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Abstract
Purpose In presence of indeterminate lesions by fine needle aspiration (FNA), thyroid cancer cannot always be easily
diagnosed by conventional cytology. As a consequence, unnecessary removal of thyroid gland is performed in patients
without cancer based on the lack of optimized diagnostic criteria. Aim of this study is identifying a molecular profile based
on long noncoding RNAs (lncRNAs) expression capable to discriminate between benign and malignant nodules.
Methods Patients were subjected to surgery (n= 19) for cytologic suspicious thyroid nodules or to FNA biopsy (n= 135)
for thyroid nodules suspicious at ultrasound. Three thyroid-specific genes (TG, TPO, and NIS), six cancer-associated
lncRNAs (MALAT1, NEAT1, HOTAIR, H19, PVT1, MEG3), and two housekeeping genes (GAPDH and P0) were
analyzed using Droplet Digital PCR (ddPCR).
Results Based on higher co-expression in malignant (n= 11) but not in benign (n= 8) nodules after surgery, MALAT1,
PVT1 and HOTAIR were selected as putative cancer biomarkers to analyze 135 FNA samples. Cytological and histo-
pathological data from a subset of FNA patients (n= 34) were used to define a predictive algorithm based on a Naïve Bayes
classifier using co-expression of MALAT1, PVT1, HOTAIR, and cytological class. This classifier exhibited a significant
separation capability between malignant and benign nodules (P < 0.0001) as well as both rule in and rule out test potential
with an accuracy of 94.12% and a negative predictive value (NPV) of 100% and a positive predictive value (PPV) of
91.67%.
Conclusions ddPCR analysis of selected lncRNAs in FNA biopsies appears a suitable molecular tool with the potential of
improving diagnostic accuracy.
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Introduction

Differentiated thyroid carcinoma, including papillary and
follicular subtype, is the most common thyroid malig-
nancy, representing more than 90% of all thyroid cancers.
Thyroid nodules are diagnosed with increasing frequency
in clinical practice [1]. The first step in management is to
rule out malignancy, which represents about 5% of total
cases [2, 3]. Thanks to the advances in ultrasound (US)
imaging, specific US suspicious patterns have been
identified (solid, hypoechoic pattern, irregular margins,
micro-calcifications) guiding an appropriate selection to
perform FNA cytology (FNAC) [2, 3]. FNAC is the main
diagnostic test for thyroid lesions and is an effective
screening procedure to select patients for surgical
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management. However, the rate of surgery for benign
lesions at final histology is still elevated [2]. Specifically,
according to the Italian cytology classification, patients
with intermediate and high-risk thyroid nodules (TIR3B/
Beth Class IV, TIR4/Beth Class V, and TIR5/Beth Class
VI according Italian and Bethesda cytological classifica-
tion) are candidate to thyroid surgery [3]. However, only
25–30% of TIR3B, 50–80% of TIR4, and 95–99% of
TIR5 are malignant at final histology. On the contrary,
nodules with TIR3A/Beth Class III cytology diagnosis,
which are usually not eligible to surgery, show 10–15%
risk of malignancy [3]. Therefore, a significant number of
nodules are not properly treated and new diagnostic tools
are needed to better classify them.

The recent progress in thyroid cancer genetics and high-
throughput technologies significantly improved molecular
test for cancer diagnosis. Results from The Cancer Genome
Atlas (TCGA) project provided a comprehensive genomic
profile of thyroid cancer [4] and genetic alterations in
thyroid nodules are used for cancer diagnosis. Actually,
several molecular tests are commercially available to either
rule in or rule out malignancy [5], including Afirma gene
sequencing classifier, Thryoseq v3 test based on next gen-
eration sequencing (NGS) and ThyGeNEXT/ThyraMIR
combination of microRNA alterations and mutation panel.
However, open questions remain uncovered and even the
more recent molecular analysis using the multigene geno-
mic classifier (ThyroSeq v3) demonstrated that, among
nodules testing positive, a specific groups of genetic
alterations had cancer probabilities ranging from 59 to
100% (specificity up to 82% of all benign nodules with
indeterminate cytology) [6].

The recently discovered lncRNAs emerging as critical
regulators of several biological and cellular functions may
represent a still unexploited tools with a potential diagnostic
and prognostic values for numerous cancers [7, 8]. In
thyroid cancer, many studies have shown that lncRNAs are
deregulated [9, 10], involved in several biological activities
[11] and detection of cancer-related lncRNAs in FNA
biopsies represents a promising strategy to recognize
malignant lesions [12]. In thyroid cancer, Metastasis-
Associated Lung Adenocarcinoma Transcript 1
(MALAT1) is upregulated in several subtypes such as
papillary and follicular cancer [13] and Homeobox tran-
script antisense RNA (HOTAIR) acts as an oncogene and
correlates with metastasis and poor prognosis [12]. The
lncRNA H19, firstly described as an onco-fetal transcript,
exhibits higher expression in both tumor samples and
thyroid cancer cell lines [14]. The lncRNAs plasmacytoma
variant translocation 1 (PVT1) and the nuclear enrich
abundant transcript 1 (NEAT1) are significantly upregulated
in thyroid tissues [15, 16]. The maternally expressed gene 3

(MEG3) is downregulated in papillary thyroid cancer and
associated with lymph-node metastasis [17].

In recent years, many efforts have been made to design
novel algorithms capable to discriminate between benign
and malignant thyroid nodules based on US images [18]
and altered gene expression [19]. A support vector
machines model combining four microRNAs (miR-222,
miR-328, miR-197, and miR-21) expression on FNAs has
been reported to differentiate malignant from benign thyroid
lesions [20]. Deep learning approaches have been used for
developing computer-aided diagnosis system to classify
thyroid nodules by US images [21, 22]. Linear and non-
linear machine-learning algorithms showed similar perfor-
mance for predicting thyroid nodules malignancy using
pathological reports as reference standard [23]. Recently, a
machine-learning algorithm has been proposed to predict
malignancy in thyroid FNAs via whole slide images
reaching a performance comparable to an expert cyto-
pathologist [24]. With the development of new mathema-
tical models and the inclusion of novel predictors, the
performance for predicting the malignancy of thyroid
nodules is expected to increase.

Herein we set up an advanced mathematical model based
on lncRNAs expression in FNA samples as additional novel
tool for preoperative diagnosis of thyroid cancer. In parti-
cular, we analyzed, by Droplet Digital PCR (ddPCR), six
cancer-associated lncRNAs (MALAT1, NEAT1, HOTAIR,
H19, PVT1, MEG3) in both FNAs and surgical tissues. We
defined a predictive algorithm based on naïve Bayes clas-
sifier for identifying patients with thyroid cancer with
accuracy of 94.12% (sensitivity 100% and specificity
91.67%) using MALAT1, HOTAIR, and PVT1 expression
in FNA samples and the cytological class. Our attempt, if
confirmed in extended cohorts, might represent a reliable
diagnostic tool.

Materials and methods

Patients enrollment

Patients were enrolled at the Endocrinology and Diabetes
Center of Fondazione Policlinico Universitario A. Gemelli
- IRCCS, Rome, Italy and subjected to surgery (n= 19;
n (F/M)= 17/2, age (years, mean ± SD)= 51.1 ± 15.4 (F)/
45.5 ± 13.4 (M)) based on cytologically suspicious thyroid
nodules or to FNA biopsy (n= 135; n (F/M)= 102/33, age
(years, mean ± SD)= 48.8 ± 13.5 (F)/53.3 ± 15.2 (M))
because of thyroid nodules ≥1 cm suspicious at US.
Informed consent was obtained from each patient (from
September 2017 to December 2019, Ethics Committee
approval ID: 1604, 13 July 2017). All procedures were
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conducted according to the principles expressed in the
Declaration of Helsinki, the institutional regulation, and
Italian laws and guidelines. Surgical specimens were dis-
sected from a qualified pathologist within 1 h of surgery
and used for gene expression analysis. FNA biopsies were
processed using the ThinPrep liquid-based cytology
method as described in ref. [25]. Staging was done in
accordance with the 2014 Italian Six‐tiered Reporting
System for Thyroid Cytology (SIAPEC 2014) [3]. This
system is similar to the Bethesda Reporting System for
Thyroid Cytology as follow: TIR1/Beth Class I (non-
diagnostic), TIR2/Beth Class II (benign), TIR3A/Beth
Class III (AUS/FLUS), TIR3B/Beth Class IV (FN/SFN),
TIR4/Beth Class V (suspicious for malignancy), and TIR5/
Beth Class VI (malignant) [26]. The specimens were stored
in PreservCyt solution at room temperature until used for
molecular analysis (within 2 months).

Gene expression analysis by ddPCR

RNA extraction from fresh thyroid cancer tissues was per-
formed using Trizol according manufacturer’s instruction
(tissue homogenization was obtained with homogenizer
VDI12, VWR). cDNA preparation was performed using the
high capacity kit (Applied Biosystems) according instruc-
tion as in ref. [27]. Dilution of cDNA (from 1:5 to 1:800)
was set up by ddPCR (Supplementary Fig. 1) using EVA
green at 60 °C for annealing/extension step according
manufacturer’s instructions on QX-200 instrument (Bio-
Rad) with the following primers (100-nM final concentra-
tion unless indicated):

TG (200 nM) 5′-CGGCCAATATCTTCGAGTACCA-3′
and 5′-GCTTCAGAAAGGCCGTTTCC-3′

TPO 5′-CACTTGCCTGGCGAACAAAT-3′ and 5′-GG
GTGGTCTCTGTTGTTGCA-3′

NIS 5′-GTCCCCGGGCTTTTCCT-3′ and 5′-CATTGA
TGCTGGTGGATGCT-3′

PVT1 5′-ACAGGCGTGTGCCCACAAA-3′ and 5′-CA
TGGTGAAACCCCGTCTCT-3′

MEG3 5′-ATCCCTCACCCGGGTCTCT-3′ and 5′-CT
TGGCAGCAGCTCAGCAT-3′

MALAT1 (200 nM) as in ref. [28], HOTAIR and
GAPDH as in ref. [27], H19 and p0 (200 nM) as in ref. [29].

LncRNA level was normalized to housekeeping gene
p0 selected because of increased signal separation and lower
rain between target and background droplets (Supplemen-
tary Fig. 2).

FNA samples were centrifuged (5 min at 800 rpm) and
suspended in 50 μl of lysis buffer and processed according
instruction (Single Shot Cell Lysis Kit, Bio-Rad). After
centrifugation, 10 μl were subjected to retro-transcription
with high capacity kit according protocol (Applied Bio-
systems). PreAmp step was performed using 2 μl of

cDNA, Eva green mix reaction, and specific primers at
400 nM for 14 cycles at 95 °C for 15 s and at 58 °C for
4 min. One microliter preAmp (1:10 dilution) was used to
perform ddPCR using EVA green (total droplet number
>12000). Representative detection of lncRNAs in FNAs is
showed in Supplementary Fig. 3. Gene quantification was
in copy number/microliter. LncRNA level was normalized
to housekeeping gene p0.

Probabilistic mathematical model

A naïve Bayes classifier has been used to discriminate
between benign (denoted ben.) and malignant (denoted
mal.) thyroid nodules based on co-expression of a subset
of lncRNAs. Such a conditional probability model pro-
vides an estimate of the probability that a thyroid nodule
is either malignant or benign given the expression of
MALAT1, HOTAIR, and PVT1, by computing the
probabilities

p mal: MALAT1; HOTAIR; PVT1jð Þ;

p ben: MALAT1; HOTAIR; PVT1jð Þ:

Using Bayesian terminology, such a probability is pro-
portional to the prior probability that a nodule is a tumor
multiplied by the likelihood of the evidence. Considering
the expressions of MALAT1, HOTAIR, and PVT1 as
mutually independent random variables, conditional on the
nodule being either malignant or benign, the two above
probabilities are proportional to:

p mal: MALAT1; HOTAIR; PVT1jð Þ / p mal:ð Þ�
� MALAT1 mal:jð Þp HOTAIR mal:jð Þp PVT1 mal:jð Þ;
p ben: MALAT1; HOTAIR; PVT1jð Þ / p ben:ð Þ�

�p MALAT1 ben:jð Þp HOTAIR ben:jð Þp PVT1 ben:jð Þ:

The priors p(mal.) and p(ben.), together with the like-
lihoods p(MALAT1|tum.), p(HOTAIR|tum.), p(PVT1|
tum.), p(MALAT1|ben.), p(HOTAIR|ben.), and p(PVT1|
ben.), have been estimated using a dataset containing the
expressions of MALAT1, HOTAIR and PVT1 of 19
patients undergone to surgery. In particular, the priors have
been estimated by evaluating the empirical occurrence of
malignant and benign nodules

p mal:ð Þ ¼ Number of malignant nodules
Total number of patients

;

p ben:ð Þ ¼ Number of benign nodules
Total number of patients

:
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On the other hand, the likelihoods p(MALAT1|mal.),
p(HOTAIR|mal.), p(PVT1|mal.), and p(MALAT1|ben.),
p(HOTAIR|ben.), p(PVT1|ben.) have been estimated by fitting
a kernel distribution with Epanechnikov bases functions and
positive support to the data regarding the expressions of
MALAT1, HOTAIR, and PVT1 in patients having malignant
and benign nodules, respectively.

Thus, the probability of a nodule being malignant or
benign has been computed as

p mal: MALAT1; HOTAIR; PVT1jð Þ ¼
p mal:ð Þp MALAT1 mal:jð Þp HOTAIR mal:jð Þp mal:jð Þ

p mal: MALAT1;HOTAIR;PVT1jð Þþp ben: MALAT1;HOTAIR;PVT1ðð Þ ;

p ben: MALAT1; HOTAIR; PVT1jð Þ ¼
p ben:ð Þp MALAT1 ben:jð Þp HOTAIR ben:jð Þp PVT1 ben:jð Þ

p mal: MALAT1;HOTAIR;PVT1jð Þþp ben: MALAT1;HOTAIR;PVT1jð Þ :

Another naïve Bayes classifier has been used to dis-
criminate between benign and malignant nodules based on
lncRNAs co-expression in FNA samples and of cytology.
This conditional probability model provides an estimate of
the probability that a thyroid nodule is either malignant or
benign given the expression of MALAT1, HOTAIR,
PVT1 determined through the FNA sample and its cyto-
logical class (denoted cyt.), that is it provides estimates for
the probabilities

p mal: MALAT1; HOTAIR; PVT1; cyt:jð Þ / p mal:ð Þ�
�p MALAT1 mal:jð Þp HOTAIR mal:jð Þp PVT1 jmal:jð Þp cyt: mal:jð Þ;

p ben: MALAT1; HOTAIR; PVT1; cyt:jð Þ /
p ben:ð Þp MALAT1 ben:jð Þp HOTAIR ben:jð Þ�

�p PVT1 ben:jð Þp cyt: ben:jð Þ:

The priors p(mal.) and p(ben.), together with the
likelihoods p(MALAT1|tum.), p(HOTAIR|tum.), p
(PVT1|tum.), p(cyt.|tum.), p(MALAT1|ben.), p(HOTAIR|
ben.), p(PVT1|ben.), and p(cyt.|ben.) have been estimated
using a dataset containing the expressions of MALAT1,
HOTAIR, PVT1, and the cytological class of the nodule
of 34 patients, which underwent surgery thus allowing for
final histological analysis. In particular, the priors and the
likelihoods p(HOTAIR|mal.), p(HOTAIR|mal.), p(PVT|
mal.), and p(MALAT1|ben.), p(HOTAIR|ben.), p(PVT1|
ben.) have been estimated as detailed above in the case of
nodules that have been surgically removed.

Finally, the likelihoods p(cyt.|mal.) and p(cyt.|ben.)
have been estimated by fitting a multivariate multi-
nomial distribution to the cytological classes of patients
having malignant and benign nodules, respectively, that
is

p cyt: ¼ TIR � mal:jð Þ ¼ Number of malignant node classified as TIR�
Total number of malignant nodes ;

p cyt: ¼ TIR � ben:jð Þ ¼ Number of benign node classified as TIR�
Total number of benign nodes :

Thus, the probability of a nodule being malignant or
benign has been computed as

p mal: MALAT1; HOTAIR; PVT1; cyt:jð Þ ¼
p mal:ð Þp MALAT1 mal:jð Þp HOTAIR mal:jð Þp PVT1 mal:jð Þp cyt: mal:jð Þ

p mal: MALAT1;HOTAIR;PVT1; cyt:jð Þþp ben: MALAT1;HOTAIR;PVT1; cyt:jð Þ ;

p ben: MALAT1; HOTAIR; PVT1; cyt:jð Þ ¼
p ben:ð Þp MALAT1 ben:jð Þp HOTAIR ben:jð Þp PVT1 ben:jð Þp cyt: ben:jð Þ

p mal: MALAT1;HOTAIR;PVT1; cyt:jð Þþp ben: MALAT1;HOTAIR;PVT1; cyt:jð Þ
:

To evaluate the effectiveness of the classifier, we used the
bootstrap method: a statistical technique to estimate the
performance of a classifier on data that have not been used
for training [30, 31]. This procedure can be summarized as
follows: (i) using the bootstrap approach new verification
datasets were generated (randomly extracted from the ori-
ginal dataset with replacement) with the same size of the
original training dataset; (ii) the performance of the classifier
was assessed on the verification dataset that have not been
included in the training dataset (out-of-bag sample); (iii) the
average performance on the verification samples that have
not been used for training was determined as a measure of
the performance of the classifier on unviewed data.

Statistical analysis

Data are expressed as mean ± SEM or as fold induction as
indicated in figure legend. Significance was calculated using
nonparametric paired two-tailed Student’s t-test or chi-square
test. Statistical analysis was performed using Matlab R2018b
(RRID:SCR_001622) and/or Sigma Plot 13.0 (RRID:
SCR_003210) statistical software. P values of < 0.05 were
considered as significant.

Results

MALAT1, HOTAIR, and PVT1 are co-expressed at
higher level in thyroid cancer

Based on previously described lncRNAs deregulation in
thyroid cancer, we selected a subgroup of lncRNAs to
investigate their expression in thyroid cancer tissue samples.
Fresh post-surgery explants were used to set up detection by
ddPCR of a panel of transcripts: three thyroid-specific genes
(thyroglobulin (TG), thyroperoxidase (TPO), and sodium/
iodide symporter (NIS)), six cancer-associated lncRNAs
(MALAT1, NEAT1, HOTAIR, H19, PVT1, and MEG3),
and two housekeeping genes (GAPDH and P0) (Supple-
mentary Fig. 4). Of note, the lncRNA MALAT1 exhibited
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the higher expression, similar to TG in differentiated cancer,
with similar extent in both differentiated and undifferentiated
thyroid cancer. Next, analysis of suspicious thyroid nodules
versus the contra-lateral tissue (Supplementary Fig. 5)
revealed that expression of MALAT1, HOTAIR, PVT1, and
NEAT1 was significantly higher in malignant lesion than in
contra-lateral normal tissue (P < 0.05). On the contrary, no
modulation was detected in benign nodule, according with
literature. Of note, no MEG3 downregulation or H19 upre-
gulation was observed in tumor lesions.

Based on these results and on the observation that
MALAT1 exhibited the higher expression in tumors and
that HOTAIR and PVT1 the higher increase as compared to
the contra-lateral tissue, we selected MALAT1, HOTAIR,
and PVT1 as potential new diagnostic markers for thyroid
cancer. Analysis by ddPCR has been carried out on
19 suspicious thyroid nodules versus the contra-lateral tis-
sue. As showed in Fig. 1a, malignant lesions (n= 11)
expressed significantly higher expression of MALAT1,
HOTAIR, and PVT1 compared to benign nodules (n= 8).
At univariate analysis, MALAT1, HOTAIR, and PVT1
resulted with significantly higher expression in malignant
(n= 11) than in benign (n= 8) nodules (Fig. 1b).

Next, we attempt to develop a diagnostic molecular
taxonomy based on lncRNAs level in which higher
MALAT1, HOTAIR, and PVT1 co-expression might indi-
cate a malignant lesion. In particular, the expression of
MALAT1, HOTAIR, and PVT1 in the above 19 thyroid
nodules has been used to fit kernel distributions with Epa-
nechnikov bases functions and positive support to deter-
mine the likelihoods p(MALAT1|mal.), p(HOTAIR|mal.), p
(PVT1|mal.), and p(MALAT1|ben.), p(HOTAIR|ben.), and
p(PVT1|ben.). Figure 2a depicts the probability density
functions of the obtained likelihoods. These likelihoods
have then been used to design a naïve Bayes classifier,
using the Bayes’ rule. This classifier has been validated
using the normalized expressions of MALAT1, HOTAIR
and PVT1 in the above 19 nodules. Each of these nodules
has been classified as malignant if the probability p(mal.|
MALAT1, HOTAIR, PVT1) is greater than or equal to
0.4096, or as benign otherwise. Such a threshold has been
selected as the one corresponding to the point in the receiver
operating characteristic (ROC) curve that is closest to (0,1),
so to maximize the Youden’s J statistic, Jmax= 0.9091.
Figure 2b depicts ROC curve of the considered binary
classifier and the confusion matrix corresponding to the
threshold given above. The proposed classifier has very
good separation capabilities since the area under the ROC
curve (AUC) equals 0.96591 and the ROC curve is close to
the one of an optimal classifier. Although the analysis of
surgical data has been carried out considering only 19
patients (which have been used for both training and testing
of the classifier), it presents a good statistical significance

(P < 0.0001). Furthermore, the proposed classifier has an
accuracy of 94.74% since it correctly classified 18/19
patients. The sensitivity of the classifier is 100% since all
the benign nodules have been correctly classified, whereas
its specificity is 90.91% since 10/11 malignant nodules are
correctly classified. These results indicate that the proposed
naïve Bayes classifier offers a good potential for ruling out
the presence of malignant thyroid nodules.

MALAT1, HOTAIR, and PVT1 co-expression in FNA
samples as diagnostic tool

Based on the above results, MALAT1, HOTAIR and PVT1
were also analyzed by ddPCR on an independent cohort 135
patients undergoing FNAs (Fig. 3a). TG and the

Fig. 1 MALAT1, HOTAIR, and PVT1 expression and ROC curve
analysis in thyroid tissues. a MALAT1, HOTAIR, PVT1, and H19
quantification by ddPCR on fresh thyroid tissues (nodule and contra-
lateral). Nodules were classified as tumor (n= 11) or benign (n= 8)
according to final histology. Data, normalized vs. p0 housekeeping
gene, are expressed as fold induction nodule vs. contra-lateral (mean ±
SEM). *P < 0.05 vs. contra-lateral. b ROC curve analysis of lncRNAs
expression on thyroid tissues (benign n= 8 and malignant n= 11).
AUC (area under the ROC curve) and P value are indicated

Endocrine (2021) 72:711–720 715



housekeeping P0 were used as quality control of FNA
material. Samples with housekeeping gene <2 copies/
microliter (total n= 35) were excluded (n= 4 TIR1, n= 27
TIR2, n= 1 TIR3A, n= 1 TIR3B, and n= 2 TIR4). Figure
3b shows selected lncRNA transcripts level in all FNA
samples according all cytological classes (n= 100). A
subset of these patients underwent to surgery (n= 34) with
the following distribution: 6 TIR3A, 10 TIR3B, 7 TIR4 and
11 TIR5. The cancer prevalence was 24 out of 34 patients
(70%; 3 TIR3A (50%), 4 TIR3B (40%), 6 TIR4 (85.7%),
and 11 TIR5 (100%) resulted as papillary thyroid carci-
noma). Considered as single variables, MALAT1, HOTAIR
and PVT1 showed a trend toward higher expression in
malignant lesions as compared to benign nodules, without
reaching statistical significance (Fig. 3c). However, the
concentrations of these three lncRNAs alone are not suffi-
cient to discriminate with sufficiently high accuracy
between malignant lesions and benign nodules (the naïve
Bayes classifier designed on the basis of just these three
concentrations has an accuracy of 79.41%). Hence, in order
to improve the effectiveness of the classifier, we accounted
also for the cytological class of the nodule to implement the
Bayesian model. The expressions of MALAT1, HOTAIR,
PVT1 and the cytological class of a cohort of n= 34 thyroid
nodules have been used to fit kernel distributions with
Epanechnikov bases functions and positive support to
determine the likelihoods p(MALAT1|tum.), p(HOTAIR|
tum.), p(PVT1|tum.), p(cyt.1|tum.), p(MALAT1|ben.), p

(HOTAIR|ben.), p(PVT1|ben.), and p(cyt.|ben.). Figure 4a
depicts the probability density functions of the obtained
likelihoods and the probability distribution of the cytolo-
gical classes in benign and malignant thyroid nodules.

Using a dataset containing the MALAT1, HOTAIR, and
PVT1 expression and the cytological class of the above 34
patients, the designed naïve Bayes classifier has been used
to compute the probabilities that a thyroid nodule is
malignant or benign. Hence, each thyroid nodule has been
classified as malignant if the probability p(mal.|MALAT1,
HOTAIR,PVT1,cyt.) is greater than or equal to 0.5648, or
as benign otherwise. Figure 4b shows the outcome of that
analysis, depicting the ROC curve of the considered binary
classifier and the confusion matrix corresponding to the
threshold given above. The naïve Bayes classifier based on
the expressions of MALAT1, HOTAIR, PVT1 and on the
cytological class is close to the optimal classifier passing
through the point (0,1). Furthermore, all the points in such a
curve are far from the diagonal, thus showing a good pre-
dictive power of the proposed method to diagnose malig-
nant thyroid nodules. In particular, the AUC equals
0.96667, showing good separation capabilities between
malignant and benign thyroid nodules. Although the ana-
lysis has been carried out in a limited cohort (n= 34) and
the same dataset has been used for both training and testing,
it exhibited a good statistical significance (P < 0.0001).

The ROC curve has been used to determine the optimal
threshold value 0.5648 by determining the threshold

Fig. 2 Probability density
functions of the empirical
likelihoods in thyroid tissues and
outcome of the naïve Bayes
classifier. a Analysis of
MALAT1, HOTAIR and PVT1
by ddPCR on fresh thyroid
tissues (nodule and contra-lateral
as in Fig. 1). The red lines
represent the probability
distribution function of
lncRNAs expression in benign
(upper) and malignant (lower)
nodules. The dashed vertical
blue lines represent distribution
mean. b ROC curve of the naïve
Bayes classifier (left) and
confusion matrix corresponding
to the threshold 0.4096 (right)
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corresponding to the point that is closest to (0, 1), so to
maximize the Youden’s J statistic, Jmax= 0.9167. This
threshold has been used to generate the confusion matrix
depicted in the right subplot of Fig. 4b. The rows of such a
matrix represent the true class of each analyzed thyroid
nodule (from histology after surgery), whereas its columns
represent the class predicted by the naïve Bayes classifier.
As shown by such a plot, 32/34 patients have been classified
correctly, thus having an accuracy of 94.12%. The sensi-
tivity of the classifier is 100% since all the benign nodules
have been correctly classified, whereas its specificity is
91.67% since 22/24 malignant nodules are correctly classi-
fied. Analysis by Cohen kappa index confirmed an excellent
agreement between expected and predicted class in the
whole cohort (0.866) with a good agreement between
expected and predicted class in TIR3A (0.667) and TIR3B
classes (0.783) and an excellent agreement in TIR4 class
(1.00).

In order to evaluate the performance of the classifier
based on the expressions of MALAT1, HOTAIR, PVT1

and on the cytological class for unprecedented data, the
bootstrap method has been used over 104 synthetic dataset
by evaluating the accuracy on both the training samples and
on the out-of-bag samples. Figure 4c depicts the results of
this analysis, showing that the proposed classifier has an
accuracy of 94.88 ± 4.28% on the training dataset and of
63.63 ± 15.9% on the validation dataset.

Discussion

Clinical evaluation, US, and cytology are the main tools to
rule out malignancy. According to ATA 2015 guidelines, all
patients presenting thyroid nodules with suspicious US
features and intermediate/high-risk nodule as assessed by
cytological staging may undergo surgery [2]. In this setting,
molecular testing can be considered to increase accuracy
and to reduce the need of diagnostic surgery, but at present
no single test is fully reliable. The recently developed
molecular tests, essentially based on thyroid cancer genetics

Fig. 3 MALAT1, HOTAIR, and
PVT1 expression by ddPCR in
FNA samples. a FNA study
group and distribution according
cytological class (SIAPEC
2014). Total patients and
percentage in each class are
showed. b, c MALAT1,
HOTAIR, and PVT1
quantification by ddPCR in each
cytological class (b) and in
FNAs of patients undergone to
surgery (c, nodules were
classified as benign or malignant
lesion according final histology).
LncRNA level was normalized
versus housekeeping p0 and data
represented as box plot (number
of patients is indicated)
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and high-throughput technologies, significantly improved
accuracy [4, 5]. However, such assays are not easily
available in routine clinical setting, and only selected
laboratories can run these analyses. Therefore, the reliable
diagnosis for thyroid cancer remains a challenge. In this
direction, the development of new mathematical models and
the identification of novel biomarkers easily diagnosed by
ddPCR are expected to increase the performance to predict
malignancy.

In thyroid cancer, lncRNAs are key regulators of several
biological processes [9] and are emerging as promising
biomarkers to recognize malignant lesions in FNA biopsies
[10]. Herein, we set up an advanced mathematical model
based on lncRNAs profile as novel tool for thyroid cancer

diagnosis. This study addressed the continued need for
diagnostic tools to classify risk of malignancy from FNAs
to help dictate treatment decisions.

We first analyzed, by ddPCR expression of several
cancer-associated lncRNAs (MALAT1, NEAT1, HOTAIR,
H19, PVT1, MEG3) in both FNAs and surgical specimens
and selected MALAT1, HOTAIR, and PVT1 as cancer
biomarkers. The classifier for surgically removed thyroid
nodules has been trained and tested using the expressions of
MALAT1, HOTAIR and PVT1 of 19 patients, whereas the
classifier for nodules removed via FNA has been trained
and tested using the expressions of MALAT1, HOTAIR,
PVT1 and the cytological class of other 34 patients. We
developed a diagnostic test using a mathematical model

Fig. 4 Probability density
functions of the empirical
likelihoods in FNA samples,
outcome of the naïve Bayes
classifier, and results of the
analysis carried out via the
bootstrap method. a Analysis of
MALAT1, HOTAIR, and PVT1
by ddPCR on FNA samples in
patients undergone to surgery as
in Fig. 2c. The red lines
represent the probability
distribution function of
lncRNAs expression in benign
(upper) and malignant (lower)
nodules. The dashed vertical
blue lines represent distribution
mean. The red segments in the
rightmost subplot represent the
probability distribution of the
cytological classes in benign and
malignant nodules. b ROC curve
of the naïve Bayes classifier
(left) and confusion matrix
corresponding to the threshold
0.5648 (right). c Results of the
analysis carried out via the
bootstrap method: distribution of
the accuracy on the training
(left) and on the out-of-bag
sample (right)
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based on a naïve Bayes classifier in which MALAT1,
HOTAIR, and PVT1 co-expression in FNAs, applied with
cytology classification, may function as both rule in and
rule out test with an accuracy of 94.12% (sensitivity 100%
and specificity 91.67%). Overall, the malignant prediction
with our test seems to fit results better than with ThyroSeq
v3 (about 82% [6]). To test the effectiveness of the pro-
posed diagnostic tool on unviewed data, we used the
bootstrap method to evaluate its accuracy on data that are
not used for training. This analysis showed that the pro-
posed diagnostic method has an accuracy of 94.88 ± 4.28%
on the training dataset and of 63.64 ± 15.9% on the vali-
dation dataset.

In addition, when focused on the indeterminate classes
alone, in which Steward et al. [6] showed a negative pre-
dictive value (NPV) of 97% and a positive predictive value
(PPV) of 66%, our test remarkably performs an NPV of
100% and a PPV of 81.82% in combined TIR3A/Beth Class
III and TIR3B/Beth Class IV classes (cancer prevalence of
43.75%). The accuracy is 87.5% since it correctly classified
14/16 nodules, with a 100% sensitivity since all the benign
nodules have been correctly classified and a specificity of
71.43% since 5 out of 7 malignant nodules are correctly
classified.

Although these data are obtained with small sample set
(19 fresh tissues from patients undergone surgery in the
first-step analysis and 34 FNA samples from patients
undergone surgery in the second-step analysis), along with
the high cancer prevalence in the FNA sample set (70% in
the whole sample set and 43.75% in the cytologically
indeterminate classes), perspectively our findings are pro-
mising to improve the diagnostic accuracy of cytology. In
future work, the proposed diagnostic approach, which
combined molecular data from lncRNA expression and a
mathematical model, might apply to other validation dataset
to further evaluate its accuracy.

An added value of our study lies in the use of ddPCR, a
technique characterized by lower cost, large diffusion, and
rapid execution, as compared to NGS, with a potential wide
clinical prospective. Further studies are needed to confirm
our findings on larger cohorts, both in comparison and
integration of data.

In conclusion, quantification of selected lncRNAs in
FNA biopsies and application of our combined mathema-
tical and molecular approach represent a novel diagnostic
test that, if confirmed on larger scale, might improve
diagnostic accuracy contributing to advice decision-making
on surgical treatment.
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