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Abstract

In this paper we analyse patterns in face shape variation due to weight gain. We propose the use of persistent

homology descriptors to get geometric and topological information about the configuration of anthropometric 3D

face landmarks. In this way, evaluating face changes boils down to comparing the descriptors computed on 3D

face scans taken at different times. By applying dimensionality reduction techniques to the dissimilarity matrix

of descriptors, we get a shape space in which each face is a point and face shape variations are encoded as

trajectories in that space. Our first results show that persistent homology is able to identify features which are

well-related to overweight, and may help assessing individual weight trends. The research is carried out in the

context of the European project SEMEOTICONS, which is developing a multisensory platform which detects and

monitors over time facial signs of cardio-metabolic risk.

Categories and Subject Descriptors (according to ACM CCS): I.4.7 [IMAGE PROCESSING AND COMPUTER

VISION]: Feature Measurement—Feature representation, Size and shape

1. Introduction

Back in 1942, D’Arcy Wentworth Thompson expressed the

importance of investigating biological form in a fully quan-

titative manner [TW∗42]:

The study of form may be descriptive merely, or it may

become analytical. We begin by describing the shape of an

object in the simple words of common speech: we end by

defining it in the precise language of mathematics; and the

one method tends to follow the other in strict scientific order

and historical continuity.

We may say that D’Arcy Thompson’s vision has come

true: in the last century, morphometrics came of age, as the

discipline dealing with the quantative study of form [Rey96].

This was mainly accomplished by applying univariate and

multivariate statistics to measures such as linear distances,

angles and ratios. In the 1980’s, it became clear that a

more complex approach to the study of shape was needed,

which had to be able to capture the geometry of the mor-

phological structures under study and retain its information

through the analysis. It was the birth of Geometric Mor-

phometrics [Cor93], which quantifies the variation in the

shape of anatomical objects using the Cartesian coordinates

of anatomical landmarks, after the effects of non-shape vari-

ations (translation, rotation, scale) have been factored out. A

rich statistical theory for shape analysis supported the anal-

ysis of shape variation [DM98, Boo96].

On the other hand, D’Arcy Thompson’s dream of a quan-

titative investigation of shape has been realized also in the

discipline of 3D shape analysis and description: over the

last decades, computer vision and computer graphics sci-

entists brought fundamental methodological advances for

shape quantification, in the form of shape descriptors and

similarity measures [BFGS14]. In a sense, we could say that

morphometrics belongs to a much broader family of com-

putational methods for quantitative morphological investiga-

tion. Therefore, we believe that morphometrics could greatly

benefit from the developments in the field of shape analysis

and description, especially for 3D data, whose usage was one

of the major changes over the last decade.

In this paper, we are interested in quantifying patterns in

face shape variation due to weight gain. We take advantage

of computational topology, an emerging yet well-established

field of research in Computer Graphics [BDFF∗08], which

gives accurate descriptors of 3D data. This research is car-

ried out in the context of the European project SEMEOTI-

CONS [sem], which is developing a multisensory platform

in the form of a mirror. The platform detects and moni-
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tors over time facial signs of cardio-metabolic risk, cardio-

vascular diseases being one of the leading causes of mortal-

ity worldwide. The mirror is designed to fit into daily-life

settings (the home, the gym, the pharmacy). Therefore, it re-

quires contact-less data aquisition and non-invasive sign de-

tection and analysis. According to a semeiotic model of the

face for cardio-metabolic risk [CFG∗14], the face signs in-

clude 3D morphological face descriptors of overweight and

obesity, to be computed on a 3D face model reconstructed

from range data acquired by a 3D scanner.

Though it is well known that the face is involved in the

process of fat accumulation, there is no consensus in the lit-

erature about which are the facial morphological correlates

of body fat. An increase in some facial dimensions was ob-

served in a study about the face morphology of obese ado-

lescents [FDT∗04]. Moreover, there are studies that show

that some geometrical facial features may be related to Body

Mass Index and Waist Circumference [LK14]. Those fea-

tures, measured on 2D images, include Euclidean distances,

angles and face areas defined by selected soft-tissue land-

marks. We argue that shape changes cannot be attributed

to single, local variations in the position of individual land-

marks. Also, shape changes involve shifts in the position of

landmarks relative to other landmarks. Therefore, we need

techniques that enable one to globally analyse the landmark

configuration on a face.

We propose the use of Persistent Homology [ELZ02], a

technique which grows a space incrementally and analyses

the placement of topological events within the history of this

growth. We compute Persistent Homology on the configura-

tion of soft-tissue face landmarks, namely on a filtered com-

plex whose nodes correspond to anthropometric landmarks,

and edge lengths to their Euclidean or geodesic distance. The

output is a shape descriptor (a persistence interval) giving

information on the geometry and topology of the landmark

structure. As persistence intervals can be efficiently com-

pared using suitable distances, evaluating face changes boils

down to comparing the persistence intervals computed on

3D face scans taken at different times.

By applying dimensionality reduction techniques to the

matrices of dissimilarities between persistent intervals, we

get a shape space in which each face is a point, and face

shape variations are trajectories in that space. We experi-

mented on a dataset of synthetic 3D faces simulating weight

changes, generated using a parametric morphable model

[PKA∗09]. Though the research is in its initial phase, our

results are promising. By analysing the position of thin and

fat people in the shape space, we show that persistent ho-

mology is able to identify features which are well-related to

overweight. Also, by analysing the shape patterns of single

individuals as trajectories in shape space, we show that our

technique helps assessing trends in weight change on indi-

viduals.

2. Basics in persistent homolgy

Persistent homology analyses the placement of topological

events in a growing space: for example, the birth of a con-

nected component and its death when it merges into another

component. The lifespan of topological attributes is encoded

in a simple descriptor called persistence interval. The aim is

to furnish a scale to assess the relevance of topological at-

tributes, under the assumption that longevity is equivalent to

significance [ELZ02]. Persistent homology can be useful in

analysing 3D shape data and shape changes in particular.

The first concept we need is that of a filtered complex. A

complex K is filtered by a filtration {Ki}i=0,...,n if Kn = K

and Ki is a subcomplex of Ki+1 for each i= 0, . . . ,n−1. One

can think of K as a complex that grows from an initial state

K0 to a final state Kn = K. An example is the Rips filtration:

if a space X is known through a finite number of samples,

for a real number ε > 0 the Rips complex Rε(X) is the com-

plex whose k-simplexes are the subsets {x0,x1, . . . ,xk} of X

such that d(xi,x j) ≤ ε for all pairs xi,x j with 0 ≤ i, j ≤ k.

Whenever ε < ε
′, there is an inclusion Rε(X)→ Rε′(X) that

reveals a growing complex.

Given a filtered complex, its topological attributes change

through the filtration, since new components appear or con-

nect to the old ones, tunnels are created and closed off,

voids are enclosed and filled in, etc. In particular, as for 0-

homology, each homology class corresponds to a connected

component, and a homology class is born when a point is

added, forming a new connected component, thus being a 0-

cycle. A homology class dies when two points belonging to

different connected components, i.e. they belongs to two dif-

ferent 0-cycles, are connected by a 1-chain, thus becoming

a boundary. More formally, given a filtered simplicial com-

plex {Ki}i=0,...,n, the j- persistent k-th homology group of

Ki can be defined as a group isomorphic to the image of the

homomorphism η
i, j
k

: Hk(K
i)→Hk(K

i+ j) induced by the in-

clusion of Ki into Ki+ j. In other words, the j-persistent ho-

mology group of Ki counts how many homology classes of

Ki still survive in Ki+ j . Persistence represents the life-time

of cycles in the growing filtration. The persistent homology

of a filtered complex can be represented by a set of intervals,

called persistence intervals: a persistence interval is a pair

(i, j), with i, j ∈ Z∪{+∞} and 0 ≤ i < j, such that there

exists a cycle that is completed at level i of the filtration and

becomes a boundary at level j.

3. Face description and comparison

Our aim is to define a metric in the space of faces that pro-

vides information about face shape changes due to weight

gain. We proceed in three steps:

• Represent faces using 23 landmarks {l1, . . . , l23}, li ∈ R3.

The landmarks are a subset of Farkas’ landmarks, picked

up according to the findings in [LK14]. Figure 1 shows

the set of landmarks on a template face model [PKA∗09].
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• Describe the landmark configuration via persistent homol-

ogy. This requires choosing the filtration (Section 3.1) and

computing persistence intervals (Section 3.2).

• Build a metric space on which to analyze patterns of shape

variation (Section 4).

Figure 1: The 23 landmarks used to represent faces.

3.1. Building the filtered complex

Building a filtered complex for faces requires defining the

simplicial complex and the filtration strategy.

A first choice for the complex could be the flag complex

obtained from the landmarks restricted to three dimensions,

in which every pair of landmarks has an edge between them,

and triangles and terahedra are consequently included. As

suggested in [HGK12], the drawback is that the flag complex

would not generally have a geometric realization, whereas

we do know that our data are inherently three-dimensional,

since the landmarks come from human faces which live in

the 3D Euclidean space. To preserve the Euclidean nature of

data, we preferred a geometrically realizable subcomplex of

the flag complex, namely the Delaunay triangulation of the

23 landmarks. We decided to compute the Delaunay trian-

gulation on a template face, namely the Basel Face Model

[PKA∗09], rather than computing it on individual faces. We

do this so that the abstract complex is fixed across all possi-

ble subjects, since we want to compare the absolute structure

of the landmark configuration, common to all faces. Indeed,

if the Dealunay triangulation was calculated separately for

each face landmark configuration, the Delaunay triangula-

tions could be slightly different, due to differences in the

distances between landmarks for each subject.

Once the complex is fixed, what varies on individual faces

are the properties used for filtering the complex. We exper-

imented with different filtrations. The first choice is a Rips

filtration using the Euclidean distance between landmarks,

similar to what has been done in [HGK12] to study the out-

come of clinical orthodontic procedures. All vertices enter

at time t0; the edge between landmarks i and j enters at

time ti, j = M− dE(li, l j) where dE(li, l j) is the Euclidean

inter-landmark distance between landmarks i and j and M =
maxq,r dE(lq, lr); triangles and terahedra join the filtration

when all of their faces have. Differently from [HGK12], we

chage sign to the Euclidean distances. This is done so that

Figure 3: Euclidean (left) and geodesic (right) distance be-

tween two landmarks.

landmarks that are far apart will have a smaller entry time.

Figure 2 shows the process of growth of the complex. Also,

differently from [HGK12], we do not consider any normal-

ization of the function across different individuals, as we are

not interested in comparing inter-landmark distances within

an individual with those same inter-landmark distances in

other individuals, but rather on evaluating changes on the

same individual in the process of gaining weight.

Moreover, we experimented with another filtration, which

is similar to the one above but with geodesic distances in-

stead of Euclidean ones: ti, j = M−dG(li, l j) where dG(li, l j)
is the geodesic distance between li and l j and M =
maxq,r dG(lq, lr) Geodesic distances take into account the

intrinsic properties of faces, as they are bound to walks on

surfaces. Geodesic distances encode different shape features

than Euclidean distances: for example, the geodesic dis-

tance between the two landmarks in Figure 3 measures the

length of the path passing below the chin, whereas the Eu-

clidean distance measures the horizontal distance between

the points.

We believe the filtered complexes above are a sensible

choice to study the structure of a landmark configuration. At

any rate, we underline that different choices for the complex

are possible, as discussed in Section 5.

3.2. Computing and comparing persistence diagrams

We computed persistent homology on each filtered complex,

with homolgy of dimension 0, 1, and 2. That is, we computed

0-, 1-, 2-dimensional persistence intervals for each face. Fig-

ure 4 shows a face and its persistent intervals. Persistence di-

agrams were compared via the Bottleneck distance [dFL06].

The computations were performed in MATLAB, with code

adapted from the program JavaPlex [TVJA11].

4. Analysis of patterns of shape variation

As a longitudinal study on real subjects to monitor weight

and face changes was not available, a dataset of synthetic

3D faces simulating weight changes was generated using a

parametric morphable model [PKA∗09] and used for our

first experiments. The morphable model provides specific
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Figure 2: From left to right, the growth of the filtered complex, from single vertices associated with landmark points (superim-

posed on a template face model) to the complete complex.
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Figure 4: A face and its persistence intervals.

Figure 5: A seed face in our dataset, with fattening simu-

lated in 10 steps.

parameters for simulating fattening. 25 faces are generated

as seeds, and each face is morphed to simulate the process of

gaining weight, with 10 equally spaced intervals (Figure 5).

This gives a dataset of 250 faces, divided into 10 groups or-

dered according to increasing fatness. Computing persistent

homology on this dataset gives 250× 3 persistent intervals,

one for each dimension (0-, 1-, 2-degree homology).

4.1. Metric shape space from shape dissimilarities

In statistical shape analysis, the analysis of shape variation

is usually carried out in a feature space. Since persistent di-

agrams are not feature vectors, we took a different route and

worked in the space of shape dissimilarities between persis-

tence intervals. Indeed, given a set of faces, the input to our

analysis was the dissimilarity matrix whose entries are pair-

wise distances between face descriptors, namely the Bottle-

neck distances between persistence intervals. This approach

is general and flexible, in that it can be adapted to arbitrary

descriptors, other than feature-based (e.g., graphs).

To build the dissimilarity shape space, we computed the

Bottleneck distance on the faces of our dataset. This yielded

three different dissimilarity matrices, one for each homology

dimension (0, 1, 2); each matrix is of dimension 250× 250.

Then, a dimensionality reduction technique was applied to

the matrices of dissimilarities between persistence intervals.

We experimented with MultiDimesional Scaling, and got

three 250× p matrices, with p < 250. In the analysis that

follows, we set p = 2. Each row in the matrices represents

the coordinates of a face in the lower-dimensional embed-

ding space. Note that different embedding techniques could

be used, possibly including non-linear dimensionality reduc-

tion techniques such as isometric feature mapping [TDSL00]

and Laplacian eigenmaps [NSW08].

As expected, given the intrinsic characteristic of faces,

we found that homology of dimension 2 was not significant,

whereas homology of degree 0 and 1 proved to be more in-

formative. This can be seen from the observation of the dis-

similarity matrices in Figure 6. Therefore, in what follows

we will only analyse data pertaining to homology of degree

0 and 1. We first analyse visually the results separately, that

is, for 0- and 1-homolgy, and for Euclidean- and geodesic-

based filtration. This is done to study the different informa-

tion they provide (Section 4.2). Then, we analyse quantita-

tively the results of integrated distances, given by the sums

of matrices, in terms of classification rate (Section 4.3).

4.2. Qualitative analysis

The analysis of scatterplots in the embedding space seems

to confirm that the proposed technique is able to identify

3D features which are well-related to overweight and obe-

sity. Figure 7 (left) and 8 (left) show the first two embedded

MDS coordinates, labeled by fatness level, from 1 to 10, for

the filtrations based on Euclidean and geodesic distance, re-

spectively, in dimension 0 and 1. It can be seen that in both

cases the subjects are well distributed in the space according

to their fatness level. In other words, our technique seems to

be able to separate faces of people in different groups. This

can be better appreciated in Figure 7 (right) and 8 (right),

which show the first two embedded MDS coordinates for a

subset of faces, namely thinner people (red), medium people

(green) and fatter people (blue) in our dataset.

Since our essential task is the description of morpholog-

ical change over time on a subject, we must check whether
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Figure 6: Dissimilarity matrices between persistence intervals, for the Euclidean (top) and geodesic filtration (bottom).
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Figure 7: Scatterplot of the first two embedded MDS coordinates, labeled by fatness level, from 1 to 10, for the Euclidean-based

filtrations (left). The scatterplot with only a subset of faces shown (right).

our technique enables us to discover a trend in a longitudinal

study. A way to do this is visualizing the shape patterns of

individuals as trajectories [CA13] in the dissimilarity space.

Each individual has a trajectoty made of ten consecutive

points. For a given trajectory, we can analyse four attributes,

namely location (the starting and ending points); size (the

magnitude of the vector between the endpoints); orienta-

tion (the direction of the vector between the endpoints); and

shape. In our context, the location depends on the specific,

initial traits of each individual. The size is a measure of the

difference in shape between the thinnest and the fattest mor-

phing of the individual. The orientation is crucial: a consis-

tent orientation would indicate that our technique is able to

detect and encode the process of getting weight. Figure 9

shows the trajectories of three sample faces in our dataset in

the embedding space given by the first two coordinates. It is

clear that the orientation is consistent, from left to right in

accordance with weight gain, but the shape of trajectories do

differ, especially for 0-homology. Figure 10 shows the tra-

jectories if only the first embedding coordinate is taken into

account. As the trajectories are more homogeneous, it seems

that the first coordinate alone is able to identify the trend in

fat variation better than the first two coordinates.
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Figure 8: Scatterplot of the first two embedded MDS coordinates, labeled by fatness level, from 1 to 10, for the geodesics-based

filtrations (left). The scatterplot with only a subset of faces shown (right).

(0-homology, Euclidean filtration) (1-homology, Euclidean filtration)

(0-homology, geodesic filtration) (1-homology, geodesic filtration)

Figure 9: Trajectories of three sample faces in the space given by the first two embedding coordinates.
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(0-homology, Euclidean filtration) (1-homology, Euclidean filtration)

(0-homology, geodesic filtration) (1-homology, geodesic filtration)

Figure 10: Trajectories of three sample faces in the space given by the first embedding coordinate.

4.3. Quantitative analysis

We have seen that persistence intervals based on both the

Euclidean distance and the geodesic distance between land-

marks are able to quantify shape variation, and that they take

different properties into account. This suggests that sum-

ming up their information could be beneficial. We can de-

fine the distance between two faces as the sum of the Bot-

tleneck distances between their persistence intervals in dif-

ferent dimensions, or with different filtrations. Let us de-

note d0
E,G (d1

E,G) the sum of distances in dimension 0 (di-

mension 1) obtained with the Euclidean and the geodesic

filtration, and d
0,1
E (d

0,1
E ) the sum of distances with the Eu-

clidean (geodesic) filtration in both dimensions 0 and 1. Ta-

ble 1 reports the classification rate on our dataset for the inte-

grated distances above defined. We also evaluated two pop-

ular state-of-the-art shape descriptors, namely Shape Dis-

tributions (SD) [OFCD02] and Spherical Harmonics (SH)

[KFR03]. The classification rate refers to the number of sub-

jects correctly attributed to their group, out of the 10 groups

in the dataset, in a leave-one-out experiment. Notice that

the classification task is very challenging, since the varia-

tion among consecutive groups, in terms of fat gain, is rather

small. Therefore, we considered three classification rates, for

correct prediction within the first, second and third choice. It

can be seen that integrated distances perform better than or

comparably to Spherical Harmonics, and significantly better

than Shape Distributions. The best performance seems to be

1st 2nd 3rd

d0
E,G 42% 63% 88.4%

d1
E,G 41.2% 64% 83.2%

d
0,1
E 30.8% 54.4% 77.2%

d
0,1
G 42.4% 72.2% 83.6%

SD 22.4% 44.8% 65.6%

SH 38.4% 65.6% 88.0%

Table 1: Classification rates for integrated distances and

competitors. The best rates are marked as bold.

provided by the filtration based on geodesic distances, with

distances summed over homology dimensions.

5. Conclusions

We described an ongoing work in the European project SE-

MEOTICONS, which is developing a multisensory platform

which detects and monitors over time facial signs correlated

with cardio-metabolic risk, and gives personalized guidance

to individuals to improve their habits. Our contribution to

the project is the automatic assessment of weight gain via

3D shape analysis, being obesity and overweight one of

the main factors of cardio-metabolic risk. We used persis-

tent homology, which offered a tunable framework for face

description and comparison. We qualitatively and quantita-

tively described the behaviour of our descriptors on a syn-
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thetic dataset of 3D faces, and the results seem to be promis-

ing. Additional experiments on real face data acquired from

volunteers are planned in the future.

A first direction of future research is the study of dif-

ferent filtrations, defined on the whole face rather than on

the landmark configuration, for example using Morse filtra-

tions based on curvature or distances from reference points.

A landmark-free approach would also give the advantage of

not having to pre-compute face landmarks. Although land-

marks can be identified with different strategies [OSB13],

locating landmarks with the desired accuracy could be diffi-

cult on bad-quality face scans.

The future work also include the use of hybrid descriptors

which analyse both shape and texture, as for example the

hybrid geodesic distance in [BCGS].

Finally, an advantage of our framework is that it is flexi-

ble, meaning that it can be adapted to the study of face prop-

erties other than weight accumulation, by defining a differ-

ent, ad hoc filtered complex. Therefore, we plan to investi-

gate on the study of other signs, including facial asymmetry.
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