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Abstract

Wireless sensor networks involve many different real-world contexts, such as monitoring and control

tasks for traffic, surveillance, military and environmental applications, among others. Usually, these

applications consider the use of a large number of low-cost sensing devices to monitor the activities

occurring in a certain set of target locations. We want to individuate a set of covers (that is, subsets

of sensors that can cover the whole set of targets) and appropriate activation times for each of them in

order to maximize the total amount of time in which the monitoring activity can be performed (network

lifetime), under the constraint given by the limited power of the battery contained in each sensor. A

variant of this problem considers that each sensor can be activated in a certain number of alternative power

levels, which determine different sensing ranges and power consumptions. We present some heuristic

approaches and an exact approach based on the Column Generation technique. An extensive experimental

phase proves the advantage in terms of solution quality of using adjustable sensing ranges with respect

to the classical single range scheme.
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1. Introduction

Wireless Sensor Networks have met a growing interest in the last years due to their applications

in a wide range of contexts, such as national security, traffic, military, health care and environmental

monitoring, among others (see for example [7],[10],[12])

A common scenario in these applications considers the deployment of a large quantity of low-cost,
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limited sensing devices (or simply sensors), often randomly disposed all over the geographical region of

interest, in situations where an accurate individual placement of each device is not possible. Each sensing

has a range, which can be fixed or adjustable, and therefore sensors are able to collect information about

certain subregions of the whole space (for example, all the points whose Euclidean distance from the

sensor is equal or less than a certain threshold). The information collected about the targets can be

shared either between the sensors or communicating with a central station and, therefore, they can be

coordinated to collectively perform a complex sensing task. We are generally interested in covering either

the whole region of interest (area coverage problems) or specific targets inside of it (target coverage).

However, it was shown in [2] that every possible area coverage problem can be transformed into an

equivalent target coverage problem in polynomial time. For this reason, in this paper we only take into

account target coverage.

Due to both size and cost constraints, each sensing device has a limited amount of battery life. Sensors

can generally be in different states (such as transmit, receive, idle or sleep), however we may focus on active

and sleep states, which model whether a given sensor is performing its sensing activity (and therefore

consuming its battery) or not. If the sensing ranges are adjustable, different energy consumptions are

likely to be required with respect to the size of each range. In this context, as in [5], we consider a finite

number of alternative power levels and associate a measure of battery consumption with each of them.

Indeed, a clever use of the sensors can effectively increase the sensor network lifetime (or simply

network lifetime), that is, the amount of time in which the monitoring activity can be performed. Since

we generally have a large number of sensors, and their sensing ranges may overlap, we can find different

covers (that is, subsets of sensors which together cover all the targets) and keep active just one cover at

a time. The problem has been extensively studied in the literature in the case in which sensors have a

single power level (i.e. sensing ranges are not adjustable), and is known as the Maximum Sensor Network

Lifetime Problem (MLP).

Consider the example network in figure 1, where there are five targets (namely t1, t2, t3, t4 and t5)

and three sensors (s1, s2, s3). For each sensor we consider a single power level and its sensing area is
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shown. For example, sensor s2 covers t1, t2 and t5, and the possible covers for the whole set of targets

are {s1, s2}, {s1, s3} and {s2, s3}.

Figure 1: Example network with 5 targets and 3 sensors.

Let us consider the classical assumption that the battery of each sensor is able to keep it active for

1 unit of time. By considering one of the aforementioned covers, e.g. {s2, s3}, and activating it for the

whole battery life of the sensor, we can monitor all the targets for 1 unit of time. Further extensions

of the network lifetime are not possible, since only s1 has residual lifetime and it does not cover all the

targets alone. If we instead consider the three covers {s1, s2}, {s1, s3}, {s2, s3}, and activate each of

them for 0.5 units of time, the network lifetime is equal to 1.5 units of time, and therefore this turns

out to be a better strategy. MLP was proved to be NP-complete by reduction from the 3-SAT problem

in [4]. Different solution approaches were proposed to solve it either exactly (see [13]) or approximately

([2],[3],[4],[16]). Variants of the problem consider covers which may neglect some of the targets (Minimum

Coverage Breach ([6],[20]), Maximum Network α−Lifetime [11]).

Other works consider both coverage and data routing issues. In [1], [15] and [23], by considering

communication links among sensors which are close enough to communicate, the routing problem is

faced by requiring connected covers. A special root node (also called sink or gateway in different works)

is considered as the destination of the collected data. In [23], the authors describe an energy consumption

model that takes into account the different roles of the sensors (relay, source or both) in the cover, and

propose a greedy heuristic and an approximation algorithm. Both [1] and [15] describe exact approaches

based on column generation, differing in the definition of the subproblem that results from a different
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energy consumption model associated with each sensor. Moreover, the authors of [1] present a heuristic

aiming at a distributed implementation, while in [15] a GRASP metaheuristic is proposed. The authors

of [17], [18] and [19] define a problem that integrates sensor activity scheduling, data routing and sensor

and sink placement. The authors propose different approaches, namely a Lagrangean and a two-stage

heuristic [17], a heuristic based on the individuation of disjoint sets of sensors [18] and a column generation

based one [19].

Considering different power levels has potential to further increase the network lifetime, since it

increases the number of feasible covers that might be included in the solution. Depending on the specific

instance, trade-offs among target coverage and battery consumption determine the optimal power level in

which each used sensor should be activated, or even different power levels for the same sensor in different

covers. Consider the example network in Figure 2, with four targets, four sensors and two power levels.

Subfigures 2-A and 2-B show the sensing ranges of each sensor when set at level 1 and 2, respectively (by

(si, a) we refer to sensor si when activated at level a). Let the batteries be able to keep sensors active

for 1 unit of time at power level 1 and 0.5 units at power level 2.

Figure 2: Example network with 4 targets, 4 sensors and 2 power levels.

Should only power level 1 be considered, there would be a single feasible cover, that is {(s1, 1), (s2, 1), (s3, 1), (s4, 1)},

with a total network lifetime of 1. By using only power level 2, we have a wider set of covers but the

maximum achievable network lifetime is still equal to 1 (consider, for example, {(s1, 2), (s4, 2)} and
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{(s2, 2), (s3, 2)} activated for 0.5 units of time each). Now let us consider covers containing sensors ac-

tivated at different power levels. By using covers {(s1, 1), (s2, 2)}, {(s4, 1), (s3, 2)} and {(s1, 2), (s4, 2)}

activated for 0.5, 0.5, 0.25 units of time respectively, we achieve a network lifetime of 1.25.

We define this variant of MLP as the Maximum Network Lifetime with Adjustable Ranges Problem

(MLARP). In [5], the authors address the problem of maximizing the number of covers, called Adjustable

Range Set Covers (AR-SC). They present some heuristic solution approaches, based on both greedy and

LP relaxation methods. In [8], the aim is to maximize the network lifetime while allowing smooth sensing

range variations, and an approximation algorithm is proposed. In the same context, two distributed

heuristics are presented in [9]. In [14], [21] and [22] the authors present models for the area coverage

network lifetime problem with adjustable sensing ranges.

In our work we present an exact method based on the Delayed Column Generation Technique, a

greedy heuristic and a local search procedure. The paper is organized as follows. Sections 2 and 3

formally introduce the required notation and MLARP, as well as its mathematical formulation. The

formulation has been embedded in a Column Generation procedure, as described in Section 4. Section

5 presents our heuristic procedures. Section 6 describes a procedure to evaluate upper bounds on the

solution value. The results of our extensive experimental tests are presented in Section 7. Finally, Section

8 contains some final remarks.

2. Notation

Let N = (T, S) be a wireless sensor network, where T={t1, . . . , tn} is the set of the target nodes and

S={s1, . . . , sm} is the set of the sensors, and let k ≥ 1 be a positive integer value. We assume that each

sensor can be activated at k alternative power levels. For each sensor si and for each value a between

1 and k, we will refer to sensor si activated at level a with (si, a); we will also define such a pair an

adjusted sensor. Moreover, let T(si,a) be the subset of T containing all the targets covered by si when it

is set at level a. The positions of targets and nodes do not change over time, therefore we can assume

each T(si,a) to be known in advance. Since the power levels gradually extend the sensing ranges of the

devices, for each sensor si and each level a > 1 we have T(si,b) ⊆ T(si,a) ∀b ∈ {1, . . . , a − 1}. Moreover,
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we define the adjusted sensor (si, a) minimal for target tj if tj ∈ T(si,a) and either a = 1 or tj /∈ T(si,b)

∀b ∈ {1, . . . , a− 1}. For example, in the network in Figure 2, T(s1,1) = {t1} ⊆ T(s1,2) = {t1, t2}, (s1, 1) is

minimal for t1 and (s1, 2) is minimal for t2.

Given a collection of pairs Cl = {(si, a)|si ∈ S, a ∈ 1, . . . , k}, we define the set of targets covered by

Cl as TCl
=

⋃
(si,a)∈Cl

T(si,a). If Cl is such that TCl
≡ T and contains at most one adjusted sensor (si, a)

for each si ∈ S, we define it a cover ; this condition is required since as already said a cover represents a

subset of sensors that can be used to monitor the whole set of targets when activated at the same time. If

a level switch is desired for one or more sensors belonging to the cover, it can be modeled with a different

cover. Considering the example in Figure 2, we already introduced in the previous section some feasible

covers, such as {(s1, 2), (s2, 2)}.

It is realistic to assume that higher power levels increase the consumption of energy. We assume

that each device has the same hardware and, therefore, they have the same battery power and the same

battery consumption for each level. In order to model the different battery consumptions, we define a

positive parameter ∆a for each power level a, which represents the ratio between battery consumption

at level a and level 1 (which is the least powerful and therefore the least expensive level). For example,

∆a = 2 means that level a consumes twice the energy of level 1. It is straightforward that ∆1 = 1. We

also normalize the total battery power on the energy consumption of level 1; that is, the battery of a

sensor allows to keep it activated for 1 time unit if it is always set at level 1.

3. Problem Definition, Complexity and Mathematical Formulation

The Maximum Network Lifetime with Adjustable Ranges Problem is defined as follows:

Maximum Network Lifetime with Adjustable Ranges Problem (MLARP)

Find a collection of pairs (Cl, wl), l = 1, . . . , `, where C1, . . . , C` is the family of all the feasible covers

and w1, . . . , w` ≥ 0 are the corresponding activation times, such that the sum of all the activation times

(that is the network lifetime)
∑`

l=1 wl is maximized, and the power consumption of each sensor does not

exceed its battery.

The problem is NP-Hard. Indeed, MLP is a special case of MLARP when k = 1.
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For each sensor si, level a and cover Cl, let Φa
il be a binary parameter such that Φa

il = 1 if (si, a)

belongs to Cl, 0 otherwise. We can model the problem as follows.

[MOD] max
∑̀
l=1

wl (1)

s.t.

∑̀
l=1

k∑
a=1

Φa
il∆

awl ≤ 1 ∀i = 1, . . . ,m (2)

wl ≥ 0 ∀l = 1, . . . , ` (3)

Objective function (1) maximizes the sum of the activation times of the covers, and, therefore, the

network lifetime. Constraints (2) check that the total power consumption of each sensor does not exceed

its battery lifetime.

The total number of feasible covers ` is potentially exponential; therefore, we decided to embed this

model in a Column Generation approach in order to solve it optimally, as described in the next section.

4. Column Generation Approach

Our Column Generation approach is a variant of the method proposed in [13] for the classic MLP

problem. Another variant of this method was presented in [15] to solve the Connected Maximum Network

Lifetime Problem.

The Delayed Column Generation technique, or simply Column Generation (CG), is an efficient way

to solve linear programming formulations when there is a huge set of variables and we can not therefore

consider all of them explicitly. Since most of them will be nonbasic and assume a value of zero in the

optimal solution, the method aims at generating only variables which have potential to improve the

objective function, while the others are implicitly discarded.

The general iteration of the Column Generation considers a primal problem restricted only to a subset

of variables (Restricted Master) and optimally solves it. In order to determine whether the returned

solution is optimal for the entire problem, one should compute all the reduced costs of the nonbasic
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variables and, if the optimality conditions are not satisfied, a new variable (column) should enter the

basis. In the Column Generation approach, to perform these tasks an additional problem is solved (the

Separation Problem), whose solution either returns a new column to be added to the restricted primal or

verifies the optimality of the current solution.

Let us consider our previously presented [MOD] formulation for MLARP, restricted to a subset of

p feasible covers. Let πi, i = 1, . . . ,m, be the set of dual optimal multipliers associated with the primal

constraints (that is, with the sensors). The current primal solution is optimal if there is no negative

reduced cost associated with the nonbasic variables; that is, if for each l corresponding to a nonbasic

variable wl we have
∑

(i,a):(si,a)∈Cl
∆aπi−cl ≥ 0, where cl is the coefficient of variable wl in the objective

function (1) of the primal problem. We compute the minimum among all the reduced costs (note that

cl = 1 ∀ l and therefore can be excluded from the reduced costs computation). In order to do that we

solve the following separation problem:

[SEP] min

k∑
a=1

∆a
m∑
i=1

πix
a
i (4)

s.t.

m∑
i=1

k∑
a=1

φajix
a
i ≥ 1 ∀j = 1, . . . , n (5)

k∑
a=1

xai ≤ 1 ∀i = 1, . . . ,m (6)

xai ∈ {0, 1} ∀i = 1, . . . ,m; a = 1, . . . , k (7)

where, for each sensor si, power level a and target tj :

• xai is a binary variable determining whether (si, a) belongs to the new cover;

• φaji is a binary parameter that is equal to 1 if tj is covered by (si, a).

Objective function (4) ensures that the returned cover has the minimum reduced cost. Constraints

(5) make sure that each target is covered by at least one adjusted sensor. Constraints (6) impose the

selection of at most one power level for each sensor.
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If the optimal objective function of [SEP] is ≥ 1, the solution that was found by the restricted primal

in the previous iteration is optimal for the whole problem, otherwise the column defined by the optimal

solution values of variables xai is introduced in the restricted primal and the algorithm iterates.

It is easy to check that there always exists an optimal solution such that there are not two covers

Ca and Cb such that Ca is a proper subset of Cb and wb > 0. Therefore, we added the following set of

constraints to [SEP]. Let {C1, C2, . . . , Cg} be the set of connected covers generated by the algorithm so

far:

m∑
i=1

k∑
a=1

Φa
ilx

a
i ≤

m∑
i=1

k∑
a=1

Φa
il − 1 ∀l = 1, . . . , g (8)

The above presented inequalities ensure that each new cover returned by the separation problem differs

from the already generated ones in at least one adjusted sensor.

During our experimentation phase, whose results are presented and commented in Section 7, we

initialized the CG procedure using heuristic solutions provided by the AR-Iterative algorithm described

in Section 5.2.

5. Heuristic Approaches

5.1. Adjustable Ranges Greedy (AR-Greedy)

In this section we present a greedy heuristic which shares some ideas of Centralized Greedy Algorithm

presented in [5], bringing many refinements related to our specific problem.

The AR-Greedy algorithm builds one cover at a time, and assigns appropriate activation times within

a given upper bound to each of them in order to keep the solution feasible. Each cover, starting from

an empty set, is gradually extended and finally completed by iteratively identifying specific targets that

have not been covered so far (called critical targets) and then, adding to the cover the adjusted sensors

with the best contributions to cover them. The algorithm ends when the residual lifetimes of the sensors

do not allow the generation of a new cover.

The critical target selection phase aims to identify the target in the most unfortunate position of the

network, that is, the one whose covering sensors have the least amount of residual energy. Three different
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criteria are used to determine the contribution of each adjusted sensor (si, a), whose underlying ideas are

to evaluate i) the trade-off among the number of new covered targets and consumption ratio ∆a, ii) the

percentage of sensors that would be redundantly covered more than once if (si, a) would be added to the

current cover, and iii) the overall amount of its residual energy. These concepts are better clarified in

Sections 5.1.1 and 5.1.2.

Algorithm 1 describes the procedure. In the following, we comment on this pseudocode and introduce

some notations used in Sections 5.1.1 and 5.1.2. Line 1 contains the input parameters. Granularity factor

gf ∈ (0, 1] represents a maximum amount of activation time that will be assigned to each generated

cover. The Γ vector is used to weight the different sensor contribution criteria, as explained in Section

5.1.2. The SR set initialized in line 2 contains the list of sensors with a residual lifetime greater than

0. Parameters rsi initialized in lines 3-5 represent the amount of residual lifetime for each sensor si.

The set SOL and the value lt initialized in lines 6-7 will contain the covers with related activation times

composing the returned solution and the overall maximum lifetime found, respectively. Line 8 checks

whether the sensors with residual positive lifetime can still cover the whole set of targets and therefore

produce a new cover Cl. New covers are generated according to lines 9-28. The TU and the SI sets

initialized in lines 10-11 keep track of the uncovered targets and of the sensors that have already been

included in Cl, respectively. The next critical target in TU as well as the appropriate adjusted sensor

with the greatest contribution are iteratively selected in the loop in lines 12-20, until Cl covers all the

targets. Lines 21-27 decrease the lifetime of each sensor of the cover by the maximum feasible activation

time which does not exceed gf and check whether the SR set must be updated. In more detail, Cl will

be activated for wl = gf if rsi −∆agf ≥ 0 for each (si, a) ∈ Cl. Otherwise, consider the adjusted sensor

of Cl that minimizes
rsi
∆a ; let us call it (sh, b). We set wl =

rsh
∆b ; this guarantees a feasible activation time

for each (si, a) ∈ Cl.

The newly generated cover and its activation time are added to the solution in line 28, and the network

lifetime is updated in line 29. Finally line 31 returns the resulting set of covers and activation times.

10



Algorithm 1 AR-Greedy algorithm

1: input: wireless network N = (T, S), number of power levels k, granularity factor gf ∈ (0, 1], criteria
weighting parameter Γ = (γ1, γ2, γ3), γi ≥ 0, γ1 + γ2 + γ3 = 1

2: SR ← S
3: for each si ∈ SR do
4: rsi ← 1
5: end for
6: SOL← ∅
7: lt← 0
8: while

⋃
si∈SR

T(si,k) ≡ T do
9: Create a new empty cover Cl

10: TU ← T
11: SI ← ∅
12: while TU 6≡ ∅ do
13: Find a critical target tc ∈ TU
14: Select sc ∈ SR\SI and a ∈ {1, . . . , k} s.t. tc ∈ T(sc,a) and (sc, a) has the maximum contribution

according to Γ
15: SI ← SI ∪ {sc}
16: for each tj ∈ TU s.t. tj ∈ T(sc,a) do
17: TU ← TU \ {tj}
18: end for
19: Cl ← Cl ∪ {(sc, a)}
20: end while
21: wl = max feasible activation time ≤ gf for Cl

22: for each (si, a) ∈ Cl do
23: rsi ← rsi − (∆awl)
24: if rsi = 0 then
25: SR ← SR \ {si}
26: end if
27: end for
28: SOL← SOL ∪ {(Cl, wl)}
29: lt← lt+ wl

30: end while
31: return (SOL, lt)

5.1.1. Critical Target

At each iteration, in order to determine the critical target, we evaluate an upper bound Utj on the

amount of time for which each target tj can be covered using the residual lifetime of the sensors; the

critical target will be the one with the minimal upper bound. Ties are broken randomly.

In more detail, for each target tj ∈ TU and each sensor si ∈ SR such that tj ∈ T(si,k), let aij be the

power level such that (si, aij) is minimal for tj . That is, for each covering sensor we consider the power

level with the lowest possible consumption level, since it maximizes the covering time. We define tc as

follows:

tc = argmin
tj∈TU

(Utj ) (9)
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where

Utj =
∑

si∈SR|tj∈T(si,k)

rsi
∆aij

(10)

Suppose that the critical target has to be selected among t1, t2 and t3 in the example given in Figure 3.

The minimal adjusted sensors are {(s1, 1), (s2, 1)} for t1, {(s1, 2), (s2, 1)} for t2 and {(s1, 2), (s2, 2)} for

t3. Let us suppose that ∆2 = 2 (recall that by definition ∆1 = 1), rs1 = 1 and rs2 = 0.25. Then we have

Ut1 =
rs1+rs2

∆1 = 1.25, Ut2 =
rs1
∆2 +

rs2
∆1 = 0.75, Ut3 =

rs1+rs2
∆2 = 0.625 and t3 is the critical target.

Figure 3: Example network with 3 targets, 2 sensors and 2 power levels.

5.1.2. Adjusted Sensors Contribution

The contribution of covering adjusted sensors is determined using 3 criteria: Covering Power (CP),

Covering Waste (CW) and Residual Lifetime (RL). Each of these criteria returns a score for each

candidate adjusted sensor, which are then combined to evaluate its overall contribution.

Covering Power. During the generation of a new cover Cl, for each adjusted sensor (si, a) with si ∈ SR\SI

that can cover the critical target tc, the CP score is the ratio among the total number of covered targets

that still have to be covered in Cl and consumption ratio ∆a; that is,

CP (si, a) =
|T(si,a)

⋂
TU |

∆a
∀(si, a)|si ∈ SR \ SI , a ∈ {1, . . . , k}, tc ∈ T(si,a) (11)

The greatest contribution according to this criterion is determined by the maximum CP score; it favors

sensors with relevant covering capabilities, penalizing high power levels if they do not bring significant

improvements.
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Let us evaluate the CP score of the four adjusted sensors in Figure 4. Suppose that the black targets

have been previously covered by other sensors, that is TU = {t3, t4}, and let ∆2 = 2. The CP score of

the four adjusted sensors is CP (s1, 1) = |∅|
1 = 0, CP (s2, 2) = |{t3}|

2 = 0.5, CP (s2, 1) = |{t3,t4}|
1 = 2 and

CP (s2, 2) = |{t3,t4}|
2 = 1. While (s2, 1) and (s2, 2) cover the same amount of new targets, it is easy to

understand that (s2, 1) has a higher CP score.

Figure 4: Example network with 5 targets, 2 sensors and 2 power levels.

Covering Waste. During the generation of a new cover Cl, for each adjusted sensor (si, a) with si ∈ SR\SI

that can cover the critical target tc, the CW score is the ratio among the number of covered targets that

have already been covered in Cl (i.e., belonging to T \ TU ) and the total number of covered targets; that

is,

CW (si, a) =
|T(si,a)

⋂
{T \ TU}|

|T(si,a)|
∀(si, a)|si ∈ SR \ SI , a ∈ {1, . . . , k}, tc ∈ T(si,a) (12)

The greatest contribution according to the criterion is determined by the minimum CW score; it penalizes

the selection of adjusted sensors that are unfit to the current cover since they would provide redundant

coverage to many targets, wasting part of their battery lifetime. Again, let us evaluate this score for

the four adjusted sensors in Figure 4, and let {T \ TU} = {t1, t2, t5}. The covering waste scores are

CW (s1, 1) = |{t2}|
1 = 1, CW (s1, 2) = |{t1,t2}|

3 = 2
3 , CW (s2, 1) = |{∅}|

2 = 0 and CW (s2, 2) = |{t5}|
3 = 1

3 .

Note that a CW score equal to 0 means that the adjusted sensor covers only new targets.
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Residual Lifetime. For each adjusted sensor (si, a) with si ∈ SR \SI that can cover the critical target tc,

the RL score is given by its residual lifetime (RL(si, a) = rsi). The greatest contribution is given by the

maximum RL score.

Overall Sensor Contribution Evaluation. The input vector Γ = (γ1, γ2, γ3) is used to weight the relevance

of the three criteria while determining the overall contribution of each adjusted sensor that covers the

critical target. That is, for example, if Γ = (1, 0, 0) only CP will be used, while if Γ = (0, 1
2 ,

1
2 ) CW and

RL will be used and will be equally important. Formally, for each candidate adjusted sensor (si, a) let

CP ′(si, a) be the associated CP score normalized in the interval [0, 1] (note that the other two scores are

defined in this interval). We define the contribution of (si, a) according to Γ as the convex combination

γ1CP
′(si, a)+γ2(1−CW (si, a))+γ3RL(si, a) and look for the adjusted sensor that maximizes this value.

5.2. Adjustable Ranges Iterative (AR-Iterative)

AR-Iterative embeds AR-Greedy in a local search scheme. The algorithm has an initialization phase,

where the greedy heuristic is executed multiple times using different values of the Γ weighting parameter.

The best solution identified during this phase is used as starting point for the local search phase, and the

related Γ∗ value is used for every other execution of the heuristic throughout the algorithm. The chosen

tested values for Γ are discussed in Section 7.

Solution neighborhoods are built by executing a variant of AR-Greedy that avoids the selection of

certain adjusted sensors (banned adjusted sensors). In more detail, we define the AR-Greedy’ procedure

that has a set of adjusted sensors ASB as additional input parameter; both procedures behave the same,

with the only difference that AR-Greedy’ makes sure that the elements of ASB are never selected during

the procedure. In addition, we assume that AR-Greedy’ also returns a set AS composed of all the

adjusted sensors used in the covers (which can be easily computed in post-processing).

The AR-Iterative algorithm keeps track of the banned sensors that allow AR-Greedy’ to improve the

objective function value, gradually extending the ASB set, and iteratively executes the algorithm until

no significant improvements can be found in the neighborhood of the current solution.

The pseudocode is given in Algorithm 2. The ASB set is initialized in line 2. The above described

14



initialization phase is performed in line 3, and the chosen starting solution is stored in line 4. The

condition expressed in line 6 checks whether the main loop of the procedure (contained in lines 6-20)

iterates or stops, based on the occurrence of significant objective function improvements in the last

iteration. In the loop, the adjusted sensors of the current solution are added to ASB one at a time and

AR-Greedy’ is executed (line 12), producing new neighbors, until a significantly better solution is found.

The significancy of the improvement is evaluated using a parameter ε (line 12); if such a solution is found,

the related neighbor is selected for the next iteration (line 15) and the adjusted sensor which led to this

neighbor is permanently added to ASB (line 16). Finally, the best solution found is returned in line 23.

Algorithm 2 AR-Iterative algorithm

1: input: wireless network N = (T, S), number of power levels k, granularity factor gf ∈ (0, 1], improve-
ment factor ε ≥ 0

2: ASB ← ∅
3: find the best weighting parameter Γ∗

4: (SOL, lt, AS) = AR−Greedy′(N, k, gf,Γ∗, ASB)
5: stop← false
6: while stop = false do
7: let AS = {(s1, a1), . . . , (sz, az)}
8: i← 0
9: improvement← false

10: while improvement = false and i ≤ z do
11: i← i+ 1
12: (SOLi, lti, ASi) = AR−Greedy′(N, k, gf,Γ∗, ASB ∪ {(si, ai)})
13: if lti > lt+ ε then
14: improvement← true
15: (SOL, lt, AS)← (SOLi, lti, ASi)
16: ASB ← ASB ∪ {(si, ai)}
17: end if
18: end while
19: if improvement = false then
20: stop← true
21: end if
22: end while
23: return (SOL, lt)

6. Upper bound computation

As we will show in Section 7, we did not execute the CG algorithm to completion on some instances,

due to violation of the considered time limit. Therefore, a certified optimal solution is not available on

these instances. In order to overcome this problem and have a measure of the quality of the solutions

provided by our methods on all scenarios, we evaluated a theoretical upper bound U . The upper bound

is the same as the one seen for the critical target selection, performed when rsi = 1 for each sensor si in
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S. Moreover, as in 5.1.1, given a target tj and a sensor si such that tj ∈ T(si,k), let aij be the power level

such that (si, aij) is minimal for tj . We have

U = min
tj∈T

(Utj ) (13)

where

Utj =
∑

si∈S|tj∈T(si,k)

1

∆aij
(14)

Given the same example sensor network in Figure 3 considered in Section 5.1.2, we have U = 1, which

is the upper bound of target t3 (Ut3 = 1+1
∆2 ).

7. Computational Results

We compared the performances of the proposed approaches (AR-Iterative and the Column Generation

algorithm) on a wide set of test instances. The AR-Greedy algorithm is not explicitly reported here, since

it is used as an internal procedure for AR-Iterative. The upper bound described in Section 6 is used to

evaluate the quality of our solution when the CG procedure is not able to find a certified optimum

within the considered time limit. The section is organized as follows: in Section 7.1 we describe our

test instances; Section 7.2 contains the values of the parameters used in our algorithms and describes

our testing environment; finally Section 7.3 contains our results divided in tables and some comments on

them.

7.1. Instances Description

The instances are generated by randomly disposing targets and sensors on a 200n× 200n area, where

n is the number of target nodes. We considered test instances composed of n = 50, 100, 200, 400, 800, 1200

targets. We consider a parameter depth, which represents a lower bound on the minimum number of

sensors that cover each target when set at their lowest power level. Sensors will be randomly generated

until the depth condition is satisfied. In our experiments, we consider depth = 3, 6, 9. Moreover, while

generating sensors, we check that each of them covers at least one target when set on its lowest power

level. Regarding the number of adjustable power levels for each sensor, we generated instances according
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to three different multi-level power modes (pm = 2, 3, 5). When pm = a there are a different power levels

to choose from. We set the sensing range of the lowest level r1 always equal to 100n. Let A1 = πr2
1 be

the size of the area covered by each sensor when set to level 1. We want the areas to be covered by the

other power levels to be the following:

• A2 = 5
3A

1 for pm = 2

• A2 = 4
3A

1, A3 = 5
3A

1 for pm = 3

• A2 = 7
6A

1, A3 = 4
3A

1, A4 = 3
2A

1, A5 = 5
3A

1 for pm = 5

That is, we always want the most expensive level to cover an area 2
3 times larger than A1, and the size

of the other levels to be equally distributed in this interval (Aa = (1 + 2
3
a−1
k−1 )A1). If the area coverage

for a given level a is αA1, its consumption ratio ∆a is set to α∆1 = α accordingly (recall that ∆1 = 1 by

definition). When we fix the depth and n parameters, increasing pm corresponds to adding new power

levels to the same set of instances, making these scenarios directly comparable.

In order to validate the effectiveness of the adjustable ranges approach, we also created two single-level

power modes. The first one (pm = 1) is obtained by considering just the smallest power level for each of

our instances. The optimal solution for each instance with pm = 1 is known in advance by construction,

and is equal to the depth parameter; let us denote this set of optimal solutions as OPT 1. The second

single-level power mode (pm = 1H) is obtained by considering the most expensive power level for each

instance (A1H = 5
3A

1 and ∆1H = 5
3∆1 = 5

3 ), and optimal solutions for this case are not known in

advance.

For each combination of the described parameters, we generated 5 instances, for a total of 54 multi-

level scenarios with 270 instances and 36 single-level scenarios with 180 instances. We did not execute

heuristic tests on the single-level instances with pm = 1H, since developing a good heuristic for this

case is outside the focus of this paper, while we compared the trivial optimal solutions of pm = 1 with

CG solutions for pm = 1H, 2, 3, 5, in order to get an estimate of the advantage given by the multi-level

approach (see Table 3 and the related comments in Section 7.3).
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7.2. Parameters, Testing Environment and Used Languages

Regarding the AR-Iterative algorithm, after a preliminary experimental phase we choose gf = 0.2 for

the granularity factor and ε = 0.1 for the improvement factor. As for the initialization phase, we choose

the following seven values for the Γ parameter: (1, 0, 0), (0, 1, 0), (0, 0, 1), ( 1
2 ,

1
2 , 0), ( 1

2 , 0,
1
2 ), (0, 1

2 ,
1
2 ) and

( 1
3 ,

1
3 ,

1
3 ). For the Column Generation algorithm, we considered a time limit of 1 hour for each instance.

All algorithms have been coded in C++ and executed on an Intel Xeon 2Ghz workstation with 8GB of

RAM. The IBM ILOG CPLEX 12 solver with Concert Technology was used to solve the mathematical

formulations within the Column Generation algorithm.

7.3. Results

The tables included in this section summarize the results of our experimental tests. We report average

results for each scenario; that is, each entry in the tables contains an average value over the corresponding

5 instances. In each table, Row n represents the cardinality of the set of targets, Row depth the depth

parameter value, and pm the considered power mode.

Tables 1-2 contain average performances of our Column Generation and AR-Iterative algorithms on

the multi-level instances in terms of solution quality, compared with the proposed upper bound and with

the CG solutions, respectively. Table 3 focuses on the significance of the proposed multi-level approach,

comparing the solution values of power modes 2, 3 and 5 with the ones of the single-level power modes

1 and 1H. Finally, Tables 4-5 contain average computational times for the two proposed algorithms. In

what follows, we comment each of these tables.

As mentioned before, when we reach the considered time limit for the Column Generation procedure

and therefore the provided solutions are not certified as optimal, we compare them with our upper bound

described in Section 6 to evaluate their quality. In particular, for each instance, let U ′ be the value

returned by the Column Generation algorithm if its execution is terminated before the time limit, the

upper bound value U otherwise. Table 1 contains average percentage ratios between Column Generation

solution values and U ′ values (computed as CG
U ′ × 100). Therefore, regarding the entries with a value of

100 the Column Generation produced a certified optimum for each of the related instances. This happens
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in 7 cases: twice for n = 50 with depth = 3 and pm = 2, 3, twice for n = 100 with depth = 3, 6 and

pm = 2, and once each for n = 200, 400, 1200 with depth = 3 and pm = 2. Overall, considering all the

scenarios, certified optimal solutions were found for 137 individual multi-level instances. It can be noticed

that the performances tend to get worse for high values of the depth and pm parameters. However, the

average solution value is never smaller than 95.74% of the average optimum, and in 42 out of 54 scenarios

it is higher than 97%. For all the considered scenarios, CG solutions found within the time limit can

therefore be considered accurate approximations of the optimal solutions.

In Table 2, the average percentage ratios between AR-Iterative and CG are reported, computed as

AR−Iterative
CG × 100. Recall that AR-Iterative solutions are used to initialize CG, therefore this ratio can

be equal to 100 (if the heuristic either finds a optimal solution or the same solution of the CG within

the time limit) or below. It can be seen that the average solution ratio is consistently higher than 90%

for all scenarios but one, i.e. for n = 50, depth = 6 and pm = 3, where the average ratio is 89.94%.

AR-Iterative found certified optimal solutions for 49 individual instances, and proved to be effective both

as initialization method for CG and as a fast procedure to obtain good solutions.

Table 3 contains average percentage ratios between CG solution values for pm = 1H, 2, 3, 5 with the

optimal values of the related instances for pm = 1, computed using the formula OPT1

CG ×100. The Column

Generation procedure for pm = 1H was initialized with covers generated by repeated executions of the

subproblems with random weights associated to the sensors. Regarding the single-level power modes, it

can be seen that using sensors with larger (although more expensive) ranges appears to be a generally

better choice for the considered instances, as it gives on average better solutions in 14 out of 18 scenarios.

However, the results for multi-level instances show that the energy of the sensors can be used in a far

more effective way when different ranges are used together. Considering the case pm = 2, the average

improvement varies from a minimum of 29.42% to a maximum of 74.4% with respect to pm = 1, and

from a minimum of 35.31% to a maximum of 43.2% with respect to pm = 1H.

Additional power levels bring further extensions of the network lifetime: pm = 3 brings an average

improvement of 6.07% with respect to pm = 2, and pm = 5 improves the results obtained with pm = 3
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n 50 100 200
depth 3 6 9 3 6 9 3 6 9

pm
2 100 98.79 97.55 100 100 97.25 100 97.47 96.29
3 100 96.72 98.23 98.69 98.27 96.83 97.65 97.82 97.28
5 99.52 95.74 98.6 99.01 96.49 96.83 96.77 97.91 96.53

n 400 800 1200
depth 3 6 9 3 6 9 3 6 9

pm
2 100 97.58 98.69 99.78 97.18 95.78 100 97.76 98.26
3 97.18 98.01 98.61 97.47 97.62 96.1 98.51 98.9 98.75
5 97.39 98.14 98.62 97.37 97.24 95.69 96.97 98.09 98.73

Table 1: CG - U’ solution values percentage ratio

of 3.42% on average. We might expect the improvements brought by additional levels to keep being

incrementally smaller, up to a stabilization point where they would be redundant.

Tables 4 and 5 contain average computational times (expressed in seconds) for AR-Iterative and CG,

respectively. As we know, CG does not end its execution on some instances, therefore we did not consider

them and evaluated average values only on the meaningful ones. In more detail, each entry in Table 4 has

an associated value (reported in brackets) that expresses the number of instances that run to completion,

and that were therefore used to evaluate the average. For example, when this value is 5, all the instances

of the scenario run to completion. On scenarios where no instance terminated in the time limit, we just

report a dnf (did not finish) value. As expected, many instances can be solved for small values of pm

and depth, while the number of solved instances decreases and eventually drops to 0 when their values

increase. For example, all instances can be solved for pm = 1H and depth = 3, and all instances except

two can be solved for pm = 2 and depth = 3; on the other hand, for pm = 2 and depth = 9, only three

instances can be solved to completion when n ≤ 100, and when pm = 5 and depth = 9 no instance can

be solved. It can be also seen that the number of scenarios where some instances run to completion

diminishes for high values of n, although as previously discussed the quality of the returned solutions

keeps being good with respect to the upper bound.

Now, consider the time averages for our heuristic in Table 5. It can be seen that computational times

increase in a very consistent way as we increment the values of n, depth and pm. Overall, computational

times are reasonable, varying from an average of 0.12 seconds for n = 50, depth = 3, pm = 2 to 346.99

for n = 1200, depth = 9, pm = 5.
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n 50 100 200
depth 3 6 9 3 6 9 3 6 9

pm
2 97.65 93.38 95.92 96.26 95.63 95.43 97.58 96.22 93.52
3 94.29 89.94 93.86 93.93 94.35 95.34 97.32 94.15 91.89
5 92.3 91.51 94.7 90.7 92.93 94.68 94.22 94.44 90.71

n 400 800 1200
depth 3 6 9 3 6 9 3 6 9

pm
2 96.91 96.48 98 98.18 97.1 94.03 99.02 96.03 96.19
3 95.52 94.67 98.41 97.84 94.35 93.77 95.57 93.66 94.74
5 95.24 95.32 97.44 93.77 92.58 90.55 94.88 91.73 94.56

Table 2: AR-Iterative - CG solution values percentage ratio

n 50 100 200
depth 3 6 9 3 6 9 3 6 9

pm

1H 104 104 100 92 92 93.33 104 122 110.67
2 141.18 139.31 139.72 129.42 129.99 129.7 146 158.27 148.97
3 146.4 146.42 145.39 135.35 135.93 135.19 150.61 167.13 155.1
5 150.9 149.87 148.93 138.64 137.76 137.44 152.6 171.27 157.27

n 400 800 1200
depth 3 6 9 3 6 9 3 6 9

pm

1H 116 124 112 136 124 125.33 100 96 109.33
2 159.2 161.7 152 174.4 162.57 160.93 137.33 136.61 150.39
3 164.93 169.11 156.9 182.26 168.6 166.65 141.8 141.24 156.45
5 166.92 173.76 160.93 188.81 172.77 171.12 143.58 142.14 158.86

Table 3: CG - OPT 1 solution values percentage ratio

n 50 100 200
depth 3 6 9 3 6 9 3 6 9

pm

1H 1.17(5) 16.21(5) 580.18(4) 1.59(5) 22.69(5) 845.06(4) 4.06(5) 762.99(4) 2518.01(2)
2 7.69(5) 132.11(4) 961.02(2) 23.17(5) 349.99(5) 1144.25(1) 21.72(5) 2262.16(1) dnf
3 38.39(5) 919.92(2) dnf 41.56(4) 1013.67(2) dnf 1432.2(2) dnf dnf
5 320.56(4) dnf dnf 361.8(3) 2261.12(1) dnf 0.55(1) dnf dnf

n 400 800 1200
depth 3 6 9 3 6 9 3 6 9

pm

1H 104.78(5) 287.58(2) dnf 34.40(5) 798.69(4) dnf 15.44(5) 248.45(4) dnf
2 913.99(5) dnf dnf 34.45(3) dnf dnf 96.52(5) 741.85(2) dnf
3 dnf dnf dnf 136.18(2) dnf dnf 209.94(2) dnf dnf
5 dnf dnf dnf dnf dnf dnf 1.05(1) dnf dnf

Table 4: CG time averages

n 50 100 200
depth 3 6 9 3 6 9 3 6 9

pm
2 0.12 0.18 0.28 0.2 0.35 0.59 0.56 1.04 1.56
3 0.8 1.03 2.07 1.07 2.22 4.1 6.45 8.94 17.82
5 3.22 3.37 7.45 4 7.92 15.43 14.41 21.46 40.04

n 400 800 1200
depth 3 6 9 3 6 9 3 6 9

pm
2 1.91 3.27 5.33 5.38 9.2 15.68 5.01 6.43 12.5
3 12.47 20.59 39 21.44 38.73 96.34 24.91 41.41 84.42
5 35.49 71.24 107.45 67.28 150.77 250.37 119.97 221.32 346.99

Table 5: AR-Iterative time averages
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8. Conclusions

In this work we addressed the Maximum Network Lifetime with Adjustable Ranges Problem (MLARP),

which is a generalization of the classical Maximum Network Lifetime Problem (MLP) defined on wireless

sensor networks. We developed an exact approach, based on a Delayed Column Generation technique,

and a greedy heuristic which was embedded in a local search scheme. An extensive experimental phase

was carried out in order to validate the proposed methods. We performed tests both on instances where

the sensor ranges could be adjusted in a number of different power levels and on the same instances where

sensors ranges were fixed (i.e., the classical MLP). The proposed variant allowed us to find significant

improvements of the network lifetime with respect to the classical approach in each of the considered sce-

narios, with average improvements per scenario ranging from 24.72% to 88.81%. It has also been verified

that considering a larger number of power levels brings further improvements, which get incrementally

smaller.

The exact approach was able to obtain optimal solutions in reasonable time on many instances. Even

on high dimensional instances with up to 1200 target points, where we did not find certified optima within

the considered time limit, the returned solutions proved to be accurate when evaluated with respect to

an upper bound (the average CG solution value per scenario was proved to be never smaller than 95.74%

of the optimum). The local search algorithm provided high quality solutions in fast computational times

(the average solution value per scenario was never smaller than 89.94% with respect to CG solutions),

and was used as effective initialization method for the CG procedure.

Regarding future lines of research, we intend to bring on the study of this problem by developing

appropriate metaheuristic algorithms, and to approach some variants of it (e.g., Maximum Network

Lifetime Problem with adjustable ranges when a certain portion of targets can be neglected in each

cover, or when connected covers are required). We think that it might also be of interest to perform

a theoretical study of the possible improvement that can be obtained in terms of objective function by

adding new power levels. This may lead us to a direct comparison among solution methods which consider

discrete and continuous adjustable ranges models. New classes of instances, possibly related to real-world
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applications, will be also investigated.
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