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A B S T R A C T

Accurate 3D tracking of hand and fingers movements poses significant challenges in computer vision. The
potential applications span across multiple domains, including human–computer interaction, virtual reality,
industry, and medicine. While gesture recognition has achieved remarkable accuracy, quantifying fine move-
ments remains a hurdle, particularly in clinical applications where the assessment of hand dysfunctions and
rehabilitation training outcomes necessitate precise measurements. Several novel and lightweight frameworks
based on Deep Learning have emerged to address this issue; however, their performance in accurately and
reliably measuring finger movements requires validation against well-established gold standard systems. In this
paper, the aim is to validate the hand-tracking framework implemented by Google MediaPipe Hand (GMH) and
an innovative enhanced version, GMH-D, that exploits the depth estimation of an RGB-Depth camera to achieve
more accurate tracking of 3D movements. Three dynamic exercises commonly administered by clinicians to
assess hand dysfunctions, namely hand opening–closing, single finger tapping and multiple finger tapping
are considered. Results demonstrate high temporal and spectral consistency of both frameworks with the
gold standard. However, the enhanced GMH-D framework exhibits superior accuracy in spatial measurements
compared to the baseline GMH, for both slow and fast movements. Overall, our study contributes to the
advancement of hand tracking technology, and the establishment of a validation procedure as a good-practice
to prove efficacy of deep-learning-based hand-tracking. Moreover, it proves that GMH-D is a reliable framework
for assessing 3D hand movements in clinical applications.
1. Introduction

Monitoring, recognising, and interpreting the natural movement of
the body, without the aid of devices and instrumentation that can alter
its characteristics, are among the most currently addressed research
topics in Computer Vision (CV) [1,2] for a multitude of scientific and
consumer applications [3,4]. In fact, Human Pose Estimation (HPE) and
Human Action Recognition (HAR) are finding their way into the fields
of human–computer interaction, virtual reality, robotics, sports, video
surveillance, industry, biomechanics, and medicine [1,5–12]. Despite
advances in the recognition and estimation of static or quasi-static
poses and gestures [13], accurate tracking and measurement of motion
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characteristics is still an open challenge, mainly when focusing on small
body parts such as the hand and fingers [14–16].

The human hand has a complex and fully articulated anatomical
structure suitable for performing coarse and fine-grained movements.
The development of real-time, robust, non-invasive, cost-effective, and
accurate algorithms for tracking human hand and finger movements
is complex [17], and constraints are often established according to
specific needs [18,19]. After several attempts to develop contact-based
solutions for constrained hand tracking using wearable devices and
supporting aids (such as instrumented gloves) [20–23], the first bare-
hand solutions were proposed [24–28]. In most cases, the latter were
limited only to offline processing or low frame rate, thus preventing
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their practical use where real-time motion capture and analysis are
required, such as for clinical applications.

Bare-hand tracking through vision systems has attracted much inter-
est as it may overcome the main limitations of contact-based solutions:
interfering effects on natural movements, discomfort, and bulkiness.
CV techniques have been extensively investigated to capture bare-
hand movements from videos, including skin colour segmentation and
mean shift algorithms and its variants [29,30]. The availability of early
RGB-D cameras quickly led to a more comprehensive 3D analysis by
exploiting the potential of distance estimation through depth maps [31–
33]. The first complete 3D hand skeletal models appeared, which have
been successfully applied, for instance, in various clinical studies [34–
37], albeit with specific performance-related constraints [38,39]. The
current explosion of DL in CV tasks, hand-tracking included, has con-
tributed to the further development of these methods. Indeed, recent
frameworks for in-the-wild (i.e., unconstrained) hand tracking from RGB
or RGB-D cameras leveraging DL showcase great potential, especially
in solving self-occlusions.

From a clinical perspective, the study of hand motion is particularly
relevant. Indeed, hands play a crucial role in daily life tasks as they
are pivotal for interacting autonomously with the environment, other
humans, and machines. The fine motor control of fingers derives from
complex neuronal networks, which leverage excitation and inhibition
pathways to generate hand dexterity [40]. It is not surprising then
that several neurodegenerative pathologies such as Parkinson’s disease
(PD), Ataxia, Amyotrophic Lateral Sclerosis, and acute neurological
events such as stroke have evident manifestations in this body district
[41–44]. For instance, in PD, testing hand functionality is crucial
for assessing symptoms such as bradykinesia and tremor. Clinicians
usually conduct this evaluation during outpatient visits by performing
a qualitative scoring of motor tasks such as SFT, OC, or pronation-
supination of the hand. These exercises, whose standard scoring is part
of scales such as the Movement Disorders Society’s revision of Uni-
fied Parkinson’s Disease Rating Scale (MDS-UPDRS), provide an easy
tool for observing and assessing the symptoms of PD. However, this
subjective clinical evaluation may be affected by intra- and inter-rater
variability [45]. This limitation has drawn the attention of researchers
toward a more quantitative perspective, using new technologies such
as video-based hand tracking and inertial sensors for hand movement
assessment. In addition, rehabilitation of hand functionality is central
for patient recovery and independence, especially after acute events
such as stroke. New rehabilitation paradigms, e.g., exergaming [46,
47], require new technologies for patient-computer interaction through
hand movements, such as robotics [48] or smart gloves that embed elec-
tromyographic and inertial sensors [47]. In this scenario, video-based
methods, enhanced by DL, may provide an alternative non-invasive and
easy-to-use approach to implement these rehabilitation strategies.

Nevertheless, the clinical acceptability of these innovative 3D hand
tracking frameworks requires objective evidence of high accuracy and
reliability [49]. This validation should leverage the comparison of
tracking performance against gold reference systems for human move-
ment analysis, such as motion capture systems, rather than other
manual instrumentation [50]. This rigorous procedure, however, is still
rare in DL-based hand tracking for clinical applications.

This paper presents a validation procedure against a gold standard
system of two candidate frameworks for the aforementioned clinical
applications, namely GMH [51] and GMH-D [52]. The latter is an
enhanced version of GMH that runs on top of a RGB-D camera, which
provides simultaneous and calibrated colour and depth video streams.
This validation considers three standard tasks taken from clinical ex-
amination and rehabilitation of hand motor functions in subjects with
PD to compare the two frameworks. The main innovative contributions
of this work are the following:

• to validate the accuracy and reliability of basic GMH and en-
hanced GMH-D frameworks against measurements obtained by a
motion capture system, in terms of 3D trajectories and estimated
2

spatial, temporal, and spectral features;
• to compare the suitability of GMH and GMH-D to track hand
movements during the three selected dynamic exercises, also
verifying their adaptability to different scenarios;

• to establish good-practice guidelines for the validation of DL-
based 3D hand tracking frameworks, since most of the current
solutions lack a proper validation as a measurement system (see
Section 2.2).

This work unfolds as follows. Section 2 provides an overview of
recent DL frameworks for hand tracking, focusing on solutions already
applied in clinical scenarios. Section 3 describes the validation pro-
tocol and experimental setup. Section 4 presents the methodological
approach to analyse and validate the frameworks. Section 5 reports and
discusses the main results of the experimental tests. Finally, Section 6
illustrates some final remarks.

2. Background

2.1. DL for in-the-wild hand tracking

DL approaches for hand tracking from in-the-wild video sequences
can be organised in a taxonomy, according to their input modal-
ity: RGB, depth map, or mixed RGB-D [53]. Researchers investigated
depth approaches to allow 3D reconstruction of the hand following
the increase in market availability of depth sensors. In the most com-
mon architecture, Convolutional Neural Networks (CNN) process depth
data to extract hand tracking information [54–56], possibly enforcing
kinematics-based rules to improve the estimation [57]. Even if accu-
rate, depth methods have downsides such as large energy consumption,
poor form factor, poor near-distance coverage, and limited outdoor
usage due to light interaction with ToF technology [58].

In multimodal methods (RGB-D), either the RGB stream identifies
the hand in two dimensions (2D) and then the associated depth stream
allows to uplift joints [16], or the two modalities are fused to perform
a single-shot estimation [59,60]. The mixed RGB-D modality is also
frequently used to augment the training of DL models performing
inference on RGB-only data [53].

Concerning this last modality, 2D hand landmarks extraction is
often part of many state-of-the-art HPE estimation methods such as
OpenPose [61] and AlphaPose [62]. Few approaches perform 2D track-
ing through dedicated architectures [63,64] since it limits any analysis
to hand movements happening for the most in a planar projection.
Studying more complex gestures using these methods requires multiple-
camera setups to perform geometrical triangulation [65], thus uplifting
coordinates from 2D to 3D. This approach, however, increases the
complexity and the cost of the final acquisition system.

Several recent works have focused on the challenging task of di-
rectly estimating 3D coordinates from depth clues in monocular RGB
videos. Since the first work from Zimmerman et al. [66], many architec-
tures have been investigated [67–69]. However, these works report lit-
tle information about the efficiency [70,71], or claim real-time perfor-
mance (>30 fps) without providing code to reproduce the results [72].
Moreover, to achieve top-tier accuracy on benchmark datasets, these
methods often exploit high-performance GPUs, which makes these
solutions infeasible for applications outside research laboratories.

2.2. DL hand tracking in clinical applications

Despite the numerous recent works investigating in-the-wild 3D
hand tracking from a single RGB camera, only a few clinical applica-
tions implement these novel DL models or similar custom solutions [73–
78]. Indeed, most of the clinical investigations still utilise simpler but
well-established tools such as OpenPose [42,79–86], GMH [87–90], and
DeepLabCut [91–96].

Works exploiting OpenPose and DeepLabCut derive 2D hand joints

so the subsequent motor assessment is limited to parameters easily
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retrievable from a planar view (e.g., temporal/frequency parameters
of motion or angles between joints). Custom DL models often infer
3D hand coordinates by employing backbone networks pre-trained on
popular in-the-wild hand tracking datasets, possibly fine-tuning on data
collected for the specific clinical study. These methods typically require
GPU acceleration, often with low throughput (<30 fps) during hand
joint estimation. The popular choice for the medical field of simple,
out-of-the-shelf methods with respect to state-of-the-art, and in-the-wild
DL approaches, seems to be caused by the complexity of the best-
performing networks, which can be hard to replicate and apply in
practice. Moreover, clinical applications often do not require actual in-
the-wild tracking since acquisition settings are typically standardised
and within a controlled scenario, favouring the usage of simpler but
effective solutions.

Furthermore, it must pointed out that most of these frameworks are
solely validated as a component inside a broader automatic pipeline for
impairment prediction (e.g., automatic PD rating). This soft validation
verifies the consistency of the final predictions from the entire assess-
ment pipeline against qualitative clinical examinations [73–78], but it
does not provide a quantitative measure of the accuracy and reliability
of the hand tracking framework as an actual measurement tool. The
final predictions may be biased by the data collected specifically for
the study, and the fitting of the prediction model at the end of the
whole pipeline. However, without validation is impossible to establish
whether poor prediction performance depends on these factors or on
low-quality hand tracking at the source and whether these systems are
identifying a reliable evidence of impairment in the subjects’ parame-
ters. Understanding these aspects is essential to increase acceptability
of these solutions by clinical personnel, who are often hesitant toward
approaches for which a high degree of interpretability and trust cannot
be provided [49].

Only one study [83] validated OpenPose performance as a mea-
surement tool in the SFT task by analysing joint angles during task
execution. Another study [93] validated 2D poses given by DeepLabCut
with respect to movement frequency using an Optotrack motion capture
system. A similar approach, focusing on resting tremor in PD, was done
by [87] for GMH. However, no 3D tracking-based work provides per-
formance validation compared to video-based motion capture, i.e., the
gold standard for human motion analysis. This type of validation is
especially significant for 3D approaches, since it may compare spatial
parameters in terms of relative distances between hand joints rather
then only in terms of angles between them.

2.3. A focus on GMH and GMH-D

GMH is a DL approach based on RGB input for hand tracking,
included in MediaPipe [51], the solution for light-weight and portable
Machine Learning (ML) pipelines by Google LLC. The GMH framework
is composed of two sub-modules: a Palm Detection (PDM) module and
a Hand Landmarks Detection (HLD) model. First, the PDM identifies the
region of interest corresponding to the hand, then the HLD detects the
21 key points corresponding to hand joints within it. Fig. 1 summarises
the coordinate systems provided by GMH. As it can be observed, the
framework provides both Image Coordinates in pixels, coupled with a
dimensionless parameter 𝑧𝑗,𝑖𝑚 that estimates the relative depth of the
joint 𝑗 with respect to the wrist reference, and a set of 3D World
Coordinates, expressed in metres and centred in the bounding box of
the palm detected by PDM.

This framework balances accuracy and time efficiency. Indeed, it
supports a frame rate in excess of 50 fps on a Google Pixel 6 phone
using CPU only, or even faster (>80 fps) exploiting GPU acceleration,
as reported by the pipeline official web page [97]. This aspect is indeed
crucial to developing easy-to-use and widely employable assessment
systems. Regarding its application to the medical field, it has been used
to identify [3] and measure [87] resting tremor in Parkinson’s disease,
validating its accuracy against that of an accelerometer. Moreover,
3

Fig. 1. Set of coordinates tracked by GMH and GMH-D: for GMH, in green Image
Coordinates (pixels), centred in the upper left corner of the image; in blue, World
Coordinates (metres) centred in the middle of the detected palm. In orange, the Real-
World Coordinates (metres) estimated by the GMH-D framework, centred in the RGB-D
recording camera. For Image Coordinate of GMH, axis 𝑍𝑖𝑚 expresses an adimensional
depth parameter, relative to the wrist and scaled as the other two axes.

in [90], GMH was used to measure finger excursion from static images
and was validated using standard manual goniometry. However, the
lack of dynamic and continuous tracking and an acquisition protocol
with several restrictions on hand positioning and environmental con-
ditions limit the significance of these validation procedures to a very
narrow scenario.

Another study performed GMH validation for evaluating finger
tapping and hand opening–closing clinical tasks [52]. The study also
proposed an enhanced version of the framework exploiting an RGB-D
camera (i.e., MAK), namely GMH-D. According to [52], GMH-D showed
time performance comparable to GMH but enhanced 3D tracking ac-
curacy by leveraging both the depth estimation performed by the DL
model and the depth-map provided by the RGB-D camera. Indeed, the
depth estimation for each joint (𝑑𝑗 , Eq. (1)) is derived from the depth
value of the wrist as measured by the on-board depth sensor (𝑑𝑤𝑟𝑖𝑠𝑡)
and the estimation done by the neural network (𝑧𝑗,𝑖𝑚, refer to Fig. 1).

𝑑𝑗 = 𝑑𝑤𝑟𝑖𝑠𝑡 + 𝑧𝑗,𝑖𝑚𝑑𝑤𝑟𝑖𝑠𝑡 (1)

The wrist is the origin of the reference system of GMH and the
most stable joint since it is tracked within a body surface much larger
than the fingers. These characteristics reduce the likelihood of errors
when retrieving its depth value from the depth map provided by the
depth sensor, which could depend on virtual marker misplacement by
GMH or boundary interference due to motion [52]. The authors vali-
dated the improvement provided by GMH-D over GMH by comparing
the measurement of maximum and minimum peaks in the distance
between relevant hand joints during SFT and OC movements [52].
They achieved this by using a ruler placed close to the hand during
the execution of the movements to retrieve real-world distances from a
offline video analysis. This preliminary validation, although achieving
promising results, provided a limited estimation of the quality of the
tracking over the complete tasks, for which the support of a motion
capture system is required.

For these reasons, the goal of this work is to further expand the pre-
viously obtained results, since GMH-D and GMH seem to be a promising
marker-less and non-invasive solutions for clinical assessment of hand
and finger motion due to their stability, easiness of deployment, and
low-computational power.
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Fig. 2. On the left, hand appearance when applying minimal marker configuration for
motion capture (only the tips of fingers and the wrist reference); on the right, the
same hand as seen by the depth sensor of the RGB-D camera. As it can be observed,
passive-reflective markers produce holes in the estimated depth map.

3. Setup and validation protocol

3.1. Challenges of motion capture validation

Using motion capture for the validation of video-based HPE meth-
ods is a well-established practice [98,99] since marker configuration
does not excessively alter the appearance of the complete body shape
nor impairs the motor performance of the subject. However, the same
validation is more cumbersome in the case of hand tracking, especially
using RGB-D cameras. Indeed, the density of markers required to track
all the degrees of freedom of the hand is much higher than for vali-
dating HPE methods. Therefore, complete hand coverage with markers
inevitably alters its appearance, likely causing a reduction of accuracy
in the DL model (Fig. 2, left image). Moreover, an excessive number of
markers could reduce mobility, limiting the possible tasks to validate.

In addition, passive reflective markers cause holes in the depth map
provided by RGB-D cameras, as shown in Fig. 2 (image on the right).
Consequently, marker placement and recording camera viewing angle
should be considered carefully, to avoid estimation errors due to such
phenomenon.

Finally, time synchronisation between the motion capture system
and the device running the DL framework is mandatory to avoid jitters
in the two recording streams that could make realignment between
trajectories unfeasible. When dealing with RGB-D cameras that work in
the same infrared spectrum of motion capture, synchronisation is also
crucial to avoid interference that may lead to wrong depth estimation
by the RGB-D camera. All these items were taken into account in
defining the setup and validation protocol for this study.

3.2. Validation setup

Data acquisition sessions were organised at the Engineering for
Health and Well-Being (EHW) Laboratory of the National Research
Council (Institute of Electronics, Information Engineering, and
Telecommunications) in Turin, where a gold-standard motion capture
system is available. The system is an OPT solution with six Prime13
cameras (1280 × 1024 px resolution). OPT cameras operate at 120 fps,
covering a working volume of approximately 6 × 4 × 3 m3. The system
was calibrated before each acquisition session, obtaining a residual
value of 0.6 mm, which is an average offset distance between the con-
verging rays when reconstructing a marker; hence, it is related to the
OPT reconstruction precision. The final estimated measurement error
was less than 2.8 mm. Reflective markers of size 25 mm were exploited.
All tests were performed in the central zone of the recorded volume,
thus ensuring maximum tracking accuracy. MAK was positioned in this
area, stably fixed on a tripod (1 m high), to capture videos of the
participants’ performance. MAK was connected to a laptop (Alienware
4

Fig. 3. Setup for the data acquisition sessions: an OptiTrack system (OPT) with 6
cameras is employed together with the Microsoft Azure Kinect DK (MAK). The Optitrack
eSync 2 device is used for synchronisation. The subjects are told to seat in front of
MAK in the centre of the working volume of the motion capture system and perform
the assessment tasks.

m15 R2 I7-9750H, 16 GB RAM, NVIDIA GeForce RTX-2070 MaxQ with
8 GB of GDDR6). Fig. 3 illustrates the complete experimental setup.

The two systems were synchronised using a sync generator (Opti-
Track eSync2). The eSync2 was configured to operate as a master sync
generator by driving MAK with a 30 Hz sync signal and synchronising
the OPT cameras at 120 fps using the internal 4x frequency multiplier.

3.3. Selected tasks and participants

The validation of GMH and GMH-D considered three reference
movements: OC of the hand, SFT, and MFT. SFT consists of repeatedly
tapping the thumb and index fingers. MFT consists of repeatedly and
sequentially tapping the index, middle, ring, and little finger against
the thumb.

These tasks are dynamically challenging and commonly used to
measure fine hand dexterity and motor dysfunctions in the elderly
and in subjects with chronic conditions (i.e., stroke) [100–103]. In
particular, the SFT task is frequently addressed in works that apply
DL hand tracking for PD diagnosis and staging through an automatic
assessment pipeline [73,76,81,83,88,89,91,92]. In addition to the se-
lected exercises, an initial SOH phase was also recorded to extract
participants’ hand size.

As this study only aimed to validate the frameworks, healthy
adult volunteers were involved. Specifically, ten subjects (4 females,
6 males), age 31.10 ± 7.80 years old were recruited. Average hand
length (from middle finger tip to wrist, as retrieved from SOH task)
for the male and female groups was 18.92 ± 0.83 cm and 16.5 ± 0.78
cm, respectively. None of the participants had physical hand/wrist/arm
problems that could prevent them from performing the planned tasks.
The experimental study was organised according to the Declaration of
Helsinki (1964) and the latest amendments, supervised by a clinician,
and approved by the local Ethical Committee of Istituto Auxologico
Italiano. Each participant signed an informed consent after receiving
details on the study purposes and instrumentation.

3.4. Validation protocol

Table 1 summarises the protocol and the number of trials acquired
for each task. Each recorded trial lasted 15 s. Eventually, a dataset
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Fig. 4. Marker configuration for the three tasks: on the left, marker set for SFT involves only wrist, index and thumb tips; in the centre, marker set for MFT involves all finger
tips and the wrist; on the right, marker set for OC and SOH involves the wrist reference and the middle finger tip.
composed of 200 videos was collected considering all the three tasks,
plus 10 initial SOH trials. The validation procedure considered three
significant influencing factors:

• Distance from camera: the displacement from the camera could
affect how the underlying DL model identifies depth clues in the
videos.

• Velocity of motion: in low frame rate recording devices (<60
fps), motion blur alters the appearance of fingers [52]. This
alteration can produce inaccurate virtual marker positioning and
distorted hand reconstruction.

• Camera viewing angle: especially in the case of SFT, differ-
ent camera perspectives can modify the number of self-occluded
joints during motion.

Regarding distance from the camera, two ranges were considered:
NEAR distance, between 60 cm and 80 cm from MAK, and FAR dis-
tance, between 80 cm and 100 cm from MAK. This factor was studied
in all tasks. About velocity of motion, three speeds were investigated by
coordinating the task execution with the rhythm of a metronome. For
SFT and OC, low speed at 75 beats per minute (bpm), normal speed
at 115 bpm, and high speed at 140 bpm were considered. Subjects
were also asked to achieve different ranges of motions, compatible
with the requested speed: slow speed-wide excursion, normal speed-
free excursion, and high speed-small excursion. This request ensured
variability in the movements performed for the same task. For MFT,
only the normal speed (115 bpm) was considered since correct move-
ment execution at high speed is complex even for healthy subjects.
Finally, the camera viewing angle was studied for SFT only, since both
a lateral and a frontal perspective may capture the movement with
different degrees of self-occlusion. In contrast, for OC and MFT only
frontal viewing angle is feasible, since in the lateral positioning the
tracking of the palm by GMH is challenging and likely to result in poor
accuracy.

A minimal marker configuration for motion assessment was selected
for each task to reduce its impact on tracking. Physical markers were
placed on the back of the hand to avoid depth map holes and in close
correspondence to the positions where virtual joints of GMH should lie
to limit the systematic positioning error with respect to OPT. For SFT
(Fig. 4, left image), Wrist Outer Bone (WOB), Wrist Inner Bone (WIB),
IFT, and TT were selected. Wrist markers provide a reference for the
hand structure, while IFT and TT joints are those actively involved
and whose relative distance is leveraged in the literature for kinematic
assessment of the task. For MFT (Fig. 4, middle image), MT, RFT, and
Pinkie Tip (PT) were also marked to evaluate the relative distance
between all fingers tips and TT along the whole task. Finally, for OC
and SOH (Fig. 4, right image) just WOB, WIB, and MFT markers were
applied.
5

Table 1
To validate the two frameworks, a total of 200 videos lasting each around 15 s were
recorded. Ten participants performed 3 different hand dexterity tasks: hand opening
and closing (OC), single finger tapping (SFT) and multi-finger tapping (MFT). Requested
speed (slow, normal, and fast) of execution, distance from the camera (near, far), and
viewing angle (frontal, lateral) were modified in order to explore the performances
of GMH and GMH-D as they vary. The number of videos recorded in each set-up is
reported in the table as speed, distance, and viewing angle vary.

Distance Viewing
angle

Speed TOT

Slow
75 bpm

Normal
115 bpm

Fast
140 bpm

Near
60–80 cm

Frontal 20 10 20 50

OC Far
80–100 cm

Frontal / 10 / 10

Lateral 20 10 20 50Near
60–80 cm Frontal 20 20 20 60

SFT Far
80–100 cm

Lateral / 10 / 10

Near
60–80 cm

Frontal / 10 / 10

MFT Far
80–100 cm

Frontal / 10 / 10

TOT 60 80 60 200

4. Comparison methods and metrics

The comparison between GMH, GMH-D, and OPT focused on the rel-
ative spatial distance between fingers whose motion mainly describes
the task to assess. Considering only inter-fingers distances does not
require complex calibrations among the tracking frameworks since rela-
tive distances are invariant to translation and rotation of the reciprocal
reference systems. Fig. 4 visualises all the investigated spatial distances
as dotted lines. For OC, MT-WB distance was evaluated, with WB as
the middle point between WIB and WOB markers of OPT. For SFT, the
IFT-TT distance was considered. For MFT, IFT-TT, MT-TT, RFT-TT, and
PT-TT distances were studied, plus a virtual overall trajectory defined
as the sum of these sub-trajectories (TT-ALL).

4.1. Whole-trajectory comparison

Before comparison, raw inter-fingers distances measured by GMH,
GMH-D, and OPT were realigned. The vertical offset, due to mis-
alignment between real and virtual markers, and the horizontal offset,
due to residual time-shift between MAK and OPT, were removed. To
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vertically realign the OPT trajectory with those of GMH-D and GMH,
the mean distance between each point was evaluated and subtracted
to OPT trajectory (physical markers lie on top of virtual markers being
attached to the finger-tips). The residual temporal shift, instead, was
automatically removed using a cross-correlation method [104].

After this procedure, the selected distances as computed by OPT,
GMH, and GMH-D were compared in terms of RMSE and its relative
version, the PRMSE, for a fairer comparison among trials with different
finger excursions. This metric is defined in Eq. (2) as:

𝑃𝑅𝑀𝑆𝐸 =

√

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑌𝑂𝑃𝑇 − 𝑌
𝑌𝑂𝑃𝑇

)2

× 100% (2)

where 𝑌𝑂𝑃𝑇 is the measurement obtained from OPT, whereas 𝑌 is the
measurement estimated by either GMH or GMH-D.

In addition, Pearson’s correlation coefficient 𝜌 was used to measure
the coherence between the curves measured by GMH and GMH-D and
the reference given by OPT.

4.2. Single-segments comparison

In the second step of the validation, a finer comparison involved
the estimation of the Range of Motion (𝑅𝑂𝑀) in cm and the time
duration (DUR) in seconds of single repetitions (movements) of the
task, (e.g., single taps of the TT and IFT joints in SFT). To this aim,
a trivial segmentation algorithm was implemented in Matlab 2020b to
identify each movement segment as the portion of trajectory between
two consecutive local minima, containing a single local maximum
inside. Since all the investigated movements have a periodic nature, this
segmentation procedure was possible for all tasks. In the case of MFT,
segmentation was applied only to the TT-ALL distance, which should
summarise the motion of all involved fingers.

For each task, all the collected videos were considered, to achieve a
dataset containing 1430, 1944, and 482 single segments of movement
respectively for OC, SFT, and MFT. Segment-level parameters (ROM
and DUR) in each task were compared between OPT and GMH/GMH-D
using Bland–Altman plots. In such plots, the difference in the estima-
tions by two measurement systems is compared to the mean value
between them (bias). To indicate a good level of agreement, around
95% of the points should fall inside the Limits of Agreement (LoA),
defined as ±1.96SD, and this range should be sufficiently small given
the desired application. Moreover, CCC [105] and the ICC [106] were
estimated to measure the level of agreement. In particular, CCC is an
alternative metric to ICC, for assessing inter-rater variability between
measurement systems [12,107] and it is defined in Eq. (3) as

𝐶𝐶𝐶 =
2𝜌𝜎𝑥𝜎𝑦

𝜎2𝑥 + 𝜎2𝑦 + (𝜇𝑥 − 𝜇𝑦)2
(3)

where 𝜌 is Pearson’s correlation coefficient between random variables
𝑋 and 𝑌 (either parameters from OPT and GMH or from OPT and
GMH-D), 𝜇 and 𝜎 are respectively the mean value and the standard
deviation of the distributions of 𝑋 and 𝑌 . Following [12,107,108],
a value over 0.8 denotes high agreement between the two systems.
For ICC, a threshold of 0.75 detects high agreement between different
raters [106].

Finally, to provide an overview of the tasks in the spectral do-
main, the dominant frequency of the voluntary movement spectral
band (𝐹𝐷𝑂𝑀 ) was identified together with its associated spectral power
(𝑃𝑂𝑊𝐷𝑂𝑀 ). A comparison of 𝐹𝐷𝑂𝑀 and 𝑃𝑂𝑊𝐷𝑂𝑀 , as estimated by
GMH, GMH-D, and OPT in each trial, was carried out using Bland–
Altman plots, ICC, and CCC.

5. Results and discussion

The results of the validation procedure are organised according to
motion complexity. The OC task was considered the least complex
because all fingers move together. SFT follows, as it involves the
coordinated movement of two specific fingers. Finally, MFT, which
involves dynamic and coordinated movement of all fingers.
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Fig. 5. MT-WB distance during slow (top) and fast (bottom) OC trials as measured
by GMH and GMH-D with respect to the gold standard OPT (dotted line). The three
curves have been vertically and horizontally realigned for a direct comparison.

Fig. 6. RMSE (left), PRMSE (middle), and Pearson’s 𝜌 (right) box plots, in trials at
different velocity: Slow (75 bmp), Normal (115 bpm), Fast (140 bpm).

5.1. OC task validation

Fig. 5 reports an example of the estimation of the MT-WB distance
performed by GMH (green) and GMH-D (grey) with respect to OPT
(dotted line), considering a slow (top) and a fast (bottom) execution.
As it can be observed, both methods reconstruct with good precision
the inter-fingers distance, with perfect temporal alignment.



Biomedical Signal Processing and Control 96 (2024) 106508G. Amprimo et al.
Fig. 7. RMSE (left), PRMSE (middle), and Pearson’s 𝜌 (right) box plots, in trials
at different distances from camera: NEAR distance (60–80 cm) and FAR distance
(80–100 cm).

Results on RMSE, PRMSE, and Person’s 𝜌 are organised separately
according to velocity and distance factors, in Figs. 6 and 7 respectively.
Both in terms of RMSE and PRMSE, GMH-D achieves a smaller error
compared to GMH as the speed of motion increases, but the two
methods are overall comparable and both with a high correlation with
the OPT reference (𝜌 > 0.93 in all tests). Both methods appear to
slightly worsen, with box plots for RMSE and PRMSE exhibiting larger
interquartile ranges when passing from the NEAR to the FAR condi-
tion. However, correlations remains high, suggesting high temporal
agreement even when spatial agreement reduces. Overall, the median
error lies below 10% in the PRMSE for GMH-D and between 9.5%–11%
for GMH, independently of motion velocity and distance from camera.
These results overall denotes very good accuracy and reliability of both
methods compared to OPT.

From the segment-level analysis, the Bland–Altman plots for the
extracted parameters are reported in Fig. 8. As for 𝑅𝑂𝑀 , it can be
appreciated that 95.67% and 94.76% of estimations falls in the LoA,
with a slightly narrower error range for GMH-D. The same holds true
for DUR, with 96.02% for GMH-D and 92.66% for GMH of points inside
the LoA and a mean difference of 0.0 s for both. For 𝐹𝐷𝑂𝑀 , a perfect
agreement with OPT is reached by both methods, as confirmed by ICC
and CCC values. As for 𝑃𝑂𝑊𝐷𝑂𝑀 , GMH exhibits a narrower error range
than GMH-D, but both methods have some large outliers outside the
LoA. The investigation of these points revealed a delayed closing phase
for GMH-D and GMH with respect to OPT, which may have produced a
shift in the distribution of the spectral power among frequencies. These
events may be connected to a temporary hardware desynchronisation
between MAK and OPT. However, these events cannot be imputed to
the two frameworks themselves and verified only in few trials thus such
outliers could be reasonably neglected.

The results for ICC and CCC are reported in Table 2, using a 95%
confidence level (low and high confidence ranges are reported). For the
two metrics, p-values are all below 𝑝 < 0.001. The ICC values highlight
a high level of agreement (>0.90) for temporal and spectral properties,
either using GMH or GMH-D. Slightly worse results, albeit still in excess
of 0.8, are achieved for 𝑅𝑂𝑀 , with GMH-D slightly outperforming
GMH (0.89 vs. 0.81). The CCC confirms these results, pointing out
a larger discrepancy between 𝑅𝑂𝑀 when exploiting GMH-D versus
GMH, hence favouring the first method. This is above the threshold
7

Fig. 8. Bland–Altman plots for 𝑅𝑂𝑀 (top), DUR (middle), 𝐹𝐷𝑂𝑀 and 𝑃𝑂𝑊𝐷𝑂𝑀
(bottom) estimated from single repetitions of the OC task. Colour coding for GMH
and GMH-D is the same as in Fig. 7.

of 0.8, denoting nevertheless a good-to-excellent agreement. It must
be considered that the discrepancy of 𝑅𝑂𝑀 is related to the 10%
PRMSE average discrepancy between the trajectories, but could also be
affected by the trivial segmentation algorithm. Indeed, how minimum
and maximum points are identified depends on the morphology of the
MT-WB distance measured by the GMH and GMH-D and, consequently,
could have an impact on the evaluated parameters.

5.2. SFT task validation

Fig. 9 reports an example of the IFT-TT distances by GMH and GMH-
D with respect to OPT (dotted line), considering a slow (top) and a fast
(bottom) execution. In contrast with OC, it is evident that GMH suffers
from a squeezing effect in the estimation of 𝑅𝑂𝑀 , which is attenuated
for GMH-D. This alteration is magnified by the increase in the execution
speed, with an evident error in the spatial tracking of the IFT and TT
joints when they are in close contact. This effect was already identified
in [52], where an error in the 𝑧𝑊𝑂 component (Fig. 1) of IFT and TT
was observed during the task execution.

For SFT, the analysis of the velocity factor takes into consideration
also the recording viewing angle (either lateral or frontal). The dis-
tribution of the RMSE, the PRMSE, and the Person’s 𝜌 values for the
collected trials are shown in Fig. 10. From the box plots, the following
considerations can be derived. A decrease in the error and a slightly
better correlation is achieved when moving from the frontal to the
lateral viewing angle for GMH-D, since this view possibly improves
the evaluation of the depth by the ToF sensor of MAK. In addition,
for GMH-D, the velocity of execution seems to have a marginal effect,
especially considering PRMSE and the correlation. The slight change in
RMSE is likely connected to the difference in the achieved 𝑅𝑂𝑀 (wide
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Table 2
Intraclass Correlation (ICC) and Lin’s Concordance Correlation Coefficient (CCC) values for segment-level and frequency parameters in OC task, both for GMH and GMH-D methods
with respect to the gold-standard OPT.

GMH GMH-D

ICC CCC ICC CCC

Low Conf. Value High Conf. Low Conf. Value High Conf. Low Conf. Value High Conf. Low Conf. Value High Conf.

𝑅𝑂𝑀 0.79 0.81 0.82 0.68 0.71 0.72 0.88 0.89 0.90 0.80 0.82 0.83
DUR 0.96 0.96 0.97 0.96 0.96 0.97 0.97 0.97 0.98 0.97 0.97 0.98
𝐹𝐷𝑂𝑀 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
𝑃𝑂𝑊𝐷𝑂𝑀 0.94 0.96 0.98 0.93 0.96 0.97 0.84 0.90 0.94 0.83 0.90 0.93
Fig. 9. IFT-TT distance during slow (top) and fast (bottom) SFT trials, as measured
by GMH and GMH-D with respect to the gold standard OPT (dotted line). The three
curves have been vertically and horizontally realigned to allow a direct comparison.

vs. small excursions) in the three type of trials, which does not affect
instead PRMSE. Overall, the median value for this metric falls in the
range 8%–15% for both perspectives.

Much greater error is measured for GMH both in the frontal and the
lateral viewing angle (even four times more than that of GMH-D in the
fast trials), with a median value much larger than 20% in all scenarios
and a very large interquartile. While RMSE may be misleading, due to
the natural reduction of 𝑅𝑂𝑀 as velocity increases, PRMSE provides a
more meaningful description. As it can be observed, the error amplifies
in the lateral viewing angle and steadily increases while increasing
the speed, whereas these effect is less evident in the frontal viewing
angles. Correlation values confirm this reduction in accuracy both in
the frontal and lateral viewing angles for GMH, with some large outliers
suggesting low reliability at higher speeds. Overall, GMH-D provides
the best tracking quality for this task, independently on the camera
viewing angle.

For the sake of brevity, the remaining part of the analysis focuses
on the differences between GMH and GMH-D for the lateral view-
ing angle alone -i.e., the one for which the smallest error and the
largest correlations were achieved, considering all possible combina-
tions of frameworks (GMH, GMH-D) and camera viewing angle (frontal,
lateral).

First, the effect of distance from the camera is evaluated, by con-
sidering RMSE, PRMSE, and correlation. This result is reported in
Fig. 11. GMH appears influenced by the distance factor, with an evident
8

Fig. 10. Box plots of RMSE (top), PRMSE (middle), and Pearson’s 𝜌 (bottom) in trials
at different velocity: low speed (75 bmp), normal speed (115 bpm), fast speed (140
bpm). Results are reported for the two studied recording viewing angle, either lateral
(GMHLATERAL, GMH-DLATERAL) or frontal (GMHFRONTAL, GMH-DLATERAL).

Fig. 11. RMSE (top), PRMSE (middle) and Pearson’s 𝜌 (bottom) box plots in SFT
trials at different distance from recording camera: NEAR distance (60–80 cm) and FAR
distance (80–100 cm). Only lateral viewing angle is considered for GMH (GMHLATERAL)
and GMH-D (GMH-DLATERAL).
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Fig. 12. Bland–Altman plots for 𝑅𝑂𝑀 (top), DUR (top-middle), 𝐹𝐷𝑂𝑀 (middle-bottom),
𝑃𝑂𝑊𝐷𝑂𝑀 (bottom) estimated from single repetitions of the SFT task. Colour coding for
GMH and GMH-D is the same as in Fig. 7.

increase of the error at the FAR distance (larger PRMSE and RMSE and
lower correlation with large outlier), whereas GMH-D shows a much
smaller and stable error and an almost perfect correlation -i.e, median
value close to 99% and very small interquartile range.

Moving to the segment-level analysis of all trials, the Bland–Altman
plots for 𝑅𝑂𝑀 , DUR, 𝐹𝐷𝑂𝑀 , and 𝑃𝑂𝑊𝐷𝑂𝑀 are shown in Fig. 12. In
93.63% of 𝑅𝑂𝑀 measurements, the error between GMH-D and OPT lies
in a smaller LoA ([−1.32, 1.51] cm), whereas 95.85% of GMH errors
fall in a much larger range ([0.69, 6.30] cm, mean value: 3.49 cm).
For DUR, the two frameworks appear more comparable, with 95.07%
and 95.25% of measurement errors respectively for GMH-D and GMH
inside similar LoA. Therefore, performance are closer, but still GMH-
D provides an higher accuracy. In the estimation of 𝐹𝐷𝑂𝑀 , no error
is performed by GMH-D, whereas for GMH 91.53% of the errors are
between [−0.45, 0.62] Hz (mean: 0.08 Hz). Finally, for 𝑃𝑂𝑊𝐷𝑂𝑀 ,
94.2% of the errors for GMH-D fall in a narrower range ([−25.49,
18.85]) than GMH where 89.83% is in a wider range, proving again
the higher accuracy of GMH-D.

The results for ICC and CCC, with their confidence intervals, are
reported in Table 3, using a 95% confidence level. For both metrics,
p-values are all below 𝑝 < 0.001, so they are not reported. For GMH-
D, the ICC and CCC values suggest an excellent level of agreement
(>0.90) for all the four investigated parameters. In contrast, for GMH, it
is confirmed by both metrics how the method wrongly estimates 𝑅𝑂𝑀 ,
producing measurements largely affected by errors. Nevertheless, a
good level of agreement is achieved for the other temporal and spectral
parameters.
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Fig. 13. RFT-TT distance (top) and TT-ALL (bottom) distance during a MFT task, as
measured by GMH and GMH-D with respect to the gold standard OPT (dotted line).
The three curves have been vertically and horizontally realigned to allow a direct
comparison.

5.3. MFT task validation

Fig. 13 reports an example of the RFT-TT distance (top) and the
TT-ALL summarising distance (bottom), performed by GMH and GMH-
D with respect to the OPT measurement (dotted line). As it can be
observed, a reconstruction adherent to OPT trajectory is challenging
for both frameworks. Furthermore, it is worth noticing how the TT-ALL
distance reflects, as hypothesised, the cumulative motion of all fingers,
thus providing a way to observe all the single tapping movements from
one single trajectory.

Results on RMSE, PRMSE, and Person’s 𝜌 are organised according
to the distance factor (Fig. 14). The values are reported for the IFT-
TT (INDEX), MT-TT (MIDDLE), RFT-TT (RING), and PT-TT (PINKIE)
distances that compose the cumulative TT-ALL trajectory.

When considering the NEAR distance, GMH-D performs overall
better than GMH, with a median PRMSE value below 15% and a
median RMSE ≤ 1 cm for all fingers. Both GMH and GMH-D achieve
a correlation value with OPT > 0.9. In the FAR condition, both GMH
and GMH-D show an increase in the median error and its interquartile
range, and a small decrease in the correlation, suggesting an influence
of the distance factor in the quality of the temporal reconstruction of
the MFT trajectories.

Moving to the segment-level analysis on the TT-ALL distance, the
Bland–Altman plots for 𝑅𝑂𝑀 and DUR, 𝐹𝐷𝑂𝑀 and 𝑃𝑂𝑊𝐷𝑂𝑀 are
shown in Fig. 15. As a first remark, it must be noted the mean error
and the LoA are inevitably larger than for the other tasks due to
the propagation in TT-ALL of the error in the tracking of each finger
involved in this fictitious trajectory. Therefore, an error range around
four times larger than for SFT was expected and observed. Proceeding
with the analysis, in 94.62% of the evaluations of 𝑅𝑂𝑀 , the error
between GMH-D and 𝑂𝑃𝑇 lies in the range [−4.50, 6.50] cm (mean:
0.89 cm), whereas 96.48% of errors for GMH are in the range [−3.40,
10.76] cm (mean: 3.68 cm). For DUR, 95.45% of measurements have an
error in the range [−0.12, 0.12] s for GMH-D and 95.65% in the range
[−0.13, 0.13] s for GMH, in line with what observed for SFT. Regarding
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Table 3
ICC and CCC values for segment-level and frequency parameters in SFT task, both for GMH and GMH-D methods with respect to the gold-standard OPT, considering a 95%
confidence interval.

GMH GMH-D

ICC CCC ICC CCC

Low Conf. Value High Conf. Low Conf. Value High Conf. Low Conf. Value High Conf. Low Conf. Value High Conf.

𝑅𝑂𝑀 −0.07 0.49 0.81 0.47 0.49 0.51 0.97 0.98 0.98 0.97 0.98 0.98
DUR 0.84 0.85 0.86 0.84 0.85 0.86 0.89 0.90 0.91 0.89 0.90 0.91
𝐹𝐷𝑂𝑀 0.68 0.80 0.87 0.66 0.86 0.87 1.00 1.00 1.00 1.00 1.00 1.00
𝑃𝑂𝑊𝐷𝑂𝑀 0.59 0.74 0.84 0.51 0.65 0.75 0.98 0.99 0.99 0.98 0.99 0.99
Fig. 14. RMSE (top), PRMSE (middle), and Pearson’s 𝜌 (bottom) box plots, in MFT
trials at different distances from camera: NEAR distance (60–80 cm) and FAR distance
(80–100 cm).

the estimation of 𝐹𝐷𝑂𝑀 , no error is performed by GMH-D with respect
to OPT, whereas 88.89% of GMH estimations are producing an error
between [−0.03, 0.02] Hz (mean: 0.00 Hz), almost negligible. Finally,
for 𝑃𝑂𝑊𝐷𝑂𝑀 93.75% of estimations have an error in the range [−2.22,
121.62] (mean: 58.75) for GMH and in the range [−26.32, 76.37]
(mean: 25.02) for GMH-D, supporting again the overall higher accuracy
of GMH-D also in terms of spectral parameters.
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Fig. 15. Bland–Altman plots for 𝑅𝑂𝑀 (top), DUR (top-middle), 𝐹𝐷𝑂𝑀 (middle-bottom),
𝑃𝑂𝑊𝐷𝑂𝑀 (bottom) estimated from single segments of the TT-ALL distance in MFT task.
Colour coding for GMH and GMH-D is the same as in Fig. 7.

The results for ICC and CCC, with their confidence intervals, are
reported in Table 4, using a 95% confidence level. For both metrics,
p-values are all below 𝑝 < 0.001, so they are not reported. It must be
noted that, by enforcing just one possible execution speed, the internal
variability in terms of segments duration is reduced. In addition to the
limited number of segments for the task, this produces low values of ICC
and CCC for DUR parameters, either for GMH and GMH-D. However,
from Bland–Altman plots, we can observe that actually almost all points
are falling in a narrow error range, comparable with that achieved
in the previous tasks. Therefore, the validity of the two metrics for
DUR parameter is really limited since the inter-variability (between
GMH/GMH-D and OPT) and the intra-variability of the single segments
in terms of duration in the dataset are unbalanced- i.e., even mistakes
with small magnitude produce a variability larger than the internal
variability of DUR, biasing the results. Moreover, it must be consid-
ered that the virtual TT-ALL distance, due to its definition as sum of
other trajectories, propagates their error, which can alter significantly
its morphology (e.g., Fig. 13). This alterations may affect the trivial
segmentation procedure established and consequently the estimation of
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Table 4
ICC and CCC values for segment-level and frequency parameters in MFT task, both for GMH and GMH-D methods with respect to the gold-standard OPT.

GMH GMH-D

ICC CCC ICC CCC

Low Conf. Value High Conf. Low Conf. Value High Conf. Low Conf. Value High Conf. Low Conf. Value High Conf.

𝑅𝑂𝑀 0.67 0.71 0.76 0.52 0.70 0.76 0.84 0.86 0.89 0.83 0.85 0.86
DUR 0.36 0.44 0.51 0.38 0.44 0.46 0.39 0.46 0.53 0.42 0.46 0.48
𝐹𝐷𝑂𝑀 0.88 0.90 0.93 0.84 0.89 0.93 1.00 1.00 1.00 1.00 1.00 1.00
𝑃𝑂𝑊𝐷𝑂𝑀 0.57 0.83 0.85 0.73 0.75 0.78 0.69 0.88 0.96 0.81 0.82 0.84
Table 5
Comparison of computational performance of GMH and GMH-D in terms of mean frame rate (FPS) during data processing, compared to similar solutions
previously employed for hand tracking in clinical applications. [−] stands for information not provided.
Framework Hardware(CPU/GPU/RAM) Input size FPS Source

GMH Intel i7-9750H/-/16 GB RAM 1280 × 720 px 30 fps This work
GMH-D Intel i7-9750H/-/16 GB RAM 1280 × 720 px 30 fps This work
Openpose -/Nvidia GTX 1080 Ti/11 GB RAM 1280 × 720 px 22 fps [113]
A2J/ST-A2J -/Nvidia GTX 1080 Ti/- 176 × 176 px 105 fps [110,112]
HandGraphCNN -/Nvidia GTX 1080/- 256 × 256 px >50 fps [111]
the DUR parameter for the single segments. The values of ICC suggest
a good level of agreement (>0.80) for all the remaining investigated
parameters, with almost a perfect agreement for spectral properties
either using GMH or GMH-D. Again, GMH-D outperforms GMH in terms
of accuracy of the estimation of 𝑅𝑂𝑀 (for ICC: 0.86 vs. 0.71; for CCC:
0.85 vs. 0.70).

5.4. Computational performance

Table 5 reports the computational performance of GMH and GMH-D
during the processing of the collected videos in terms of mean frame
rate, expressed as frame per seconds (fps). For a more comprehensive
comparison, performance of other hand tracking frameworks, previ-
ously employed in similar clinical applications, were included, namely
OpenPose [109], A2J/ST-A2J [110] and HandGraphCNN [111]. All
these methods, for instance, were used to assess SFT in PD [79,96,112],
even though without reporting computational performance. Therefore,
these information was retrieved either from the original studies present-
ing them or from reports of bench-marking performance on in-the-wild
datasets for hand tracking [113]. Therefore, values were achieved on
different input data with respect to GMH and GMH-D, and this must be
taken into account in comparing the reciprocal differences.

Overall, GMH and GMH-D are the only methods that offer real-
time (above >30 fps) without GPU acceleration, whereas all the other
methods require at least a Nvidia GTX 1080 graphic card. Moreover,
both models can process high quality input frames (1280 × 720px)
without reducing their speed.

5.5. GMH vs. GMH-D: remarks

In general, the results suggest that both the RGB framework (GMH)
and the RGB-D enhanced framework (GMH-D) hold potentiality in
their application to track fine hand movements, as the one required
by clinical assessment tasks. Overall, GMH-D seems to provide a more
accurate and reliable motion reconstruction in the three tasks, with a
mean PRMSE always smaller than 15% and an almost perfect corre-
lation (𝜌 > 0.97) between the tracked inter-finger distances in all the
tasks. Moreover, GMH-D appears robust to different execution speed
and also to the distance from the recording camera, at least in the
range [60 cm–100 cm]. These results clearly depend also on the quality
of the depth sensor of the RGB-D camera. In this study, they were
achieved using a MAK, which has an high accuracy for depth tracking
up to 3.5 m [114]. When adapting GMH-D to other RGB-D devices,
11
Fig. 16. GMH fails in reconstructing the contact phase between the two finger tips in
SFT, in the lateral perspective. This depth error is solved by GMH-D using depth from
ToF sensor of MAK.

the quality of their depth sensors may clearly affect the result and
should be evaluated beforehand. Still, this method can struggle with
self-occlusions of fingers, as observed in SFT, where the lateral viewing
angle improved the quality of tracking over the frontal one. Therefore,
when applying this kind of approach, optimal positioning of the hand
should be taken into consideration. Overall, GMH-D allows also to
evaluate, with a good level of agreement, all the four investigated
parameters, namely 𝑅𝑂𝑀 , DUR, 𝐹𝐷𝑂𝑀 , and 𝑃𝑂𝑊𝐷𝑂𝑀 . Clearly, even
if powerful, this framework requires an additional depth sensor, which
could still represent a limitation for certain applications.

On the other hand, GMH requires only an RGB camera and appeared
promising in the tracking of the OC task, with accuracy comparable to
GMH-D. However, the analysis of SFT and MFT tasks highlighted how
GMH fails in precisely reconstructing 3D motion when finer movements
are considered, producing very large RMSE and PRMSE values. From
the analysis of trials with high error, it is evident how GMH correctly
marks the hand in 2D, but due to self-occlusions of joints, fails in
properly reconstructing the 3D shape of the hand. For instance, in the
lateral SFT task when fingers are touching, GMH often does not identify
the two finger tips as aligned over the 𝑧-axis, but misplaces one in front
of the other, producing a wrong value in the minima of the IFT-TT
distance. An example of this failure is shown in Fig. 16.
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Table 6
Summary of recommendations (distance range, viewing angle, and speed of movements)
for the optimal capture of the three validated tasks (OC, SFT, MFT) with GMH and
GMH-D. The last row reports the best tracking framework for each task according to
the main results of the validation study.

OC SFT MFT

Distance range 60–80 cm 60–100 cm 60–80 cm
Viewing angle Frontal Lateral Frontal
Speed of motion Slow/Normal/Fast Slow/Normal/Fast Slow/Normal/Fast
Best framework GMH/GMH-D GMH-D GMH-D

Overall, trajectories reconstructed for SFT and MFT tasks appear
o be influenced by a squeezing effect stemming from the inaccurate
epth estimation by the DL model of GMH. This phenomenon is less
ronounced in OC tasks, where the consistent movement of all the
ingers together may simplify the complexity of the tracking. Addi-
ionally, the model might lack sufficient training in reconstructing
pecific and finer hand movements such as SFT and MFT compared to
he more common opening–closing gesture. This failure in estimating
epth could also account for GMH’s dependence on camera distance,
eading to degraded performance in the FAR positioning, and also for
he worsening of accuracy due to increased motion velocity, which
lters hand appearance due to motion blur. These issues are mitigated
r eliminated by GMH-D, thanks to the use of the ToF depth sensor.
t is worth noting that GMH, as explicitly stated by developers in [97],
as not primarily designed for this type of applications and was mainly

hought for working with close hand recordings, such as egocentric
ideos from a smartphone.

Nevertheless, even if GMH seems to be trustworthy in spatial anal-
sis of motion only for OC task, it could still be applied to estimate
emporal and spectral properties also in the other two tasks. Indeed,
he framework shows good to excellent agreement in terms of ICC and
CC for DUR, 𝐹𝐷𝑂𝑀 , and 𝑃𝑂𝑊𝐷𝑂𝑀 .

It must also be considered that some factors can have slightly
nlarged the error for both frameworks: the residual offset between
hysical and virtual markers; the alteration of the appearance of the
and due to the physical markers; for segment-level analysis, the trivial
egmentation algorithm, which might have introduced an additional
rror in the evaluation of ICC and CCC between parameters.

Unfortunately, due to the lack of comparable validation procedures
or 3D RGB or RGB-D hand tracking methods based on DL in the
iterature, it is not possible to carry out a proper comparison with other
tudies. However, the good results obtained in estimating frequency
arameters for GMH are in line with the results from [87], which
ompared frequency of tremor from PD measured with GMH and an
ccelerometer (mean absolute error 0.229±0.174 Hz). Moreover, the
mall error obtained for estimating 𝑅𝑂𝑀 is coherent with [115],
hich found a very good agreement between 2D tracking of GMH and
easures taken from a touchscreen device (mean RMSE 0.28±0.064

normalised pixel).
Overall, the results obtained in this validation study are promis-

ing and demonstrate the potential, the strengths, and the weaknesses
of the two DL-based frameworks, especially for a perspective use in
clinical applications requiring high accuracy and reliability. Therefore,
Table 6 summarises the previous observations and provides concise
guidelines for researchers interested in using the two frameworks for
the three tasks or other similar hand and finger movements, taking into
consideration the investigated influencing factors.

6. Conclusions

This paper presented the validation against a gold standard system
for motion capture of two DL-based hand tracking frameworks, namely
Google MediaPipe Hand (GMH) and its enhanced version GMH-D. This
12

validation was focused especially on proving accuracy and reliability
of these frameworks for their perspective usage in clinical applications,
such as automatic assessment of three tasks commonly administered to
patients with Parkinson’s disease, namely hand opening and closing,
single finger tapping, and multiple finger tapping. This work aimed
also at remarking the importance of carrying out a rigorous validation
of DL-based tracking frameworks as measurement systems before their
application in clinical scenarios. This is especially relevant considering
that most off-the-shelf DL solutions for hand tracking are not specifically
designed for deployment in clinical applications and could not adapt
well to this scenario.

Three possible influencing factors were investigated, namely dis-
tance from recording camera, recording camera viewing angle, and
velocity of tracked motion. Results suggest that for a more accurate
reconstruction of 3D motion, GMH-D provides good to excellent level
of agreement to the gold standard, by exploiting depth information
coming from an RGB-D camera (in this study, Microsoft Azure Kinect).
GMH, by leveraging only an RGB input, proved to be less accurate in
spatial domain. Still, it may be employed for evaluating temporal and
spectral properties of motion with a good level of trust.

As a limitation, this validation study did not take into account
different light conditions that could alter tracking for both frameworks.
However, since also the gold standard of motion capture has strict
requirements on light conditions to function properly, how to carry
out this evaluation is still an open challenge to investigate as a future
direction of development. Moreover, motor tasks involving hand rota-
tion, such as the hand pronation-supination, were not yet investigated,
but could represent an additional challenge for both methods. Also this
application is left open for future investigations.

To conclude, thanks to the rapid growth of DL-based solutions for
accurate hand tracking from RGB and RGB-D videos, a lot of new possi-
bilities will arise in the next future, especially for clinical applications.
In this scenario, providing rigorous validation will become crucial to
prove the efficacy and the reliability of such frameworks, which is the
direction to which this work is providing its main contribution.
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