 56124 Pisa (Italy) 9 
2 National Interuniversity Consortium of Materials Science and Technology (INSTM) 10 
3 Art-Test studio di Luciano Marras, Via del Martello 14, 56121 Pisa (Italy) 11 
4 Institute of Information Science and Technologies, Research Area of CNR, Via Giuseppe Moruzzi 1, 56124 12 

Pisa (Italy) 13 
 14 
 15 
*Corresponding author: 16 
e-mail: vincenzo.palleschi@cnr.it 17 
 18 
 19 
Abstract 20 
 21 
In this paper, we present a new method for the analysis of visible/Infrared multispectral sets 22 
producing chromatically faithful false-color images, which maintain a good readability of the 23 
information contained in the non-visible Infrared band. Examples of the application of this 24 
technique are given on the multispectral images acquired on the ‘Pietà of Santa Croce’ of Agnolo 25 
Bronzino (1569, Florence) and on the analysis and visualization of the multispectral data obtained 26 
on Etruscan mural paintings (Tomb of the Monkey, Siena, Italy, V century B.C.). The fidelity of the 27 
chromatic appearance of the resulting images, coupled to the effective visualization of the 28 
information contained in the Infrared band, opens interesting perspectives for the use of the 29 
method for visualization and presentation of the results of multispectral analysis in Cultural Heritage 30 
diffusion, research and diagnostics. 31 
 32 
Keywords: Multispectral imaging, Image Fusion, Total Variation, Gradient transfer, Infrared True-33 
Color Imaging. 34 
 35 
1. Introduction 36 
 37 
In the Cultural Heritage (CH) field, Imaging Spectroscopy (IS) is a well-established practice as an 38 
essential research tool both for a macroscopic qualitative analysis and for a high-quality digital 39 
documentation for a multi-temporal monitoring process of artworks [1-4]. It brings the Art 40 
Conservation studies to a more computational oriented approach, extending the deductible 41 
information on the many aspects — technical, executive and conservative — of an artifact. 42 



2 
 

Imaging Spectroscopy is based on techniques that collect different spatially co-registered images of 43 
an object. In its most typical realization, the surface of the object is irradiated with a continuous 44 
source emitting radiations in a wide portion of the electromagnetic spectrum (EM), from Ultraviolet 45 
(UV, 0.2-0.4 µm) to Infrared range (IR, 0.75-2.5 µm) while the detector is selectively adjusted to 46 
detect radiations of particular wavelengths (λ). 47 
One of the most important advantages of this technique is that it can acquire the reflectance 48 
spectrum for each pixel of the image depending on the physical, chemical and geometric properties 49 
of the illuminated surface, i.e. the painting constituents: pigments, binding media, and varnishes.  50 
False Color (FC) imaging is a computer-assisted technique of spectral image-fusion that improves 51 
the detecting power and extends the deductible information of a CH examination surveys. It allows 52 
a rough identification of the pigments and enhances the visualization of compositional painted 53 
changes. Restored areas, or non-original inpaints, can be better mapped in a false-color image [5]. 54 
Usually FC are trichromatic digital images obtained by swapping the three Red, Green, Blue channels 55 
(R, G, B), with an IR channel. In most of the cases, the Blue channel is removed, the Red and Green 56 
channels shift downward and the IR replaces the ex-R channel (IRRG image). In other cases, is the 57 
Red channel to be deleted and substituted with the IR channel (IRGB image) [6-7]. 58 
All these different False-Color rendering methods show the advantages above described but they 59 
also bring strong intrinsic limits: i) they obviously sacrifice the real color rendition of a painting, ii) 60 
they often produce very jumbled image not easy to be interpreted by non-specialists. 61 
Simultaneous visualization of the preparatory drawing beneath the paint film and a chromatically 62 
faithful rendering of the painting can be an extremely useful research tool for art historians, 63 
conservators and restorers to elucidate the relationship between them, thanks to its immediacy in 64 
the information reading.  65 
In order to satisfy this need and to provide an easy communication and data dissemination tool to 66 
let the non-specialist appreciate otherwise invisible details of a work of art, we propose a new 67 
approach, based on the Gradient Transfer (GT) method recently presented by Ma et al. [8]. This 68 
procedure has been adapted for merging the information from the IR band into the RGB image, 69 
preserving at the best the chromatic similarity with the visible image.  70 
This result can be important to let the non-specialist appreciate otherwise invisible details of a work 71 
of art, yet leaving its overall appearance unchanged. On the other hand, even cultural heritage 72 
professionals, such as Art historians and restorers, would appreciate the possibility of studying 73 
invisible details of a painting without having recourse to a false-color approach. 74 
The paper is organized as follows. Section 2 describes briefly the GT method and some of the 75 
mathematical machinery used to implement it. Section 3 presents a number of examples 76 
highlighting the differences between the false colors and the GT displays, and the relative 77 
advantages and disadvantages. Finally, Section 4 concludes the paper summarizing the main ideas 78 
and results. 79 
 80 
2. Gradient Transfer Method 81 
 82 
The Gradient Transfer method (GT) was originally proposed by Ma et al. [8] in the framework of 83 
security and military applications, for merging a thermal Infrared image with the corresponding 84 
visible image. The basic idea is to combine the information carried by the thermal image, which 85 
usually only highlights the hot spots, with the color visible image, which gives more details about 86 
the environment, to better locate hidden targets in the images.  87 
 88 
The issue is treated as an optimization problem, where the optimum solution preserves the thermal 89 
information (i.e., minimizes the differences in intensity between each color channel of the solution 90 
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and the Infrared image), but also shows the details and the color appearance of the visible image. 91 
This second requirement corresponds to the minimization of the difference between the x and y 92 
gradients of the solution and the x and y gradients of the visible image.  93 
How such optimization problem can be solved through a Total Variation regularization method is 94 
shown below. Before going into the mathematical details, however, it is worth noting that the 95 
technique, in its original formulation, seems to be of relatively scarce utility in painting analysis, 96 
where the Infrared image might carry information about underdrawing and pentimenti, whose 97 
details one would like to preserve in the optimum solution. The only possible exception seems to 98 
be the analysis of Visible-Induced Luminescence (VIL) images [9], where the IR image typically 99 
consists of a few bright zones, corresponding to the highly fluorescent materials, on a dark 100 
background.  101 
In our approach, instead, we try to get a solution preserving, as much as possible, the original 102 
observed colors and the gradients of the Infrared channel. To this end, we build a convex, non-103 
smooth objective function whose minimization yields our optimal solution. 104 
Let A be the observed color image, m pixels wide and n pixels tall, composed by its red, green and 105 
blue channels Ac, c={r,g,b}. Then, let B be the observed Infrared channel, and X=(Xr,Xg,Xb) our 106 
solution image. All the channel images are represented as m×n matrices with pixel intensities 107 
ranging from 0 to 1.  108 
The first requirement for our solution X is that each of its channels must be similar to the 109 
corresponding channel of the observed image A. As a measure of deviation from this requirement, 110 
we use the squared Frobenius norm of the difference between each pair of channels: 111 
 112 

‖𝑋# − 𝐴#‖&' = ∑ ∑ [𝑋#(𝑖, 𝑗) − 𝐴#(𝑖, 𝑗)]'1
234

5
634 ,			𝑐	𝜖	{𝑟, 𝑔, 𝑏} (1) 113 

 114 
where (i,j) is the pixel index.  115 
 116 
At the same time, for preserving the details from B in the solution, we also require that the sum of 117 
the absolute differences between the gradients of each channel of image X and the gradients of 118 
image B is as small as possible. Our measure of deviation is now the Total Variation norm [10] of the 119 
matrices (Xc–B):  120 
 121 

|𝑋# − 𝐵|AB = 	∑ ∑ |∇𝑋#(𝑖, 𝑗) − ∇𝐵(𝑖, 𝑗)|1
234 		,			𝑐	𝜖	{𝑟, 𝑔, 𝑏}5

634  (2) 122 
 123 

In order to minimize (1) and (2) simultaneously, the problem to be solved is the following: 124 
 125 

𝑋DE = 𝑎𝑟𝑔	𝑚𝑖𝑛
								𝑋#

	{‖𝑋𝑐 − 𝐴𝑐‖&' + 	𝜆	|𝑋# − 𝐵|AB	}		,			𝑐	𝜖	{𝑟, 𝑔, 𝑏} (3) 126 

 127 
where l is a positive regularization parameter that weights the relative strength of the two 128 
constraints. Both intuitively and mathematically, l makes the solution Xc more similar to image Ac, 129 
for l → 0, or to B, for l → ∞. The choice of this parameter, then, should result from a compromise 130 
between the fidelity to the original RGB and the visibility of the IR gradients. 131 
 132 
Letting Yc=Xc–B and Dc=Ac–B, the three optimization problems in (3) can equivalently be put in the 133 
form: 134 
 135 

𝑌#L = 𝑎𝑟𝑔	𝑚𝑖𝑛
								𝑌#

	{‖𝑌𝑐 − 𝐷𝑐‖&' + 	𝜆	|𝑌#|AB	}		,			𝑐	𝜖	{𝑟, 𝑔, 𝑏} 136 
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 137 
 (4) 138 

𝑋#E = 𝑌#L + 𝐵 139 
 140 
At each c, the corresponding optimization problem in eq. (4) has the well-known form of the 141 
optimization problem in Total Variation regularization. This technique is widely used in inverse, ill-142 
posed imaging problems, such as denoising [10-11]. 143 
Since the function to be minimized is convex, a number of convex optimization algorithms exists for 144 
determining its optimum solution. In this paper, we use the Regularized Linear Regression solver 145 
included in the Matlab® UNLockBoX Convex Optimization Toolbox [12]. This solver uses the forward-146 
backward splitting algorithm [13], specifically designed to minimize convex functions of the same 147 
form of the one in eq. (4), where the second term is not differentiable. The method implemented 148 
exploits the proximal operator [14] of the non-differentiable term to find iteratively the variable to 149 
be estimated. At each iteration, the update chosen finds, by an inner iterative cycle, the smallest 150 
value of the non-differentiable term in a neighborhood of the ordinary gradient-descent update of 151 
the differentiable term. Under mild conditions, this procedure is proved to converge to the 152 
minimizer of the original Total Variation problem. The solutions to the three independent problems 153 
in eq. (4) can then be composed to give the RGB image X. 154 
 155 
3. Examples 156 
 157 
As a first example of the application of the above described method is the analysis of a set of 158 
multispectral images in which the Infrared image contains details worth to be evidenced in a False-159 
Color image, as the ones shown in figure 1. The images were acquired using a Multispectral Camera 160 
(Moravian G2-8300, 8 Mpixel-16 bit greyscale camera equipped with 9 filters, bandpass ± 25 nm). 161 
 162 

    
Blue (450 nm) Green (550 nm) Red (650 nm) IR (1050 nm) 

 163 
Fig. 1 – Visible and Infrared images of a test canvas. 164 
 165 
The RGB color image of a test canvas, used in our laboratory for didactical purposes, is shown in 166 
figure 2, compared to the IR image. The visible image was obtained by combining the Blue, Green 167 
and Red channels in figure 1. 168 
 169 
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RGB image IR image 

  
Details of the IR image 

 170 
Fig. 2 – RGB and Infrared image of a test canvas. 171 
 172 
One of the characteristics of our test canvas is the presence of underdrawings that are not visible at 173 
naked eye (under the two blue patches on the top of the canvas, see figure 2). 174 
The usual approach to evidence these features would be the application of the IRRG or IRGB false-175 
color method (figure 3). 176 
 177 
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IRRG false-color image IRGB false-color image 

 178 
Fig. 3 – IRRG and IRGB false-color images of a test canvas. 179 
 180 
Although both the two false-color approaches are able to evidence the previously invisible 181 
underdrawings, the colors are not realistic (and, in fact, the False-Colors obtained using the IRRG 182 
method are often used as a tool for a rough identification of the pigments used in the painting). 183 
The method that we propose in this paper aims to obtain the same (or better) visibility of the 184 
underdrawing or of the other details evidenced in the IR image, maintaining the visual appearance 185 
of the RGB image. 186 
For doing that, we should just identify the matrix A in eq. (3) with one of the components of the 187 
RGB image, while B will be the Infrared image. The results of the three optimizations (l = 0.05) for 188 
the three components of the visible image are shown in figure 4. 189 
 190 

   
Blue + IR Green + IR Red + IR 

 191 
Figure 4 – Mixed components after optimization of eq. (3). 192 
 193 
The details of the underdrawing are visible in all the three components. The composition of the 194 
mixed images in a false-color image is shown in figure 5. 195 
 196 
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   197 
Figure 5 –Realistic false-color imgage obtained using the Gradient Transfer method.  198 
 199 
A comparison of figure 5 with the false-color images in figure 3 evidences that, while the 200 
underdrawings are clearly visible (from the Gradient Transfer of the IR image details), the visual 201 
appearance of the canvas and the colors are almost perfectly preserved (see figure 2). We can thus 202 
call this particular application of the Gradient Transfer method ‘Infrared true-color’ (IR-TC) imaging. 203 
Another example of the application of Gradient Transfer for obtaining a realistic False-Color image 204 
involves the elaboration of a detail of the panel painting Pietà, dated 1569, by Agnolo Bronzino, 205 
conserved in Santa Croce, Florence. The multispectral images were obtained by one of us (Luciano 206 
Marras) using a motorized flat scanner (spatial resolution: 250 µm, acquisition time: 90 min/m2)  207 
[15]. The RGB and IR images are shown in figure 6. 208 
  209 



8 
 

 210 

  
RGB Image IR Image (1000/1700 nm) 

 211 
Figure 6 – RGB and IR Image of the ‘Pietà’ (detail). 212 
 213 
The Bronzino painting is characterized by many pentimenti, which can be studied using the classical 214 
false-color approaches (figure 7) 215 
  216 

  
IRRG False-color image IRGB False-color image 

 217 
Figure 7 – IRRG and IRGB false-color images of the ‘Pietà’. 218 
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The false-color images evidence clearly the pentimenti. However, the chromatic rendering of the 219 
images are very different from the original. 220 
 221 
The IR-TC image shown in figure 8 was obtained through the optimization of eq. (3) with l = 0.005. 222 
 223 

 224 
 225 
Figure 8 – IR-TC reconstruction of the ‘Pietà’. 226 
 227 
The application of this method is not limited to canvas or wood painting. In figure 9 we show the 228 
RGB image and the IR image of an Etruscan wall painting (Tomb of the Monkey, Chiusi, Italy) [16-229 
17]. 230 
 231 
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RGB Image Infrared image (1050 nm) 

 232 
Figure 9 – RGB and Infrared Image of an Etruscan wall painting. 233 
 234 
The realistic false-color image is shown in figure 10, compared to the conventional IRRG and IRGB 235 
false color images. 236 
 237 

   
Realistic false-color  IRRG IRGB 

 238 
Figure 10 – IR-TC image, compared with IRRG and IRGB false-color. 239 
 240 
 241 
 242 
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4. Related works 243 
 244 
Total Variation (TV) regularization is a technique widely used in inverse, ill-posed imaging problems, 245 
for its ability to perform local smoothness, i.e., to promote flat regions in the image to be 246 
reconstructed while preserving the edges [18]. Compared to other edge-preserving regularizers, 247 
total variation applied to the inversion of linear data models has the further advantage of resulting 248 
in a convex optimization problem. The unique solution can thus be computed by solving the 249 
associated Euler-Lagrange equation, or by using one of the several algorithms for convex 250 
minimization. 251 
Total variation was originally introduced for image denoising [19], and then applied to several other 252 
imaging problems [10], including deblurring [11], blind deconvolution [20], inpainting [21], and color 253 
demosaicing [22]. 254 
An interesting approach for merging hyperspectral and visible imaging, preserving the fidelity of the 255 
RGB image colour and the details of the IR image, has been proposed by Kim et al. [23] for the 256 
analysis of old documents. Another recent proposal for enhancement of ancient documents based 257 
on the merging of RGB and IR images has been presented by Gargano et al. [24]. 258 
 259 
 260 
5. Conclusion  261 
 262 
We have presented a new method for the realization of realistic false-color images, based on the 263 
Gradient Transfer algorithm recently proposed by Ma et al. [8] for the treatment of thermal Infrared 264 
images. The Gradient Transfer idea, suitably modified for the application to Cultural Heritage 265 
multispectral analysis, allows the merging of visible and Infrared information that guarantees a good 266 
chromatic fidelity of the result with the original RGB image while preserving the readability of the 267 
details contained in the Infrared image. We believe that such Infrared True-Color images can be very 268 
useful for restorers and Art historians as a support of their activity, but also, in museums and 269 
exhibitions, for augmented reality applications in which the otherwise invisible Infrared details or 270 
underdrawings can be made visible to the public without changing the chromatic appearance of the 271 
original.  272 
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