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A B S T R A C T

Understanding the human spoken language recognition process is still a far scientific goal.
Nowadays, commercial automatic speech recognisers (ASRs) achieve high performance at
recognising clean speech, but their approaches are poorly related to human speech recognition.
They commonly process the phonetic structure of speech while neglecting supra-segmental
and syllabic tracts integral to human speech recognition. As a result, these ASRs achieve low
performance on spontaneous speech and require enormous costs to build up phonetic and
pronunciation models and catch the large variability of human speech. This paper presents
a novel ASR that addresses these issues and questions conventional ASR approaches. It uses
alternative acoustic models and an exhaustive decoding algorithm to process speech at a syllabic
temporal scale (100–250 ms) through a multi-temporal approach inspired by psycho-acoustic
studies. Performance comparison on the recognition of spoken Italian numbers (from 0 to
1 million) demonstrates that our approach is cost-effective, outperforms standard phonetic
models, and reaches state-of-the-art performance.

. Introduction

Spoken language recognition in human beings is natural, robust, and effective. People recognise each other’s words also in
ituations of high background noise and reverberation using complex multi-channel information processing [1]. However, emulating
nd understanding these mechanisms goes beyond our current technological capabilities [2,3]. Nevertheless, automatic speech
ecognition has evolved in the last decades to propose high-performance commercial products to the large public [4,5]. The
pproaches of modern automatic speech recogniser (ASRs) are poorly related with human speech recognition processes, and building
SRs requires significant economic investments [6]. Indeed, high costs depend mainly on the manual preparation of large corpora
f audio samples annotated at multiple levels (usually from sentence to phonetic levels), pronunciation models, and grammars. As
result, the implementation of high-performance ASRs is usually bounded to few and large corporations and their applications

re confined to simple sentence transcribers or interactive voice responders. These ASRs usually neglect acoustic indicators such as
ntonation and supra-segmental tracts that are essential in human spoken dialogues, because these would be expensive in terms of
odelling and data preparation. Consequently, modern ASRs have still issues at recognising spontaneous and conversational speech
ith a high accuracy [7–10].

The classic ASR architecture we took as a reference to build our ASR, is made up of four main processes (Fig. 1): (i) feature
xtraction, (ii) acoustic unit recognition, (iii) language model, and (iv) decoding. The first process extracts real numbered vectors
f acoustic features out of an audio file. The temporal scale of these features is usually strictly sub-segmental and reflects the search
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Fig. 1. Diagram of a standard ASR with alternative acoustic models: (a) tri-phonetic HMMs using GMM emission probabilities, (b) tri-phonetic HMMs using a
DNN to simulate emission probabilities.
Source: The Token Passing schema is adapted from [11].

for stationary spectral conditions as much as possible. The second process – acoustic unit recognition – extends the temporal scope
of the speech chain processing. The acoustic units used in most ASRs are classically related with the acoustic characteristics of
the phonotactic distribution of co-articulatory processes. Indeed, most ASRs use contextual phones/tri-phones as acoustic units.
This approach embeds coarse assumptions on the internal dynamics of the speech signal and attempts to model a form of contextual
prediction of acoustic phenomena related with the nature of connected speech. Consequently, a classic ASR includes a large (∼cubic)
combination of elementary acoustic phonetic models. A further process estimates the likelihoods of these combined models to a
segment of speech signal. State-of-the-art ASRs use between ∼2000 and ∼10,000 h of speech to train these models [12,13]. However,
these acoustic models are not robust enough to manage the reduction processes that are frequent also in clear speech and that are
more easily treated with a syllable-based approach [14–16]. The third process – language model – calculates the joint probability
of a sequence of words and guides the ASR search among alternative words during the recognition. This model uses a grammar that
specifies the permissible structures of the language. Statistical grammars (e.g. N-grams, [17]) are used to model complex languages
2
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and are automatically learned from large textual corpora. On the basis of a grammar, the language model assigns a higher probability
to more likely word sequences. As a prerequisite, this process requires specifying all possible allowed words (the lexicon) and all
different ways in which the used units of speech can be combined to build these words (pronunciation models). The language model
is dependent on the particular lexicon and dialogue context the ASR is meant to manage. State-of-the-art large-vocabulary ASRs
include a 106 order of magnitude words, and the language model is trained on tens of gigabytes of reference texts [18,19]. The
fourth process – decoding – combines acoustic models with the language model to produce the most probable transcription of an
input audio file. In most ASRs, acoustic models are implemented as Hidden Markov Models (HMMs, [20] and [21]), and the decoding
process is strictly dependent on their state-based nature, where initial and final states establish the acoustic boundaries between
consecutive speech units [22]. This type of HMM is a double stochastic model defined by (i) a finite set of states (ii) a transition
matrix between consecutive states, (iii) a set of emission probability densities for each state to be associated with the vectors of
acoustic features at a certain time, and (iv) a set of initial-state probability densities. Alternative models have been proposed to
enhance HMM performance, for example Factorial HMMs (FHMMs, [23]) use sets of HMMs all with the same number of states
and independent of each other, except for the fact that the emission probability of one state of an HMM depends also on the
states of the other HMMs [24]. Most state-of-the-art ASRs use Deep Learning models to (i) classify speech-units, (ii) model HMMs
emission densities, and (iii) extract acoustic features [25–30]. In particular, Deep Neural Networks (DNNs) are commonly used to
model emission probabilities [31–33] and in some cases are replaced by Recurrent Neural Networks and Long Short-Term Memory
models (LSTMs) [34–37]. LSTMs model longer-term dependencies between the elements of the input sequence [38–40] and have
demonstrated high performance when used to classify single phonemes and syllables [34–37].

End-to-end ASRs are valid alternative architectures and can reach state-of-the-art performance [41–49]. These systems jointly
learn all ASR components in one integrated approach, which reduces training and decoding time. However, they require an amount
of training data that is by far higher than what is required by classic ASR architectures [50–53].

In this paper, a comparison between ASRs using both conventional and non-conventional approaches is presented. In particular,
a novel approach for an ASR is proposed (Fig. 2) that uses several possible alternative acoustic models. Each time the ASR is
instantiated, one among four models is used for acoustic unit modelling. Three of these models (FHMM, CNN, LSTM) are inspired
by studies on the involvement of psycho-acoustic related features of human speech recognition, i.e. the multi-temporal processing of
the speech signal at syllabic and phonetic levels [1,14,54,55]. Our study complies with the idea that although speech recognition in
humans and machines is implemented in different ways, they should compute the speech signal in a similar way [56]. Other studies
have investigated this similarity at a computational level, to build ASRs that accounted for the high variability of acoustic realisations
of lexical representations, speaker independence, and new-word recognition [57]. For example, the Shortlist and SpeM ASRs
addressed these properties by pursuing the hypothesis that human speech processing separates pre-lexical (abstract phonological
representations before processing) and lexical levels [57,58]. Shortlist-B proposed a further pre-processing of the speech signal to
reflect the characteristics of human pre-lexical processing [59]. However, these ASRs still worked at a phonetic-scale (i.e. with
phonetic base units) and were mainly conceived for Hidden Markov Models-based acoustic units. Instead, our ASR uses syllabic-
scale units and different acoustic model implementations and embeds a new decoding algorithm that is independent of the acoustic
model used. The proposed acoustic models address syllable-related dynamics inspired by multi-temporal processing studies. Our
results show that these models – especially two involving deep learning models – can use a limited training material to gain
performance that is comparable with that of state-of-the-art systems on a non-trivial recognition task. Furthermore, our ASR can
outperform standard-approach ASRs built upon the same training material. One drawback is its higher computational complexity,
which requires using parallel or distributed processing for operational applications. As benchmark experiments, the recognition
of spoken Italian digits (0–9) and numbers ranging from 0 to 1 million (excluded) from telephone-quality recordings were used.
Digit recognition was used to compare ASR performance on controlled speech with a simple grammar and a low variability in
the utterance of the syllables. Instead, the 0–1 million number experiment was used to test ASR performance with a non-trivial
language model and with noisy audio that potentially included features of spontaneous speech (omissions, uncertain speech, false
starts, etc.). In these experiments, when our ASR used LSTM syllabic acoustic models through an exhaustive decoding algorithm it
had comparable performance with the state-of-the-art Google speech-to-text service [19] although it was trained with just one hour
of speech samples. Overall, our experiment is a preliminary approach to open the way for questioning base ASR components and
thus to provide a cost- and resource-effective solution to build ASRs.

Our results support the hypothesis that involving psycho-acoustic and supra-segmental information in an ASR, through the
modelling of long and short term dynamics, likely increases its performance. This is an important topic impacting many different
situations where general-purpose ASRs may not be applicable. First of all, ASRs based on DNNs are challenging for low-resource
languages, which may be cut-off from a number of speech interfaces. Domain-specific recognition is also a challenge as it often
poses strict constraints to ASRs. For example, pathological speech depends on the effect that a disease may have on human voice
and requires strong ASR customisation. Further, domain-specific applications may use words or expressions that are not modelled
by general-purpose systems, and sensitive data may not be sent to third parties for transcription. From the point of view of the
open source community and of small enterprises, it is important to have the option not to depend on large companies to include
speech-to-text capabilities in their applications. In general, a psycho-acoustically motivated solution provides significant adaptation
capabilities and flexibility.

Overall, the main research question addressed by this paper is: Can cognitive and psycho-acoustic theories on the syllable’s role in
human speech recognition inspire effective syllabic models and ASR architectures?

This paper is organised as follows: Section 2 describes the assumptions, the material, and the models used in our ASR and
alternative baseline ASRs. Section 3 reports the performance comparison between all ASRs on the recognition of syllables, digits,
3
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Fig. 2. Diagram of our ASR with acoustic models used alternatively (only one in an ASR instance): (a) syllabic HMMs using GMM emission probabilities, (b)
syllabic Factorial HMMs, (c) Convolutional Neural Network using multi-temporal windows, with one output neuron for each syllable, and (d) Long Short Term
Memory model, with one output for each syllable.
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2. Material and methods

2.1. The base unit of speech

The base unit of speech is the minimal form of acoustic information around which human spoken language recognition is
rganised [60]. Indeed, the assumption that just one base unit exists is an exemplification of automatic modelling, since linguistic
tudies have instead indicated that language is organised around a combination of units with different temporal ranges [14].
enerally, human speech recognition uses several units with different time-scales, each containing coherent information at a given

inguistic or paralinguistic level, and likely processes these units concurrently [1]. In automatic speech recognition, the base unit
f speech is usually modelled as one unit (i) having a high number of manifestations, (ii) spectrally defined, and (iii) allowing the
mplementation of computationally efficient algorithms. The following subsections describe two base units commonly used in ASRs:
honemes1 and syllables.

.1.1. Phoneme
Spoken language continuum is still commonly represented by a string of phonetic symbols (e.g. the International Phonetic

lphabet). This representation ‘‘hides’’ co-articulatory transitions and partial supra-segmental labelling (mainly word stress) [61],
ut allows representing an entire language using a large combination of few tens of symbols. The pronunciation of the string of
ymbols varies from person to person and from word to word. Generally, a phonetic symbol in the IPA alphabet is associated to a set
f reference spectral frequencies (fundamental and formant frequencies) in its stationary section, and all transitional and dynamic
pectral variations are assumed to be at the head and the tail of this section. These complex dynamics depend on the variable
hape of the vocal tract and the possible activity of the vocal cords during the production of the sound. The identification of a
honeme from a portion of the signal spectrum requires catching the exact period in which the vocal tract has a defined structure
hat produces a stationary signal, and capturing expected transitions towards the following speech sound. ASRs apply an iterative
indow of ∼10 ms, running on the speech signal to capture both transitions and dynamics. Consequently, the identification of a

peech segment as a given unit requires using statistical models that take into account its spectral context and the large variability of
he phoneme across phonotactic contexts and speakers. Most ASRs use tri-phones as base units. However, this assumption neglects
large amount of information with higher time range contained in the spoken realisation of syllables and words [62,63].

.1.2. Syllable
One empirical definition of phonetic syllable (or pseudo-syllable, [64]), is reported in [65]:

‘‘[. . . ] a continuous voiced segment of speech organised around one local loudness peak, and possibly preceded and/or
followed by voiceless segments’’.

his definition is application-oriented and is useful in automatic segmentation processes. However, while keeping the term phonetic
yllable, we adopt a more precise definition by Roach [66, p. 70] that better accounts for co-articulation dynamics:

‘‘[. . . ] consisting of a centre which has little or no obstruction to airflow and which sounds comparatively loud; before and
after that centre [. . . ] there will be greater obstruction to airflow and/or less loud sound’’.

hus, a syllable can also be seen as a 100–250 ms segment of signal constructed around a high energy peak (nucleus), possibly
receded by an increasing energy slope (onset) and followed by a tail of decreasing energy (coda).

Syllables are probably the units around which human speech production developed [67]. Several studies have highlighted the
mportance of syllables in human speech perception, because syllables can be perceived in a spoken word also when they are
ot actually uttered (mirage effect) [68–70]. However, in ‘‘Categories’’ Aristotle already observed the vague nature of syllables,
.e. although each syllable is heard as separated from the other, generally they do not have defined boundaries. Indeed, disfluencies
nd reduction processes, observed also in clear but connected speech, can cause segment cancellation and indeterminacy of clear
yllabic boundaries [71]. However, the rhythmical structure is always preserved, which means that more prominent units are usually
ess reduced and thus guarantee the preservation of speech-chain intelligibility [72]. From a psycho-acoustic point of view, a syllable
ontains much more information than the sequence of sounds constituting it [73,74]. Different brain activation patterns have been
bserved in human subjects hearing sequences of syllables or single syllables alternatively [75,76]. These experiments have also
ighlighted specific activation patterns in different brain areas, corresponding to multiple temporal scales of phonetic, syllabic, and
upra-syllabic lengths.

One drawback of using syllable as a base unit in ASR, is that it is difficult to numerically describe all syllabic-scale (∼
00−−250 ms) speech properties that psycho-acoustic studies have indicated as related with human speech recognition robustness to
peaker differences and adverse environmental conditions [14,77]. Also, syllable boundaries lack a consistent psycho-acoustic and
inguistic definition that makes acoustic model specification non-uniquely defined [18,78]. Indeed, most syllabic-scale features are
elated with prosody, energy contour, and slow modulations (around 4 Hz). Several studies have demonstrated that incorporating

1 For brevity, in our model descriptions we will improperly use the term ‘‘phoneme’’ to both indicate classes of speech sounds (phonemes) and their realisations
5
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Table 1
Overall set of 42 pseudo-syllables involved in our experiment, plus two silence annotations: ‘‘sil’’ indicates a long silence (⩾ 200 ms), whereas ‘‘sp’’ indicates a
shorter pause.

di dje do due dze kwa kwan kwe kwin la lle
mi nno no o ran ro se sei sil sp ssan
sse ta ti to tre tren tSa tSen tSi tSin tSo
ttan tte tto ttor ttro tu u un van ve ven

this information in syllabic acoustic models can increase the performance of an ASR [79–82]. However, these studies have also
highlighted that it is not convenient to re-use standard ASR algorithms and assumptions when using syllabic base units [73,83,84].
Generally, most syllabic ASRs either represent syllables as sequences of phonetic acoustic models or build one acoustic model per
syllable (or demi-syllable) while using phonetic features extracted from ∼10 ms signal windows.

From a speech-processing operational point of view, pseudo-syllables bring more advantages than tri-phones. The automatic
egmentation of a speech signal into pseudo-syllabic segments is facilitated by the correlation of these units with the modulations
f sonority movements. In every group of sounds, there are as many syllables as clear relative peaks of sonority [85]. Furthermore,
peech-intensity change is correlated with tonal speech perception [86] and is typically maximum between pseudo-syllables’ onsets
nd nuclei. These properties allow detecting tonal units automatically [87–89]. Moreover, the acoustic correlates of pseudo-syllables
an be used to model pitch movements and produce effective pitch contour stylisation, especially over signal segments with complex
pectral content [90]. These characteristics allow to build automatic pseudo-syllable classification and segmentation algorithms
ased on sound-intensity and spectral entropy analysis, overcoming common issues related with sonorant consonants with high
ntensity (e.g. nasals sounds) [91]. Moreover, automatic emotion detection and tracking models can be more efficient using pseudo-
yllabic-scale analyses, instead of phonetic-scale analyses, by harnessing nuclei’s spectral richness and extracting information on
peech rate and style [92].

Overall, pseudo-syllables are (i) widely used in psycho-acoustic studies as the base unit of analysis, (ii) correlated with observable
eural activity, (iii) phonetically describable through specific intensity and spectral patterns, (iv) automatically detectable by
omputationally efficient algorithms, and (v) based on clear phonetic templates. Thus, using pseudo-syllables in ASR allows including
uman-related patterns and automatically identifying the signal segments that should be extracted and annotated to train the
coustic models and define word pronunciation models. The Italian part of the corpus used in this paper (Section 2.2) was also
nnotated at the pseudo-syllable level to foster experiments that could explore these operational advantages. For all these reasons,
n this paper acoustic models are based on pseudo-syllables, although the term syllabic model is used for simplicity.

.2. Lexicon, language model and acoustic features

The experiment reported in this paper uses a controlled lexicon to test the performance and the properties of different acoustic
odels and decoding algorithms. This lexicon was selected to require short preparation, analysis, and development times, and

lso to produce a non-trivial language model that included sufficiently varied speech and some characteristics of spontaneous
nd large-vocabulary contexts. Based on these requirements and following the suggestions of other works [73,83], the range of
umbers between 0 and 999,999 – hereinafter indicated as [0,1M) – was selected as a benchmark vocabulary. The Speecon Italian
orpus [93,94] includes sentences in this numeric range, recorded at 16 kHz from 400 different speakers with telephonic quality
with 25 dB ± 3 dB signal-to-noise ratio). Moreover, Speecon includes annotations for numbers and digits (i.e. from 0 to 9) at the
honetic, syllabic, and sentence levels. A total of 42 syllables (Table 1) and 19 phonemes – plus two silence models – and ∼220
yllabic combinations were sufficient to build up a language model for the lexicon of numbers in [0,1M). Although the number of
honemes involved is not far from that of the whole Italian language (∼32), 42 syllables are just a subset of the thousands of syllables
f Italian. However, even with these syllables, spoken long numbers present characteristics of spontaneous speech, e.g. omissions,
alse starts, dialect inflexions, and uncertain speech.

In our experiment, the Speecon recordings were divided into 80%–20% training and test sets within a cross-validation process
nd did not include the same speakers. The Speecon syllabic-level annotations allowed to extract ∼65 min of speech to train acoustic
odels and ∼13 min to test their performance. Word-level annotations allowed to prepare recordings to test ASRs’ performance on
umbers (∼140 min) and digits (∼55 min). The language model for [0,1M) was built using the CMUCLMTK toolkit v7 [95] as a
tatistical model trained with syllabic mono-grams, bi-grams, and tri-grams, and had a non-trivial perplexity of 9.8. As a training
et for the language model, the linguistic syllabic subdivisions of all numbers in [0,1M) were used, plus their syllabic transcriptions
n Speecon. These transcriptions report the syllables actually uttered in long numbers and thus simulate spoken sentence alterations
ue to continuous speech, which in turn allows building a more realistic syllabic language model. Finally, back-off probabilities
ere used to account for non-observed syllabic concatenations.

As acoustic features, 13 Mel-frequency cepstral coefficients (MFCCs, [96]) were used, with delta and double-delta features,
or a total number of 39 features extracted from ∼10 ms windows sliding over the signal with 50% overlap (5 ms). MFCCs
re standard features used in ASR [8]. They are extracted out of the application of a filter bank based on the mel scale, which
imulates the response of the human auditory system to speech frequencies. Although other types of mel scale-based features could
e used [97–99], MFCCs were the set of features that all ASRs involved in our experiments could use. Thus, MFCCs allowed to
6
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Furthermore, MFCCs typically allow to use a lower number of spectral features (typically 13 per window) than alternative methods
(e.g. Mel-filter bank energies, which typically require 40 features per window) [100], which was beneficial to avoid overfitting
issues with our limited training set.

Although our proposed acoustic models were syllabic (i.e. our ASR used syllables as base units), they were committed to
xtracting syllabic information from sequences of phonetic-scale features. Indeed, alternative features using syllabic-scale windows
irectly (100–250 ms) do not have the same consistency and robustness as MFCCs for speech recognition [77,81,101].

.3. Speech decoding

The decoding process used by our reference ASRs (e.g. Token Passing, [22]) relies on the alignment between sequences of HMM
tates and the audio signal and makes use of the initial and final states to estimate phonetic and syllabic boundaries. However,
ome of the syllabic acoustic models proposed in this paper are not made up of sequences of states, thus decoders conceived to
ork with HMMs could not be used. For this reason, a new decoding algorithm was used that was independent of the nature of the

ncorporated syllabic acoustic model used. The algorithm described in [102] (hereinafter named exhaustive Viterbi) fitted our scopes
because it uses syllabic acoustic models as black-boxes. This algorithm optimises the alignment of each acoustic model to the signal
because it calculates the likelihoods of the models to all possible sub-sequences of the acoustic features extracted from the audio
signal, i.e. it tests all possible alignments of the models to the signal. This approach increases the performance also of standard
syllabic HMMs with respect to other decoding algorithms and has also been used in a commercial ASR [103]. In particular, the
algorithm calculates the conditional probability distribution 𝑃 (𝑊 |𝑋) of a sequence of 𝑛 syllables 𝑊 = 𝑤1𝑤2..𝑤𝑛 given a sequence
f 𝑇 features 𝑋 = 𝑥1𝑥2..𝑥𝑛 extracted from the audio signal, where 𝑇 is the length of the audio signal. During the calculation, the
lgorithm combines a syllable-based language model with syllabic acoustic models to find the optimal sequence of syllables 𝑊 ∗

ssociated to 𝑋. The output of the algorithm is thus the sequence of syllables that is most probably associated with the audio signal.
hrough the pronunciation models it is possible to associate lexicon words to the optimal sequence of syllables and produce the
rthographic transcription of the audio.

Formally, the algorithm produces the following optimal solution (the demonstration is reported in [102]):

𝑃 (𝑊 ∗
|𝑋) = argmax

𝑚∈𝑆𝑦𝑙
{𝑓 (𝑚, 𝑇 ) ⋅ 𝐸(𝑚)}

here 𝑆𝑦𝑙 is the complete set of 𝑁 syllables included in the language model, 𝐸(𝑚) is the probability of model 𝑚 to be an ending
yllable, and 𝑓 (𝑚, 𝑡) is the solution to the sub-problem of unit alignment in the time interval [1,t], defined as

𝑓 (𝑚, 𝑡) = 𝑚𝑎𝑥

⎧

⎪

⎨

⎪

⎩

𝑃 (𝑋𝑡
1|𝑚) ⋅ 𝜋(𝑚)

𝑚𝑎𝑥
1⩽𝑡∗<𝑡,𝑛∈𝑆𝑦𝑙

{

𝑓 (𝑛, 𝑡∗) ⋅ 𝑃 (𝑚|𝑛)𝛾 ⋅ 𝑃 (𝑋𝑡
𝑡∗+1|𝑚)

}

⎫

⎪

⎬

⎪

⎭

here 𝛾 is the language model’s weight. Starting from time 𝑇 , a backtracking process follows the definition of 𝑃 (𝑊 ∗
|𝑋) to

ind the best alignment between the models and the signal. In particular, according to the definition of 𝑓 (𝑚, 𝑡), the algorithm
fficiently tests all possible alignments of all models to all segments of the audio signal, and thus optimises the models’ recognition
ccuracy. However, one drawback is that it requires a pre-calculation of all models’ likelihoods to all subsets of observations,
.e. 𝑃 (𝑋𝑡𝑗

𝑡𝑖
|𝑚) ∀𝑚 ∈ 𝑆𝑦𝑙, 0 ⩽ 𝑡𝑖 ⩽ 𝑇 , 0 ⩽ 𝑡𝑗 ⩽ 𝑇 . In particular, the algorithm first computes the 𝑉 matrix:

𝑉 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑃 (𝑋1
1 |𝑚) 𝑃 (𝑋2

1 |𝑚) ... 𝑃 (𝑋𝑇−1
1 |𝑚) 𝑃 (𝑋𝑇

1 |𝑚)

0 𝑃 (𝑋2
2 |𝑚) ... 𝑃 (𝑋𝑇−1

2 |𝑚) 𝑃 (𝑋𝑇
2 |𝑚)

... ... ... ... ...
0 0 ... 0 𝑃 (𝑋𝑇

𝑇 |𝑚)

⎞

⎟

⎟

⎟

⎟

⎠

nd then the backtracking procedure rapidly reconstructs the optimal solution. The overall algorithm’s complexity is 𝑂(𝑇 2𝑁2𝐶𝑙),
.e. it is quadratic in 𝑇 and 𝑁 , and also depends on the complexity of all likelihood calculations 𝐶𝑙 by the acoustic models. The
omplexity of the algorithm can be reduced by introducing constraints on the minimum and maximum 𝑡𝑗−𝑡𝑖 difference, and through
beam search strategy in the 𝑓 (𝑚, 𝑡) calculations that filters out all likelihoods falling under a certain threshold. This strategy

trongly reduces the number of non-zero elements in the 𝑉 matrix and thus reduces computational time. In our experiment, forcing
00 ms ≤ 𝑡𝑗 − 𝑡𝑖 ≤ 250 ms and relative likelihood ⩾ 0.5 made our ASR return results in short time without losing performance.
urther, since each element of the 𝑉 matrix is independent of the other, the matrix calculation can be parallelised to (linearly)
educe decoding time (Section 4). The main difference between the exhaustive Viterbi algorithm and Token Passing is that the
ormer treats acoustic models as black boxes. Indeed, exhaustive Viterbi is independent of the acoustic model implementation
sed and only requires likelihood calculations from these models. Instead, Token Passing is strongly based on the assumption that
coustic models are made up of sequences of states and that the transition from one model to another can occur only from a final
tate to an initial state. This assumption strongly reduces the computational complexity of the decoding strategy. In particular,
oken Passing defines the minimum alignment cost, between the vectors 𝑋𝑡

1 and a sequence of model states ending in state 𝑗, as
𝑗 (𝑡) = 𝑚𝑖𝑛𝑖∈𝑎𝑙𝑙 𝑠𝑡𝑎𝑡𝑒𝑠{𝑠𝑖(𝑡 − 1) + 𝑝𝑖𝑗} + 𝑑𝑖𝑗 . With 𝑝𝑖𝑗 being a transition cost that is given either by the model state-transition matrix or
7

y the language model (when 𝑗 is an initial state and {𝑖} are the final states of other models). The optimal sequence of states is
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the one having the minimum cost 𝑆 = 𝑚𝑖𝑛𝑗{𝑠𝑗 (𝑇 )}. Using a bi-gram language model, the computational complexity of the unit-to-
signal alignment is between 𝑂(𝑇𝑁𝑙𝑜𝑔(𝑁)𝐶𝑙) and 𝑂(𝑇𝑁2𝐶𝑙), where 𝑁 is the number of connected units (e.g. syllables) and 𝐶𝑙 is the
complexity of the likelihood calculation of the state-based model used. Instead, the models managed by exhaustive Viterbi can be
non-state-based, which is the main reason for its higher computational complexity but also for its higher flexibility.

2.4. Hidden Markov models

Hidden Markov Models (HMMs) are the most used choice for acoustic modelling (Fig. 1-a). Given a sequence of acoustic features
𝑋, they estimate the conditional probability distribution 𝑃 (𝑋|𝑆) of 𝑋 given a sequence of states 𝑆 = 𝑠1, 𝑠2,… , 𝑠𝑇 . Based on this
definition, the Viterbi algorithm [104] efficiently estimates the likelihood of an HMM to 𝑋 as the conditional probability 𝑃 (𝑋|𝑆∗)
of the sequence of states 𝑆∗ that maximises 𝑃 (𝑋|𝑆) (i.e. the one most likely associated to 𝑋). An HMM that models a phoneme
is trained (e.g. through the Baum–Welch algorithm) on many examples of acoustic features for that phoneme, in order to model
the inter-speaker and inter-word variability of that phoneme. Likewise, a syllabic HMM is trained on the acoustic features of a
syllable (Fig. 2-a), i.e. concatenations of phonetic-scale features. Often, ASRs use concatenations of phonetic HMMs to build up
di-phone or tri-phone models that are re-trained to better assess inter-model transitions [12]. Modern ASRs need thousands of hours
of annotated material to train phonetic acoustic models for large-vocabulary applications. For the experiment reported in this paper,
HMM implementations from JAHMM [105], KALDI [31], and CMUSphinx [106] were used to implement syllabic and tri-phonetic
HMMs.

For decades, ASRs have used HMMs with Gaussian mixtures (GMMs) to model emission densities [18]. However, current state-
of-the-art ASRs use DNNs to model emission densities (Fig. 1-b) as 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑜𝑖(𝑋𝑡)), where 𝑜𝑖(𝑋𝑡) is the value of the activation
function in the output layer of the node corresponding to state 𝑖 [107]. This type of ASR is currently used in many domains and
reaches state-of-the-art performance [52,108–114]. The used DNNs are typically multi-layer perceptrons with many layers (∼7),
with the training phase initialised by a pre-training algorithm. KALDI provides two main implementations of HMM-DNNs, one using
Restricted Boltzmann Machines for pre-training and Stochastic Gradient Descent for training (HMM-DNN-nnet1), and the other one
using Natural Gradient for Stochastic Gradient Descent and Parameter Averaging (HMM-DNN-nnet2).

2.5. Factorial hidden Markov models

An FHMM is made up of a set of HMMs, all with the same number of states, and inter-dependent emission probabilities usually
modelled as multi-variate Gaussians (Fig. 2-b) [24]. FHMMs are particularly suited for speech processing, in particular to model
concurrent and overlapping dynamics that are generated by multiple and loosely-coupled processes, as those present in a speech
signal [23,115,116]. Multi-temporal ASRs have used this property to model the syllabic and phonetic structures contained in
∼200 ms speech segments. In particular, the transition probability distributions of syllabic FHMM acoustic models with 2 parallel
HMMs have highlighted the presence of two inter-linked syllabic-scale and phonetic-scale dynamics [80]. These are likely responsible
for the higher performance of FHMMs with respect to HMMs in syllable modelling. FHMMs have been used in ASRs with the aim
to include results from psycho-acoustic studies on overlapping speech dynamics [24,117,118]. For the experiment reported in this
paper, FHMMs were implemented in Java by porting and optimising the original Matlab implementation by Ghahramani [119].

2.6. Deep learning models

Deep Learning (DL) models leverage a multi-layered structure to extract information from raw input data. DNNs are conventional
DL models where each layer of the network is assumed to produce an internal representation of the input (feature map), with
deeper layers producing higher levels of information abstraction. The increasing computational power of graphic processing units
(GPUs) has allowed introducing DL models in a vast number of domains, e.g. from computer vision [120–122] to natural language
processing [123,124]. In our experimental campaign, two different DL models were implemented – with PyTorch [125] – as acoustic
syllabic models (without embedding them in an HMM): a Convolutional Neural Network (CNN, [126]) and a Long Short-Term
Memory model (LSTM, [127]).

2.6.1. Convolutional neural network
DNNs (which include CNNs) process signal segments in a ‘‘static’’ way, i.e. like they were images [128,129]. Normally, they do

not model time as an internal parameter and this limitation negatively affects their performance in automatic speech recognition
with respect to other time-explicit models. In order to account for this issue, a CNN was built to model pseudo-syllables using a multi-
temporal analysis within a convolutional stage (Fig. 2-c). This model uses the following operations: Each unit of the convolutional
layer is computed by means of multiplications between the input data and a matrix (kernel), whose optimal values and size were
assessed during the training phase. The kernel size corresponds to the size of the input that is convolved with the kernel (receptive
field) so that each convolution only looks at a small portion of the input. Through the use of small receptive fields, convolutional
layers are generally able to extract and combine local information from the input data, i.e. information contained in segments (of
speech signal, in our case) with a predefined length. Our CNN used four 1D convolutional layers – each with a different kernel
size – that corresponded to different filters and windows on the syllabic signal. The size of each window represents the time scale
processed by each convolutional operation. During the convolution, a window stride of one sample maximises the capture of local
8

relations through the signal. In summary, our CNN analyses a syllabic speech signal at multiple time scales through a multi-window
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processing. After the convolutional step, vector pooling and stacking operations are followed by a flattening operation that projected
all the resulting feature vectors (feature maps) on a new 1D vector, whose optimal length was estimated during the training phase.
This vector is input to a fully-connected (FC) neural network layer, whose optimal size was estimated during the training phase.
A rectified linear unit (ReLU) activation function (𝑚𝑎𝑥(0, 𝑥)) is applied to each node of this layer to reduce the vanishing gradient
problem [38,130] and favour generalisation capability [131,132]. In order to reduce the risk of data overfitting due to the small
amount of training data available, the dropout technique [133] was used on the FC layer. Dropout statistically excludes some nodes
of the FC layer from one training session and re-introduces these nodes with their original weights after the non-dropped nodes
connections have been trained. At each training step, a new set of nodes is selected to be dropped. Finally, during the inference
phase, each node’s output is multiplied by a dropout probability to account for their possibly missed training steps. Overall, this
procedure simulates an ensemble of a high number of different models whose output is eventually averaged at inference time. The
last stage of our CNN is a classification layer, i.e. another FC layer with 44 neurons, one for each unit to recognise. This layer allows
classifying the acoustic features of a syllabic signal as one among the syllabic units reported in Table 1. Indeed, a softmax function
applied to the layer’s outputs makes the CNN overall simulate a posterior probability density 𝑃 (𝑊 |𝑋) of each syllable 𝑊 given the
nput vector 𝑋 [134]. In turn, this reduces the complexity of the decoding algorithm, because the probabilities of all syllables for
signal segment are calculated just after one propagation of the input through the network. The described architecture came after

esting a large number of alternative architectures, including chained windows and deeper networks. It was the architecture using
he lowest number of parameters and gaining the highest performance on the tasks reported in this paper.

.7. Long short-term memory model

LSTMs are naturally suited to process observation sequences and time series [127], because they consist of one computational
nit that is iteratively used to process the observations of an input time series (processing steps). The unit uses gating mechanisms

that process a temporal flow of data while controlling the retain and the release of memorised information. Since an LSTM is suited
to simulate a posterior probability density 𝑃 (𝑊 |𝑋) of all acoustic units 𝑊 given the input features series 𝑋, it cannot directly
replace an HMM (which calculates likelihood). Furthermore, the processing steps cannot be treated as the sequence of states of an
acoustic HMM and thus cannot be used in classic speech decoding processes.

In this paper, an LSTM model was implemented to classify pseudo-syllabic acoustic units directly and was later combined with
a speech decoding algorithm, which was able to harness its multi-temporal processing of the speech signal. Our LSTM model’s unit
processes one vector of the input time series (i.e. one window of acoustic features) at a time. It uses a standard unit characterised by
one forget gate, one input gate, and one output gate (Fig. 2-d), all implemented as single-layered neural networks. Within the unit,
the cell state 𝑐𝑡 is a Real-valued vector that roughly stores the ‘‘long-term’’ memory of the model, whereas the hidden state ℎ𝑡 is
the output vector of the LSTM unit that manages ‘‘short-term’’ memory. At each processing step, the LSTM unit receives the current
input vector of acoustic features, and the cell and hidden states of the previous unit. The unit outputs a new cell state and a new
hidden state. All gates receive the current unit input vector and the previous hidden state as input. As a first operation, the cell state
of the previous processing step is multiplied by the output of the forget gate, i.e. a neural network with sigmoid activation function
with range [0,1], where 0 represents a complete blockading (forget) of an input element and 1 a complete pass (remember). Another
process point-wise multiplies the output of a sigmoid-activated neural network (input gate) by the output (proposed cell state) of a
tanh-activated neural network. The output of this process is summed to the output of the forget gate in order to establish which
part of the information retained by the forget gate should be updated. This result is the unit’s cell state that is passed to the next
LSTM processing step. The hidden state is calculated by first passing the cell state to a tanh function (to re-scale its values in [−1,1])
and then multiplying this result with the output of another sigmoid-activated neural network (output gate). Overall, this final step
roughly decides what portion of the cell state is produced as the output of the LSTM unit. As a final step, our LSTM-based syllabic
acoustic model uses the last processing step’s output as an input to a classification layer, whose input size is equal to the hidden
state size. Similarly to the CNN model, a softmax function is applied to the output of this classification layer in order to simulate the
posterior probability density 𝑃 (𝑊 |𝑋) of each syllable 𝑊 given the input vector 𝑋, and to reduce the decoding algorithm complexity.

2.8. Baseline speech recognisers

Several instances of our ASR were produced to assess its performance depending on the acoustic model used. Each instance used
one among the four supported models. It is worth noting that some of these models are more suited for recognising entire syllables,
but their performance could be positively or negatively affected by the combination with the decoding algorithm (Section 3.3).
In particular, syllabic HMMs were enabled in our ASR architecture to measure the performance enhancement that our decoding
algorithm would bring to a classic model. Similarly, FHHMs were used to evaluate the performance in word and sentence recognition
of a naturally suited model for single pseudo-syllable recognition [102]. Finally, the CNN and LSTM acoustic models were used to
evaluate the performance gained by our psycho-acoustic inspired models in word and sentence recognition.

CMUSphinx [106] and KALDI [31] were used as reference ASRs. These systems use tri-phonetic HMM-GMMs and HMM-DNNs
respectively within a reference ASR architecture, and were trained with an open source reference corpus suited for our recognition
tasks. The Italian VoxForge corpus [135] was used to train phonetic and tri-phonetic HMMs with 19 h of speech that involved
regional inflexions. Although the dimension of VoxForge is generally not sufficient to build a high-performance large-vocabulary
ASR, it was sufficient to build high-performance baseline ASRs for spoken digits and numbers. In particular, CMUSphinx and KALDI
9

were trained through the following operations: (i) Pronunciation models for words uttered in the VoxForge recordings were taken
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from the large database of Cosi [33]; (ii) phonetic acoustic models (and tri-phones) from the pronunciation models were aligned to
the recordings through automatic alignment processes; (iii) the language models described in Section 2.2 were integrated to produce
two recognisers, one for digit recognition and another one for number recognition. Furthermore, in the single-syllable recognition
task (Section 3.2) the phonetic transcriptions from [33] were used to model the pronunciations of the 42 syllables of Table 1.

As a second baseline ASR, the Google Speech-to-Text cloud service was used [19]. This HMM-DNN based ASR, trained with
housands of hours of speech, has top-level performance and high response efficiency, and is used by almost all Google technology.
oogle constantly improves its performance after periodically collecting users’ data and revising acoustic, pronunciation, and

anguage models. This ASR uses phonetic transcriptions of 10 times the words of an entire language dictionary, for each of the
20 languages supported, and also includes a context-specific adaptation process that is able to resize the grammar and to optimise
he transcription according the language context [19,136,137]. For example, on number recognition tasks the Google service is able
o report the numerical form of the uttered number (e.g. ‘‘one hundred three’’ is reported as 103), while insertions, false starts, and
ther non-numerical words are deleted if not uttered clearly [19]. Google Speech-to-Text (Dec. 2019 version) was used as a reference
tate-of-the-art ASR. Indeed, comparing the performance of our method with that of the Google ASR may not be an optimal choice,
ecause of the different training corpora used (voices, data size, data preparation, etc.) and the lack of details about the Google
SR’s architecture. Nevertheless, the Google’s context-specific adaptation feature and the relatively small testing context (numbers)
easonably allow to use the comparison as a proxy for a quality assessment of our ASR.

. Results

This section reports a performance comparison between the models described in the previous section. Accuracy is used as a
omparison metric, defined as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑠𝑒𝑑 𝑢𝑛𝑖𝑡𝑠 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑣𝑒𝑟 − 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 𝑢𝑛𝑖𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑎𝑛𝑢𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛
.

In order to make comparisons consistent, the interpretation of ‘‘unit’’ in the accuracy formula changed according to the test
ase. In fact, the compared ASRs had heterogeneous architectures and used different speech units and output types. For example,
he Google ASR reported the entire recognised sentence with numerical symbols (e.g. ‘‘1’’ for a digit and ‘‘1350’’ for a number).
urthermore, the other ASRs used either tri-phones or pseudo-syllables. In this context, a comparison could be consistent only at
final orthographic transcription level. Thus, in the single-syllable recognition task, accuracy was calculated on the number of

orrectly transcribed orthographic syllables. On digit and number recognition tasks, accuracy was calculated on the orthographic
ranscription of the entire sentence.

.1. Acoustic model topologies

The machine-learning models reported in Section 2, were trained to recognise the 44 units reported in Table 1. Multiple
arametrisations and implementations of the models were tested. Eventually, the topologies and implementations gaining the highest
erformance were selected for the comparison. This operation required testing thousands of parameter combinations.

Optimal HMMs for GMM-based tri-phone models were produced with KALDI and used 5 states and 32 mixtures, whereas HMM-
NN phonetic models used 7 hidden layers in the DNN. Out of these HMMs, syllables were represented as concatenations of phonetic
MMs. Optimal syllabic HMMs were produced with JAHMM and had 7 states and 39 Gaussian mixtures. Optimal FHMMs used 2
MMs with 7 states each and one multivariate Gaussian emission density.

Regarding the deep learning models, cross-validation was used to find optimal parameters and topologies of the CNN and the
STM acoustic models. Specifically, the optimal CNN topology used windows of 48, 80, 96 and 112 ms to create 64-length feature
aps after convolution, and was made up of two FC layers (one hidden layer and one output layer). The feature map was optimally

lattened to 1280 elements, the dropout probability was 20%, and the optimal size of the first FC layer was 300. The final FC
lassification layer had 44 neurons, one for each syllable to recognise. Moreover, the importance of introducing non-linearity in the
utput of this FC layer through ReLU was tested: All models were also trained without ReLU, and a performance degradation up to
% was observed, which confirms the positive contribution of this transformation and the need to include it in the acoustic model.

The optimal LSTM was a mono-directional model with one hidden state with 1000 neurons and a final classification layer with
4 neurons, one for each syllable to recognise. The training phases of both models used the Adam optimiser [138] with cross entropy
oss criterion and a learning rate of 1.𝑒−3, reduced of 5 times whenever loss reached a plateau.

As for ASR configuration, the language model of CMUSphinx was trained with mono-grams, bi-grams, and tri-grams. This ASR
used HMM phonetic models with 32 Gaussian mixtures, trained with 19 h of annotated recordings from the VoxForge corpus. Our
ASR used the exhaustive Viterbi algorithm described in Section 2.3 alternatively combined with HMM, FMM, CNN, and LSTM syllabic
acoustic models. The ASR used a language model based on the bi-grams prepared for CMUSphinx. Finally, the Google Speech-to-Text
service was used through a Java client that streamed audio files and collected transcriptions.
10
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Fig. 3. Variation of the accuracy of our LSTM model on the recognition of syllables of numbers between 0 and 999,999, with respect to the LSTM hidden-state
length.

3.2. Syllable recognition

Acoustic models’ performance was first compared on the recognition of the syllables and silence units of Table 1, without the
interference of the language model and the decoding process. This performance comparison (Table 2-a) showed that our LSTM
outperforms phonetic HMMs by 8.91% absolute accuracy and the second optimal model (HMM-DNN-nnet2) by 2.63%. A Chi-
squared test confirmed that this discrepancy was highly significant with our test set size (with 𝑝-value of non-significant discrepancy
null hypothesis lower than 0.0001) [139]. The accuracy of our LSTM increased non-linearly with the vector length of the LSTM
hidden state (Fig. 3), which indicated that a ∼1000 length was really required to model the complexity and variability of the
syllables. Interestingly, our multi-temporal CNN had comparable performance with HMM-DNN models, and the HMM-DNN model
using Natural Gradient had a slightly higher performance than the other HMM-DNN implementation. FHMMs and syllabic HMMs
outperformed phonetic HMMs, in agreement with other studies [24,102,115], but had lower performance than the deep learning
models. Since HMM-DNN-nnet2 was the second optimal model, it was selected to be used in the KALDI ASR for the comparison on
digit and number recognition tasks.

3.3. Digit recognition

Although digits are made up of a maximum of two non-silence syllables, spoken digit recognition involves the issue of aligning
sequences of silence models, short pauses, and (one or two) syllables to the signal. Thus, a performance comparison on digit
recognition highlighted how much the slight misalignment of syllabic models to the uttered syllables influenced word recognition.
In this case, accuracy was calculated on the recognition of entire words directly, especially for a fair comparison with the Google
Speech-to-Text service. The context-specific adaptation of the Google ASR made the reported comparison meaningful because it
restricted the grammar to the particular task and deletes non-numeric insertions that were not loudly uttered.

Also, due to the moderately-high signal-to-noise ratio, no model reached 100% performance on this ‘‘simple’’ task (Table 2-b).
The exhaustive Viterbi algorithm optimised the alignment of the various acoustic models to the speech signal and made syllabic
HMMs and FHMMs outperform a standard-approach ASR. Performance was generally high for all ASRs, but the accuracy discrepancy
between the CNN and the LSTM models (4%) was higher than in the syllable recognition case (2.76%). Indeed, the CNN model
was sensitive to syllable alterations (e.g. stretching and reduction) since it processed signal segments as they were static images.
Generally, the difference between the CNN and the LSTM models in accounting for syllabic alterations is more and more evident as
long as speech tends to be continuous and spontaneous. For example, alterations of ‘‘kwa ttro’’ as ‘‘kwa tro’’ and of ‘‘o tto’’ as ‘‘o to’’
are more probable within long numbers but also exist with digits. Overall, the high performance of the LSTM-based ASR indicated
that our LSTM was a suitable acoustic model for an ASR, and the recogniser also slightly outperformed the Google service (98%
vs 97.5% accuracy). A Chi-squared test confirmed that this discrepancy was significant (with 𝑝-value of non-significant discrepancy
null hypothesis lower than 0.05). Finally, the KALDI ASR using the best tri-phone models (HMM-DNN-nnet2) gained 1.1% higher
relative accuracy than the CNN-based model, but lower relative accuracy than the Google ASR (2.5%) and the LSTM-based ASR
(3%).
11
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Table 2
Performance comparison between alternative speech recognition models on the recognition of (a)
the 44 units involved in our corpus of data, (b) spoken numbers from 0 to 9 (digits), (c) spoken
numbers between 0 and 999,999.
Model name Accuracy (%)

a - Syllable recognition

LSTM 93.01
HMM-DNN-nnet2 90.38
CNN 90.25
HMM-DNN-nnet1 89.91
FHMMs 86.53
Syllabic HMMs 85.79
Phonetic HMMs 84.10

b - Digit recognition

LSTM + Exhaustive Viterbi 98.00
Google Speech-to-Text 97.50
KALDI - HMM-DNN-nnet2 95.06
CNN + Exhaustive Viterbi 94.00
FHMMs + Exhaustive Viterbi 93.30
Syllabic HMMs + Exhaustive Viterbi 92.00
CMUSphinx 87.74

c - Number recognition

LSTM + Exhaustive Viterbi 85.00
Google Speech-to-Text 81.81
KALDI - HMM-DNN-nnet2 81.20
CMUSphinx 79.00
CNN + Exhaustive Viterbi 76.60
FHMMs + Exhaustive Viterbi 72.00
Syllabic HMMs + Exhaustive Viterbi 70.00

3.4. Number recognition

The performance comparison on the recognition of [0,1M) numbers further highlighted the differences between the ASRs
Table 2-c). The main difference with respect to the digit recognition case was the higher performance of CMUSphinx with respect to
he CNN-, FHMM-, and syllabic HMM-ASRs. This enhancement was due to the higher amount of training material used to build the
MUSphinx ASR, and also to the lower flexibility of the other models to work on the more continuous and spontaneous speech of the
ttered numbers, which presents a large variability due to omissions, false starts, and uncertain speech. In this context, the acoustic
yllabic structures can be very different from those of the training set. Models like CNN, FHMMs, and Syllabic HMMs would require
ore training material to handle this structural variability. In particular, our CNN model was re-adapted from image processing

nd does not fully capture the unfolding of information in time and its variability across the training set. Instead, the phonetic
MUSphinx and the KALDI ASRs had comparable performance with Google (3.4% and 0.7% relative accuracy, respectively) due to
training material suited for the task. In particular, KALDI demonstrated the high quality and performance that HMM-DNN-based
SRs can reach.

Interestingly, when our ASR used the LSTM acoustic model, it outperformed all other ASRs. Indeed, our ASR had a 3.7%
igher relative accuracy than the Google ASR and a 7% higher accuracy than CMUSphinx. A Chi-squared test confirmed that these
iscrepancies were significant (with 𝑝-value of non-significant discrepancy null hypothesis lower than 0.001). The generalisation
apability of the LSTM-based ASR and its flexibility to account for syllable alterations was impressive. The LSTM had optimal
erformance in all presented cases, and the acoustic models used only ∼1 h of training material, which was much lower than the

19 h used for CMUSphinx and KALDI and the thousands of Google.

3.5. Issues with large-vocabulary speech recognisers

A one-million-number sentence-set was used instead of a large vocabulary because building a large vocabulary speech recogniser
(LVSR) requires solving other additional research questions that were out of our scope. Generally, it is nearly impossible to build
a state-of-the-art LVSR for a low-resource language like Italian using publicly available corpora for acoustic and language model
training. To better highlight this aspect (and also produce a reference for our future studies), we trained and compared several
LVSRs – based on KALDI and CMUSphinx – using alternative open (or low-cost) textual and audio corpora (Table 3). The aim of
this comparison was principally to highlight some intrinsic practical difficulties in building LVSRs.

We compared recognition performance on a 15-minute corpus extracted from the Italian VoxForge corpus [135] that was not used
during ASR training. The textual corpora used for (4-gram) language model training included: (i) the ‘‘Italian Web corpus’’ (itWaC),
made up of texts collected from the Internet and including 1.5 billion words [140]; (ii) Paisà, a large and expert-revised collection
of Italian texts from the Internet containing ∼250 million tokens [141]; (iii) CLEF, a large collection of Italian national newspaper
articles from the 90’s containing ∼1 million words overall [142]; and (iii) the Italian Content Annotation Bank (I-CAB), which
12
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Table 3
Performance comparison between several large-vocabulary automatic speech recognisers at the variation of the corpora used for
language model (LM) and acoustic model (AM) training: the Google speech-to-text service (Google ASR), KALDI with deep neural
network emission densities used in acoustic models (KALDI - HMM-DNN-nnet2), and the Gaussian-mixture based CMUSphinx.
ASR engine Corpus for LM Corpus for AM Word accuracy (%)

Google ASR Google Google 89.10
KALDI - HMM-DNN-nnet2 Paisà VoxForge 63.64
KALDI - HMM-DNN-nnet2 Paisà VoxForge+APASCI 67.00
CMUSphinx Paisà VoxForge 51.58
CMUSphinx Paisà VoxForge+APASCI 54.41
CMUSphinx Paisà + I-CAB VoxForge 49.70
CMUSphinx Paisà + CLEF + I-CAB VoxForge 49.90
CMUSphinx Paisà + CLEF VoxForge 49.90
CMUSphinx CLEF VoxForge 42.60
CMUSphinx CLEF + I-CAB VoxForge 42.00
CMUSphinx itWaC VoxForge 44.00
CMUSphinx I-CAB VoxForge 34.40
KALDI - HMM-DNN-nnet2 Paisà APASCI 57.95
CMUSphinx Paisà APASCI 39.35

contains 525 local (Trento province) newspaper articles with ∼180,000 words overall [143]. The audio corpora used were VoxForge
(∼20 h) and APASCI (∼2 h), whose audio was based on the same spoken text. The performance across multiple textual corpora was
reported only for CMUSphinx for simplicity to highlight performance decrease across the corpora. The following difficulties emerged,
which depended on the lack of great effort (and money) investment in data collection and cleaning:

1. The performance gap between the Google ASR and the other LVSRs was very high (from −25.46% to −49.75% word accuracy);
2. Using uncontrolled large textual corpora (e.g. itWaC) may end in lower performance because text from social networks

introduces too much noise in the language model and is unsuited for spoken dialogues;
3. Combining different textual corpora (e.g. Paisà+CLEF) may end in lower performance because of too different language

structures (e.g. Internet v.s. newspapers);
4. Data cleaning included in Paisà made this corpus the optimal choice to train the language model, but required greater effort

by the corpus producers;
5. Generally, using many hours of speech (i.e. VoxForge instead of APASCI) and deep learning models for training acoustic

models increases performance, but combining different audio corpora can decrease performance probably because of practical
audio-transcription inconsistencies between the corpora;

6. Smaller vocabularies (e.g. CLEF and I-CAB) – even containing thousands of words – may not be sufficient to gain high
performance.

Thus, selecting and preparing optimal textual and speech corpora for LVSRs is complex and effort-demanding, especially for
low-resource languages. Investigating these issues was outside of this paper’s scope, which instead aims at introducing new acoustic
models and a new decoding algorithm and comparing them with a state-of-the-art ASR on a common vocabulary. However, our
future experiments will investigate the above issues because they call for new ways to achieve state-of-the-art performance with less
training material and new decoding strategies that optimally use the language model.

In summary, a one-million-number benchmark sentence-set was used because it corresponded to a non-trivial language model that
did not depend on the used training textual corpus and was reasonably comparable with the one used by a reference state-of-the-art
ASR. Furthermore, although the lexicon required a short preparation phase, the speech included several features of spontaneous
and large-vocabulary speech (e.g. variability, omissions, uncertain speech, and false starts).

4. Discussion and conclusions

4.1. Summary

In this paper, novel syllabic acoustic models and a new ASR have been described and compared with state-of-the-art alternatives.
On the single-syllable recognition task, the deep-learning models showed very high performance. FHMMs gained higher performance
than syllabic and phonetic HMMs, likely because they recognised both syllabic- and phonetic-scale dynamics associated with different
transition speeds in the two parallel HMMs [102]. Also, our multi-temporal CNN model forced a multi-scale analysis (from phonetic
to syllabic scales) and gained high performance. However, this model was not able to fully capture the information contained in
feature modulations and transitions in the digit and number recognition tasks. Thus, its performance decreased when the acoustic
structures of the modelled syllables were not preserved. The properly trained CMUSphinx and KALDI ASRs reached a very high
performance on the [0,1M) number recognition task, but still lower than the cutting edge technology of the Google ASR.

In the presented experiment, our LSTM acoustic model reported the highest performance both when used alone and when
combined with a decoding algorithm that optimised its prediction capability. In particular, on syllable recognition - i.e. without the
presence of the exhaustive Viterbi decoder – the LSTM model outperformed the other models. The performance remained optimal
13
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also on digit and number recognition, i.e. when the LSTM was combined with the exhaustive decoding algorithm. This was not
the case of the CNN and the other acoustic models, which lost accuracy with respect to the baseline systems as the recognition
task became more and more difficult. Thus, the LSTM model both outperformed the other acoustic models and was optimally used
by the decoding algorithm. This property indicates that the decoding algorithm was able to use this model at best, although the
LSTM performance was already optimal by itself. The LSTM model explicitly accounts for the unfolding of information in time,
similarly to HMMs, but also models both long- and short-term information. This likely corresponds to modelling high-rate and
low-rate dynamics within one syllable, in agreement with psycho-acoustic studies. At the same time, this behaviour also overcomes
the issue of modelling inter-syllabic variability from a small training set, which affected the CNN model’s performance. Our results
indicate that the LSTM probably learned this variability from the training set and thus was able to manage a more continuous-like
speech. Finally, the separation between the speakers in the training and test sets reduced the potential artefact that the model was
trained on the same corpus the test set belonged to.

4.2. Using our approach with larger vocabularies and other languages

Extending our approach to an LVSR principally requires the availability of annotations of the syllables actually spoken in the
tterances (pseudo-syllables) that allow to develop an effective syllabic language model. The use of the Speecon Italian corpus
n the presented experiment was mainly driven by the availability of this information. Given the generality of our approach, the
resented results are likely valid for all languages currently managed by the reference ASRs of Fig. 1, as long as pseudo-syllables
re used for acoustic modelling. Indeed, pseudo-syllables ensure the stability of the syllable structure and increase acoustic-model
erformance (Section 2.1.2). Nevertheless, our future work will test the new proposed ASR on other languages. It is worth noting
hat the obtained results are compliant with those reported by other studies for English. The Google ASR and HMM-DNN-based
SRs can reach over 99% accuracy on clean English spoken digits [4] and ∼97% accuracy on noisy speech (with a ∼15 dB signal-

o-noise ratio) [144]. On a task to recognise ∼30,000 English numbers [145], performance can range around a 93% word-recognition
ccuracy [78,146,147]. As a general reference, with clean dialogue speech the Google ASR can reach ∼93% word-recognition

accuracy on a ∼5000 vocabulary of English words [52], and ∼63% word-recognition accuracy on a 7.5 million vocabulary of
English words [148]. On the same million-word vocabulary, an ASR based on KALDI and HMM-DNN acoustic models can reach
∼63% word-recognition accuracy but is much more sensible to audio noise than the Google ASR [148].

Differently from the soft alignment process used in end-to-end models [149], our ASR aligns acoustic models to the signal
exhaustively and explicitly, and can re-use statistical language models of standard ASRs. Overall, with respect to end-to-end models,
our ASR presents a clear separation – as modules – between the phases of feature extraction, language and acoustic modelling, and
decoding. This property allows improving the ASR by substituting alternative processes to these modules. One drawback of our
ASR is its high computational complexity that mainly depends on the pre-calculation of a large number of likelihoods (Section 2.3).
However, this complexity does not compromise efficiency for practical usages of the ASR: Using a parallel implementation of the
decoding algorithm on 8 cores with HMM syllabic models, the recognition of a spoken number requires averagely ∼5 s on a machine
with an Intel Core i7-7700HQ CPU and 16 GB of Random Access Memory. Parallelising the computation on multiple cores or
machines would make computational time manageable also if a large number of syllables were involved, e.g. a large vocabulary
(∼500 syllables) would require ∼5 s on a distributed computation using ∼100 cores/machines on a cloud computing platform.
Furthermore, the search space of the decoding algorithm could be drastically reduced through ‘‘islands’ recognition’’, i.e. by focusing
the process on those portions of the speech signal that are (i) acoustically relevant (prominent) compared to the surrounding units,
(ii) pronounced with reasonable accuracy, and (iii) more clearly recognisable [150]. We will explore also this research direction in
the future.

4.3. Concluding remarks

In summary, a completely new ASR architecture has been presented. Our approach’s main novel characteristics are the inspiration
by studies on the multi-temporal processing of speech in human beings and the use of pseudo-syllables instead of tri-phones as
acoustic models. These features have produced high-quality results compared to the Google ASR and the KALDI tri-phonic HMM-
DNN ASR. Furthermore, our approach has the technical advantage that it can be applied to new acoustic models and can re-use
statistical language models of classic ASRs. The reported results suggest that taking into account the results of psycho-acoustic studies
- i.e. including also non-phonetic dynamics — and questioning the standard-used ASR approaches may produce effective solutions.
This observation positively answers to our original research question. Furthermore, our results show that the high performance of
our ASR and acoustic models is likely due to the use of pseudo-syllables instead of tri-phones on the reported recognition tasks, i.e. a
perceptual syllable definition has direct benefits for both the acoustic models and the ASR. One open question is if the multi-temporal
processing included in our acoustic models was crucial to increase ASR performance. Indeed, our CNN explicitly modelled multi-
temporal processing but did not gain top performance. In contrast, the LSTM model implicitly accounted for different time-scale
dynamics and gained very high performance.
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Our ASR is Open Source to allow for comparisons and verification. The source codes of the decoding algorithm and of the
MM-based syllabic acoustic models, and the DL trained models are available on the GitHub at

https://github.com/gianpaolocoro/AutomaticSpeechRecognitionResearch
The source code for training the deep learning acoustic models is available at
https://github.com/fvmassoli/deep-acoustic-modeling
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