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Abstract

Polycrystals are often modelled as Cosserat continua, the crystal-
lographic directions within single crystals being represented through
elements of SO(3). To address the problem of an overall representa-
tion of a polycrystalline aggregate, following the example of nematics,
one may choose an appropriate embedding of 5O(3) in a linear space.
Some possibilities are explored and a suggestion is made for such a
choice.

1 Introduction

1.1 Orientation distribution in polycrystals

A polycrystal is a material body the elements of which comprise each a
population of ‘specks’ having the structure of a single perfect crystal. In
the simplest instance all such crystallites are of the same kind, %.e., any two
of them can be superposed through a rigid displacement. Thus a reference
crystallite can be chosen and a lattice orientation function can be assigned to
describe the polycrystal’s substructure. This approach is standard in met-
allurgical analyses and the problem of determining the orientation function
is of industrial import.

The sketch above pertains to a particular range of observation scales.
Actually no lattice at all can be defined within dislocations cores, while.
observing metals at low temperature and at a scale significantly larger than
the average dislocation spacing, a grain pattern appears. The lattice orien-
tation function is constant on regions of finite volume (the bulk of grains)
and jumps across their boundaries.

When observations at a scale much larger than the largest grain size
are involved no account is taken of grain shapes and the polycrystal is de-
scribed simply through an orientation distribution function on the basis of
probabilistic assumptions. The need arises for a global description through
a distribution of lattice orientations. '
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Thus when computations at a scale much farger than the largest grain
size are involved, one may wish to consider body elements which include
many hundreds of grains and are characterised by a whole distribution of
lattice orientations. The question arises as to the constitutive nature of the
interactions between neighbouring body elements; it seems reasonable to
start by assuming that these interactions depend on the first moment of the
distribution and thus on some ‘average’ orientation of the crystals within
the material elements, and that these averages evolve according to general
rules described by multifield theories, whereas evolutions of the orientation
distribution function deep within the element be described on-the basis of a
multivariable theory (cf. {4, 5, 7, 8, 18]}.

In the case of polycrystals the manifold M of ‘deep’ states, [’éspace pro-
fond of [T], is a subset of SO(3) (symmetry arguments may make M a
proper subgroup of SO(3)) and, at each point z € £, M is endowed with
the structure of a probability space, so that each p € M is a random vari-
able with probability density, say, v (the ortentation distribution function).
Assuming that self-effects be weakly non-local in M, in the sense of [14],
evolution equations of general type can be found for 7, whereas interactions
among neighbours in & occur through some kind of average over M based
on 7.

To achieve that average a device, simple to use, could be invoked. Whit-
ney's theorem affirms that a linear space S, of dimension 2m + 1, exists
within which the manifold M, of dimension m, can be embedded. The
embedding is not unique and there are even cases where the embedding Is
feasible in a linear space of dimension lower than 2m + 1 (e.g., SO(3}), of
dimension 3, can be embedded in a 5-dimensional linear space}. However
the essential point is that S exists and, in 1t, averages can be evaluated in a
straightforward manner; they fall, generally, outside the image M of M in
S, and fill altogether the convex hull H of that image. Within H complete
disorder is represented by the average of a uniform distribution on M.

1.2 General remarks on continuum models

The possible teaming up, for certain tasks, of a muitifield and a multivariable
theory has led one of us to advance the remarks which follow [16}; we recall
them here because they are strictly relevant and give to our present proposal
a very general setting.

Multifield theories are based on the classical space-time & x 7. Fields
v:EXT = N (N amanifold of ‘substructures’) enrich the ‘natural’ classic
description which invokes only bijections & -+ & at each instant. Interactions
between elements are supposed to have short range in & @ la Cauchy, though
the nature of these interactions depends now, by duality arguments, on the
greater kinematic richness of the model.

Multivariable theories start from a wider representation of physical space.




obtained by adding to standard placements in £ a set M of *‘deep’ placements
pt- Interactions range now between neighbours in £ x M, but the duality
is usually narrow. These theories take the components u™ of 1 as extra
independent, variables beside the place variable  {and time if the case re-
quires). They introduce a distribution function 5 (g, 2) such that v {u, ) du
measures the fraction of fragments of the element at @ having a value of the
substructure falling within the interval (g, g + du).

In some current research contributions it is assumed that the evolution of
v is totally dictated by the internal state of each element and related to gra-
dients in the variable g in a sort of weakly nonlocal {on M) mode. Within
the element spatial distances do not count, whereas it is easy to believe that
two fragments with slightly different values of i influence one another more
than two fragments whose values are, in some measure, distant, irrespec-
tive of the exact location of the two fragments within the element. The
assumption of an exclusively internal dependence may be sometimes a lim-
iting factor, but this is not so critical in some problems for polycrystalline
solids where interelement effects due to spatial gradients are modest, or oc-
cur mainly through the agency of macrostress; contrariwise, when studying
nematics and hyperfluids [10], one perceives easily the depth of influence of
certain constraining boundary conditions.

One way to fix the loophole: find somehow an average value of u over
each element and imagine such average influenced by the averages in neigh-
bouring elements in the same way as happens in less deep theories where all
fragments in an element lead to the same value of the substructural variable.
Perhaps extract some ‘frame’ or background from the averages and, if ob-
jectivity commands, describe the internal distributions + and their internal
evolution against that background. Judicious steps are always required to
arrive at a proper and significant definition of average. Previous embedding
of the manifold M in a linear space & of higher dimension is always possible
(in dimension 2m + 1, by the already quoted theorem of Whitney): then
calculation of averages is straightforward.

Actually reference to CT as a hypersurface in S, rather then to the in-
trinsic manifold M, if managed with care, makes many developments easier;
correspondingly & may take the place of A, again if prudence is exercised
to avold breaches of objectivity. Known concepts and relations may be im-
ported with advantage from available multifield theories.

Thus, for our present task, the matter of embedding SC(3} in a linear
space is an essential prerequisite and becomes the core of our developments.
To pave the way and malke it even more evident, we pause to consider first
the simpler, and in part already well established, case of nematic liquid
crystals.




2 The example of nematics

In the theory of nematic liquid crystals M is the manifold of directions.
hence of dimension 2. Whitney’s embedding can be realised in a linear space
of dimension 5. Each direction is put first into one-to-one correspondence
with the tensor n@n - %I, where n is any one of the two unit vectors having
the required direction and [ is the identity. All those tensors belong to
the linear space {with dimension 5) of the symmetric traceless tensors; one
of them, say N, will be the average when the element contains molecules
with varying degree of orientation. The principal axes of N provide the
frame upon which details regarding the distribution of orientations can be
assigned. Still, already the eigenvalues of N+ %I, call them A; determine two
parameters which describe essential traits of the distribution: the degree of
prolation s (called also, by Ericksen, degree of orientation) in [w%, 1]:

s=13 (*H /\1)
zixl

and the degree of triaxiality in [0, 1]

1/3
3 = 3l/291/3

3
[T = Aitn)
=1

s

Perfect ordering corresponds to the values s = 1, 7 = 0; ‘melting’ of ‘the
liquid crystal occurs when both parameters vanish.

Many problems have been solved satisfactorily using /V as asubstructural
variable and writing for it an appropriate evolution equation which involves
the gradient of N in physical space {for a partial analysis in this direction see
[2] and [12}; a fuller study is in a forthcoming paper by Biscari and Capriz).

However, if the details of the distribution of directions y{n) become
relevant for specific problems, then the following further steps must be taken.
An evolution equation for v must be proposed, expressing its ‘conservation’
(the total of ¥ over A/ must always equal to 1); here a suggestion of Muschik
[3, 17] may be accepted though modified 50 as to admit also an influence on
v of N and of the gross displacement gradient F.

Ultimately one comes to the equation

il

5 + div,{vh) + (gradyy) - N + (gradgy) - F =0,

where gradients enter along the manifolds M and N. Actually if n & n,
rather than n, had been chosen as a variable, then divnﬁwould have been
substituted by the appropriate surface divergence along M in S.

The balance equation above, exhaustive though it be in very special
cases, must be supplemented in general by a ‘deep’ balance equation, which,




in statics, may express a minimality condition for the energy connected with
a certain choice of v(N) and of its gradient on M. Alternatively, there may
be steady states of deformation {e.g. of shearing) dominated by some sort
of viscous action which must be itself balanced (for matching developments
in the theory of polycrystals see {4, 6, 7, 9]).

3 Embedding of SO(3) in R

The so called ‘easy Whitney embedding theorem’ (cfr [19]) proves that
SO(3) can, as any compact (Hausdorff C",2 < r < oo} three dimensional
manifold, be embedded in R’, though embeddings into linear spaces of
smaller dimension may be possible.

It has been proved that SO(3) cannot be embedded into R* (¢fr [11]),
while an embedding into R® is known. The latter result can be shown
through a chain of differentiable inclusions: SO(3) can be included into
5% x §% associating with each element of the orthogonal matrix any two
column vectors of it:

JTVIRL Y
1 1 1 . ,
AP A e 503) - (), D) e 57 x 52
dD
One of the two unit 2-spheres S? can be included into ], +oo[x R2:
e 5% (el + ¢ et ¢cl?) €10, +oolx R,
with 0 < £ < ¢; then
5% % (]0, +oo[x R?) = (5?x]0, +oo]) x R? & {R? —{0}) x R* C R® .

Notice that $?x]0, 400 is diffeomorphic to R3—{0} as it can be shown,
e.g., choosing coordinates (7, ¢} on S? and taking the corresponding polar
coordinates ¢!} = (sin ¢ cos ¥, sin $sin 9, cos $) on R> —{0}:

(9, ¢, p) € S2x]0, +oc[— {psin¢cos?, psin dsin 9, pcosed) € R —{0}.
We thus have the embedding:
"] € s0(3)

(1”0, 6”0, Vel + 06 e € RO

It can be shown that the conditicns "c“)“ =1 and IIC(Q)II =1, and the

condition ¢t . ¢(2) = correspond respectively to the equations (z € R):

(el” - s N+ aCH a4 of) = 48
11(“-1’" ~ & = () + 2 (vamq + 2325) = 0.

(1)




4 Embedding a subgroup of SO(3) into Sym

The embedding recalled in Sect. 3 from texts in differential geometry does
not appear to have intrinsic character required on principle for its use in
a physical theory; the appropriate alternative is the introduction of a sym-
metric tensor of a special class to denote a particular lattice orientation.

We must emphasise, however, at the outset that application of the theo-
rem to our physical context will be legitimate only when a set of three mu-
tually orthogonal directions (no arrow!), each endowed with a different char-
acteristic length, exist having an immediate physical significance in the de-
scription of crystallites (e.g. the edges of the elementary cell if the crystalline
system is orthorombic). Call {m({i € {1,2,3}}, [mV] < [m@] < |mB].
the vectors representing a crystallite, their sign being immaterial to the
physical description of the crystallite, normalized to make

3 .
Z(m("})2 =1.
=1
A polycrystal is a cluster of such crystallites, each uniquely identified
through the proper orthogonal tensor Q giving the rotation from a set of
reference unit vectors {c!¥} to the crystallite’s unit vectors {mlil/|m )}
modulus rotations of 7 about any ¢l'); call M C SO(3) the subgroup of
such rotations.
Now let us define the following map from the same set of crystallites o
the linear space of symmetric tensors

3
S(Emt) = Z mt @ mli
=1

for all {mf9} itis trS =1, trS? = T0_,(ml7)4, and detS = T2, (m0)2,

There is a one to one differentiable map between the set of crystallites
and the elements of Sym which verify the conditions listed above; in partic-
wlar any tensor S verifying these conditions has three distinct eigenvalues
(m'? with the corresponding eigenvectors parallel to the vectors mt),
The spectral decomposition of such a tensor S is thus

S({mM)) =QD*Q",

where [} is the diagonal matrix

[mM 0 0
D=, o m® o0
0 0 |m¥)
Therefore
. 3 3 _
Mo {5 € Sym | trS =1, trS? = Z(m(”)*, detS = H{m(z?)l} .
=1 =1




and one can suggest the embedding in the afline space:
Mo S={5eSym| ur§=1}.
Remark—Chosen any reference the general element of § is represented by

Ty Ty Ty
S = Ty T3 T3 f
T4 I3 1—z— T2

i.e., by a mapping & — R®. The conditions tr§? = Y2, (m!")? and
detS = [T, (m{H2, can be written in coordinates {cfr equations {1)):

Izl + 2122 — 21—z + 1= 5L, (ml9)4, _
(r1e2 — 23)(1 — 23 — 22) — 2103 — maa] + 2wauzs = [[hy (m)?,

representing the image M of M in §.

5 Conclusion

A distribution of orthorhombic crystals can be represented through the mean
orientation defined as:

§i= [ 1QSQ)dSOEB).
50(3) :

If the distribution is one of perfect order, with all crystals oriented as some
Q, then § = 5(@) has three distinct eigenvalues and the corresponding
eigenvectors represent the axes of the crystallite. Contrariwise, if the disor-
der is complete, then S is spherical and no preferred axis can be assigned to
the average representation of the distribution of crystals. Intermediate con-
ditions are clearly possible, with the axial optical properties of the aggregate
corresponding to the number of distinct eigenvalues of 5.

We have thus taken the first essential step for a convenient portrait of a
polyerystal, a step which opens the way for a rigourous connection between
the theory of continua with microstructure as displayed in [13] and the
theory of ‘deep’ space proposed in [4] with direct metallurgical applications
in ‘mind.
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