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ABSTRACT

Nowadays, energy-efficient scheduling has assumed a key role in ensuring the sustainability of manu-
facturing processes. In this context, we focus on the bi-objective problem of scheduling a set of jobs
on identical parallel machines to simultaneously minimize the maximum completion time and the total
energy consumption over a time horizon partitioned into a set of discrete slots. The energy costs are
determined by a time-of-use pricing scheme, which plays a crucial role in regulating energy demand
and flattening its peaks. First, we uncover a symmetry-breaking property that characterizes the struc-
ture of the solution space of the problem. As a consequence, we provide a novel, compact mixed-integer
linear programming formulation at the core of an efficient exact solution algorithm. A thorough exper-
imental campaign shows that the use of the novel mathematical programming formulation enables the
solution of larger-scale instances and entails a reduction in the computational times as compared to the
formulation already available in the literature. Furthermore, we propose a new heuristic that improves
the state-of-the-art in terms of required computational effort and quality of solutions. Such a heuristic
outperforms the existing heuristics for the problem and is also capable of speeding up the exact solution
algorithm when used for its initialization. Finally, we introduce a novel dynamic programming algorithm
that is able to compute the optimal timing of the jobs scheduled on each machine to further improve the

performance of the new heuristic.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In the last years, the compelling challenges in environmental
sustainability have led to the development of a new paradigm for
manufacturing that allows planning the production while restrain-
ing the resulting energetic expenditure. Such a paradigm, called
energy-efficient scheduling or green scheduling (Gao et al., 2020),
enables an energy-conscious approach to job scheduling in pro-
duction. Among the demand-response strategies to regulate energy
generation, provisioning, and consumption, time-of-use (TOU) pric-
ing schemes have proven useful to flatten the peaks in customers’
demand to limit the resulting environmental pollution (Wang & Li,
2015). In the literature, one of the most considered energy-aware
goals is the minimization of the total energy cost (TEC), that is the
sum of the costs associated with the time slots where some job is
processed.
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In many applications, the need of minimizing energy costs may
conflict with other typical goals of scheduling problems, such as
the minimization of the makespan (Jia et al., 2017; Jiang & Wang,
2020) or the minimization of the total weighted tardiness (Fang
& Lin, 2013; Zhang & Chiong, 2016). In this paper, we consider a
bi-objective scheduling problem with TOU costs, where N inde-
pendent, non-preemptable jobs with no release time have to be
scheduled on M identical, parallel, and single-server machines over
a time horizon of K time slots to simultaneously minimize the
makespan and the TEC. From now on, we refer to such a problem
as Bi-objective identical parallel machine scheduling with Time-of-Use
costs problem (BPMSTP).

The BPMSTP was first investigated by Wang et al. (2018), who
proposed a constructive heuristic endowed with local search ca-
pabilities and presented the first mixed-integer linear program-
ming (MILP) formulation for the problem. Subsequently, Anghinolfi
et al. (2021) proposed a faster and more accurate heuristic ap-
proach, by enhancing the constructive heuristic of Wang et al.
(2018) and exploiting some intuitions on the combinatorics of the
problem. To the best of our knowledge, the work of Anghinolfi
et al. (2021) currently constitutes the state-of-the-art heuristic for
the BPMSTP (Catanzaro et al., 2023). In this manuscript, we build
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upon the results of Anghinolfi et al. (2021) by proposing a novel
MILP formulation and a heuristic that achieves higher computa-
tional performances. Specifically, the contribution of this paper is
threefold. The first contribution concerns a formal description of
fundamental concepts regarding the combinatorics of the BPMSTP.
In particular, we establish equivalence relations between different
solutions by highlighting structural symmetries inherent to the so-
lution space. The existence of such relations allows us to provide a
compact MILP formulation for the BPMSTP. The compactness of the
novel formulation also enables the development of a fast, exact so-
lution algorithm. Such results constitute an important step toward
the discovery of novel combinatorial properties of multi-objective
TOU scheduling problems with multiple machines. These problems
have been widely investigated in the last decade (see, e.g., Castro
et al,, 2013; Li et al, 2016; Mitra et al., 2012; Moon et al., 2013;
Zeng et al, 2018, and the related discussion in Section 2). The
second contribution is the development of a heuristic approach
for the BPMSTP that vastly improves upon the one proposed by
Anghinolfi et al. (2021) in terms of both required computational ef-
fort and quality of solutions, by performing several enhancements
to the involved algorithms. Such a heuristic also exploits a novel
exact algorithm based on dynamic programming that efficiently
determines the optimal timing of jobs in a single-machine sched-
ule to minimize its energy cost. Lastly, the third contribution re-
gards the combination of the first and the second ones to provide
an initial solution to the proposed exact algorithm to further re-
duce the computational effort required to solve the BPMSTP opti-
mally.

Concerning the complexity of the BPMSTP, we remark that the
problem of minimizing the TEC within some given deadline is
known to be strongly A"P-hard, even on a single machine (Chen &
Zhang, 2019). As a consequence, the BPMSTP is strongly NP-hard,
as already hinted by Wang et al. (2018). Furthermore, Fang et al.
(2016) and Chen & Zhang (2019) both considered the problem of
minimizing the TEC on a single machine, showing that it can be
solved by using exact algorithms with a polynomial and pseudo-
polynomial running time when time slots costs satisfy some spe-
cific properties. Determining the existence of similar algorithms for
the BPMSTP still constitutes an open problem.

The rest of this paper is organized as follows. In Section 2, we
report an overview of the literature on scheduling with energy-
efficiency criteria, by specifically focusing on scheduling with TOU
costs. In Section 3, we discuss the problem statement and the
existing state-of-the-art mathematical formulation. In Section 4,
we analyze the combinatorial properties of the BPMSTP, and we
present the novel MILP formulation. In Section 5, we present
the exact algorithm for the BPMSTP and the novel heuristic ap-
proach, and in Section 6 we discuss the numerical results obtained
on an extensive experimental campaign. We draw conclusions in
Section 7, by also prospecting possible future developments of our
work.

2. Literature review

Energy-efficient scheduling has become a relevant topic in pro-
duction planning due to the growing interest of the manufacturing
industry in environmentally-sustainable production over the last
years (see, e.g., Gahm et al., 2016; Giret et al., 2015). The shift
toward sustainable manufacturing is the result of the worldwide
growth of customers’ demands as well as more severe standards
for environmental pollution, such as CO, emissions and extensive
land use. Haapala et al. (2013) were among the first authors to
stress the importance of energy efficiency as a part of produc-
tion scheduling in modern manufacturing. In the last decade, sev-
eral works in scheduling have pursued sustainable production as
their key goal. Among the most recent contributions, we men-
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tion Karimi et al. (2021) in the context of additive manufacturing,
aimed at minimizing energy cost in response to time-varying elec-
tricity prices and demand charges, Zhou et al. (2020) for single-
machine batch processing with dynamic job arrival times, Barak
et al. (2021) for resource-constrained flexible manufacturing sys-
tems, and Zeng et al. (2022) for multi-objective flow shop schedul-
ing. In more detail, while Karimi et al. (2021) proposed a mathe-
matical model for the problem at hand, Barak et al. (2021); Zhou
et al. (2020) and Zeng et al. (2022) employed multi-objective meta-
heuristics. In particular, Zeng et al. (2022) presented an imple-
mentation of the non-dominated sorting genetic algorithm (Deb
et al., 2002), a well-known evolutionary algorithm in the literature
of multi-objective optimization (Absalom et al., 2021). According
to Gao et al. (2020), evolutionary algorithms are widely used to
solve scheduling problems that deal with several objectives and
constraints (see, among others, Faria et al., 2019; Lei et al., 2018;
Tang et al., 2016). Manufacturing is not the only field that was able
to benefit from energy-aware scheduling practices. Among others,
we mention scheduling in datacenters (Caviglione et al., 2021),
real-time systems (Bambagini et al., 2016), and distributed systems
(Agrawal & Rao, 2014).

The literature on energy-efficient scheduling with TOU pricing
schemes can be classified according to the number of optimization
objectives, the type of processing environment, and the considered
solution approaches. We refer the reader to (Catanzaro et al., 2023)
for a comprehensive survey of the problems, models, and algo-
rithms in the field. Hereinafter, we review some of the most recent
and relevant works characterized by (i) the optimization of a sin-
gle objective on parallel machines, (ii) the use of multi-objective
models and metaheuristics for multiple machines, and (iii) the in-
vestigation of multi-objective approaches for some compelling ap-
plication cases.

First, concerning single-objective parallel machine problems,
Ding et al. (2016) presented a time-indexed MILP model for the job
scheduling problem of minimizing the TEC on parallel unrelated
machines. The authors also proposed a further approach based on
a Dantzig-Wolfe decomposition algorithm for the problem. Cheng
et al. (2018) expanded the work of Ding et al. (2016) by provid-
ing an improved MILP formulation that uses fewer decision vari-
ables and constraints. Such a formulation was able to outperform
the one proposed by Ding et al. (2016) on a large set of instances.
Besides the TEC, another objective function that is often considered
in the literature on scheduling with TOU costs is the linear combi-
nation of the TEC with the makespan, which enables the simulta-
neous minimization of both. Usually, the former has a unitary co-
efficient, while the latter is weighted by a constant that represents
a penalty, such as maintenance and overtime costs. This objective
function is also compelling in practical applications, as it is able
to capture productivity requirements with environmental aware-
ness. Moon et al. (2013) proposed a time-indexed MILP formula-
tion for the problem of minimizing such an objective on unrelated
parallel machines. This formulation was later improved by Cheng
et al. (2019) through a set of strengthening inequalities. Pei et al.
(2021) generalized the problem faced by Moon et al. (2013) and
Cheng et al. (2019) by considering the minimization of the linear
combination of the makespan and the TEC on unrelated parallel
machines, where both objectives are weighted by positive penalty
factors. The authors proposed a non-linear mathematical program-
ming formulation for the problem and then developed an approxi-
mation algorithm based on a single-objective relaxation.

In the following, we discuss multi-objective models and meta-
heuristics. Cheng et al. (2017) focused on the simultaneous mini-
mization of the makespan and the TEC for a single-machine batch
scheduling problem. In this problem, the involved machine re-
quires an additional amount of power to switch between idle
and operational states. Qian et al. (2020) also considered batch
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Fig. 1. Example of a schedule of five jobs (named j®, j@ j® j@ and j®) on
two machines (denoted by 1 and 2), with energy consumption rates u; =1 and
uy = 2. The K = 8 time slots are displayed as squares below the corresponding en-
ergy cost on the two machines.

scheduling. In particular, the authors investigated the problem of
minimizing the makespan and the TEC on uniform batch machines
and proposed a multi-objective evolutionary algorithm exploiting
adaptive clustering that extracts information on the solution space
to ensure diversity in the populations of solutions. Jiang & Wang
(2020) addressed a flexible job shop scheduling problem that re-
quires the minimization of both the makespan and the TEC. The
authors presented a MILP model and a multi-objective evolution-
ary algorithm based on decomposition as a solution approach. Sin
& Chung (2020) took into account preventive maintenance in a
single-machine scheduling problem with the objective of simulta-
neously minimizing the TEC and machine unavailability. Similarly
to Jiang & Wang (2020), the work of Sin & Chung (2020) proposed
a MILP model together with a hybrid multi-objective genetic al-
gorithm in order to solve large instances of the problem. Finally,
Zeng et al. (2018) focused on a bi-objective scheduling problem on
uniform parallel machines, which requires minimizing the TEC and
the number of used machines. The latter objective is also signifi-
cant for applications, where higher machine uptime conflicts with
maintenance shifts and increases the overall power consumption.
The authors developed an iterative search framework based on an
insertion algorithm for the single-objective problem that consists
in minimizing the TEC with a fixed number of machines.

Finally, we consider application cases. We observe that TOU
pricing schemes can be interpreted as a possible way to implement
the general concept of demand side management, which consists
of either reducing energy consumption or rescheduling and shift-
ing energy demand to off-peak hours (see, e.g., Golmohamadi,
2022; Panda et al.,, 2022 and the references therein). More specif-
ically, Mitra et al. (2012) provided a MILP formulation for opti-
mal operational production planning for power-intensive processes
in continuous manufacturing, using non-dispatchable demand re-
sponse programs based on a discrete-time representation. Castro
et al. (2013) presented resource-task network MILP formulations
of a steel plant, by investigating the impact of fluctuating en-
ergy prices on the scheduling of operations that can be obtained
through the participation in price- and incentive-based industrial
demand side management programs. Subsequently, Castro et al.
(2020) presented another MILP formulation for optimal schedul-
ing under TOU electricity pricing to model processing tasks with
variable electrode mass depletion and replacement tasks that re-
generate the mass. Among other studies on practical applications
available in the literature on TOU pricing schemes, Forghani et al.
(2021) investigated the interaction among TOU electricity prices,
production scheduling, and preventive maintenance of continuous
slurry ball mills by proposing a mixed-integer energy-cost-aware
hierarchical formulation modeling approach. Furthermore, Sharma
et al. (2015) focused on a flexible flow shop scheduling problem
with speed-scaling machines that require the minimization of the
carbon footprint, which is affected by the time-varying availabil-
ity of renewables, as well as the optimization of the TEC under
TOU costs. Li et al. (2016) proposed heuristic approaches for par-
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allel machine scheduling problems in green manufacturing, with
the goal of minimizing the makespan or the total completion time,
subject to proper constraints on the value of the cost. Finally,
Rocholl et al. (2020) investigated a bi-objective parallel batch ma-
chine scheduling problem based on the fabrication of semicon-
ductor wafers. In particular, the authors proposed three different
heuristics based on a genetic algorithm that computes the start
times of the batches to minimize energy consumption. The pro-
posed algorithms were enhanced with a local search to further im-
prove the solutions computed by the heuristics.

3. Problem statement and previous formulation

In this section, we first formally describe the problem consid-
ered in this paper, i.e.,, the BPMSTP. Subsequently, we report the
formulation of the problem provided by Anghinolfi et al. (2021),
which currently constitutes the state-of-the-art in the literature.

Let 7={1,..., N} be the set of jobs, H# = {1 M} the set
of identical machines, and 7 = {1,...,K} the set of available time
slots. Jobs are non-preemptable and are characterized by an inte-
ger processing time p; <K, j € J, corresponding to an integer num-
ber of distinct time slots. Machines are endowed with an energy
consumption rate, which is denoted by u, > 0 for the generic ma-
chine h € H. Moreover, a non-negative cost ¢; >0, t € 7, is asso-
ciated with each time slot. The processing of a job j € 7 during a
subset 7; € T of p; consecutive time slots on machine h € # corre-
sponds to the assignment of job j to 7; on machine h. In this case,
job j is said to be scheduled in the time slots in 7; on machine h.
If no job is processed by machine h € A in the time slot t € T, we
say that t is free on h. Then, we define a schedule

S={U.hj.T) :hje ., T T.Vie T} (1)

as the set of the assignments of the jobs in 7 such that each job
j € J is scheduled on one and only one machine hj e #, and at
most a single job in 7 is assigned to each time slot in 7 on each
machine in #H. If 7; is a set of p; consecutive time slots for each
j € J, then schedule S is feasible. Fig. 1 sketches an example of a
schedule with five jobs on two machines over eight time slots. The
completion time C;(S) of a job je J in schedule S is the largest
time slot in 7;, that is, C;(S) = maXxer; L, j € J. Furthermore, the
makespan C™M3* of a schedule S is the largest among the completion
times of the jobs in 7, i.e.,

CM*(S) = max{C;(S) : je J). (2)

Let hj e # be the machine where job je J is processed. The
energy cost associated with the processing of job j in S is
Up ZteTj ¢t As a consequence, the TEC of S is given by

E(S) =) uy Y c.

jeg  teT;

Then, the BPMSTP consists in finding a feasible schedule S that
simultaneously minimizes (2) and (3). Hereinafter, since S is a
feasible solution to the BPMSTP, we use the expressions “feasible
schedule” and “feasible solution” interchangeably. Moreover, we
omit the dependence of C;, C™, and E on S to avoid burdening
the notation. We also refer to the ordered tuple 7= (J,{p;,je€
IV H {up, h e H}, T, {ct,t € T}) as an instance of the BPMSTP.

In the remainder of the section, we describe the MILP formu-
lation of the BPMSTP provided by Anghinolfi et al. (2021), referred
to as “Formulation 1”. Toward this end, we denote by

Xine €{0,1}, VjeJ heH teT,

a binary decision variable that is equal to 1 if t is the start time
slot of job j on machine h, and 0 otherwise. Moreover, we express
the makespan in (2) and the TEC in (3) with the decision variables
CmaX > 0 and E > 0, respectively.

.....

(3)
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Formulation 1.

min C™, (4)
minE, (5)
subject to
K—pj+1 t+p;—1

E:Zuhz ZX Zci s (6)

hen  jeg t=1 i=t

K—pj+1
S K=t Viea, )
heH t=1

t

> Y Xpnis1l. VYheH.teT, (8)
jeJ i=max{1,t—p;+1}

K—pj+1
Z Z (t+pj—DXjpe <C™*, VjeJ, ()
hex t=1
CmﬂX S I(, (]0)
CmX > E>0, Xj,h,te{o*l}’ VieJ, heH, teT. (11)

The objectives (4) and (5) minimize the makespan and the
TEC, respectively, consistently with definitions (2) and (6). Con-
straints (7) impose that each job j € 7 starts in a single slot on
a single machine. Constraints (8) avoid more than one job being
processed in the same time slot on the same machine. The left-
hand side of (9) defines the completion time of each job in 7,
which must not exceed the makespan C™3, In turn, the makespan
cannot be greater than the number of time slots K owing to (10).
Finally, (11) defines the decision variables. Formulation 1 employs
NMK + 2 decision variables and 2N + MK + 2 constraints. The for-
mer number is due to the NMK variables X;,,je€ J.he H,t e T,
together with C™3 and E, while the latter one is due to constraints
(6)-(10).

Observe that Formulation 1 exploits a discrete-time representa-
tion, i.e., the time horizon is partitioned into a finite set of time
slots consistently with the statement of the problem, and the pro-
cessing of each job starts at the beginning of a single time slot.
To the best of our knowledge, the formulations for identical or un-
related parallel machines available in the literature on scheduling
with TOU costs always employ such discrete-time representations,
in contrast to the continuous-time and sequence-based formula-
tions that are often used in classical scheduling. In fact, time-based
representations enable directly expressing the TEC as a linear com-
bination of the TOU costs.

The main drawback of Formulation 1 lies in the number of de-
cision variables, which may become very large as the size of the
BPMSTP instances increases. We overcome this limitation in the
following section, by presenting a novel formulation that builds
upon a combinatorial property to enable a compact representation
of the solution space.

4. New mathematical perspectives

The purpose of this section is to describe the novel mathemat-
ical advancements in the BPMSTP proposed in this paper. Specifi-
cally, we describe a fundamental combinatorial property of the so-
lution space of the BPMSTP in Section 4.1. As a consequence, we
are able to provide a new compact formulation for the problem in
Section 4.2.

848

European Journal of Operational Research 311 (2023) 845-866

10

<6) b(l) V”V”b(”‘
\ Www

12

LEERE

Fig. 2. Example of a schedule of seven jobs (named j(, j@, j®, j@ j®) j® and
j) on three machines (denoted by 1, 2, and 3) with energy consumption rates
u; =1, up = 2, and u3 = 3. The arrows showcase possible swaps of jobs resulting in

different, equivalent feasible solutions.

b(z) ba) b(Z)H b(é)
bm) bm) L,(4))¢ ‘

uzc,

2l

4.1. Insights on the combinatorics of the solution space

The solution space of the BPMSTP is characterized by a
symmetry-breaking combinatorial property that enables the iden-
tification of equivalence classes of solutions for a given BPMSTP
instance that are different in structure, but that are identical in
terms of makespan and TEC. Such a property is based on the in-
tuition that, given a schedule S, if two jobs scheduled in S have
the same processing time, then exchanging them in S does not al-
ter the makespan nor the TEC of S.

Hereinafter, we formalize this property. Toward this end, we
first define

Pi={d:3jeJ. pj=d}

as the set of distinct processing times of the jobs in J. We also
define

Ja:={irjied. pj=d},

as the subset of jobs with processing time equal to d. We say that
two feasible solutions S and S’ to the BPMSTP are equivalent if
they have the same value for C™3 and E. Then, the following prop-
erty holds.

deP, (12)

Property 1. For each feasible solution S to the BPMSTP, there are at
least [1qep | Tl — 1 other different, equivalent feasible solutions.

Proof. Let the schedule S be given as in (1). Let also Z =
{{h;. T;}.j € J} be the set of all distinct unordered pairs of ma-
chines and consecutive time slots such that there is a job je J
scheduled in the time slots in 7; on machine h; in the sched-
ule S. We observe that Z can be rewritten as (Jy.p Z4, where
Z4 ={{h}, Tj}. j € J4). Since all the jobs in J; require the same
number d of time slots, all the possible assignments of the jobs in
Jy to the elements of Z;, for each d € P, generate schedules that
are equivalent to S. As the number of distinct assignments of the
jobs in J; to Z; corresponds to the number |J;|! of permutations
of the jobs in Jy, the distinct number of assignments of the jobs in
J to Z is the product of | J,|! for each d € P. The observation that
schedule S is one of such assignments concludes the proof. O

In the following, we illustrate Property 1 through a numerical
example.

Example 1. Let us consider Fig. 2, which depicts a possible sched-
ule for jobs j(, j@ & j@ G 6 and j7 with process-
ing times p;a) =4, p;o =Pjw) =3, Pje =Pjs) =Pje) =2, and
pjm = 1, on three machines with energy consumption rates u; =
1, u; =2, and u3 = 3, over a time horizon that consists of K = 10
time slots. We observe that assigning j® in place of j, and vice-
versa, does not affect the makespan nor the TEC of the schedule,
since the two jobs j@ and j® have the same processing time.
A similar argument applies to the three jobs j®, j©®), and j®.
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Indeed, since the number of jobs |J;| with the same processing
time d is equal to 1, 3, 2, and 1 when d is equal to 1, 2, 3, and
4, respectively, there are at least other different []y.p |Jy|! — 1=
11213111 — 1 = 11 schedules equivalent to the one depicted in the
figure, according to Property 1.

4.2. A compact mixed-integer linear programming formulation

We provide a novel formulation that exploits the inherent sym-
metries of the solution space by building upon the MILP formula-
tion presented by Anghinolfi et al. (2021) and Property 1, described
in Section 4.1. First, we denote by

t+d—1
boe= > & VdePt=1,..K-d+1,
k=t

(13)

the cumulative cost associated with the d consecutive time slots
t,t+1,...,t+d—1. As a consequence, any job j with processing
time p; = d assigned to machine h starting at time slot ¢ is charac-
terized by an energy cost equal to up by . Let also

Yd,h,te{ovl}r VdeP,he’H,te'T,

be a binary decision variable that is equal to 1 if t is the first slot
of a job with processing time equal to d on machine h, and 0 oth-
erwise.

Formulation 2.

min C™¥, (14)
minEk, (15)
subject to
K—-d+1

E=Y"up) > batYane (16)

heH dep t=1

K—-d+1
SN Yyne=1Jl. VdeP, (17)
her t=1

t

Z Z Yd.h.i < 1, Vh e H,teT, (18)
deP i=max{1,t—d+1}
(t+d—1)Yyp, <C™™, VdeP,heH,t=1,... ., K-d+1, (19)
Cmax §I<, (20)
("™ >0, E>0, Yyp,€{0,1}, VdeP heH, teT. (21)

The objectives (14) and (15) minimize the makespan and the
TEC, respectively, with the TEC here given by (16). Constraints
(17) impose that, for each distinct processing time d € 7, exactly
|J4] jobs with processing time d are assigned to some subsets of
slots on the machines. Eq. (18) guarantees that, on each machine,
at most a single job is processed in each time slot. The left-hand
side of (19) defines the completion time of jobs, which must be
less than or equal to the makespan C™M*, Similarly to Formula-
tion 1, CM¥* must not exceed the scheduling horizon K, owing to
(20). Lastly, (21) defines the decision variables.

Each feasible solution to Formulation 2 defines a class of equiv-
alent schedules. Indeed, Formulation 2 guarantees that, for each
Y4 ne =1, a job with processing time d is non-preemptively sched-
uled in the slots t,t +1,...,t + d — 1 on machine h, but it does not
specify which particular job j e 7, with processing time p; =d, is
assigned to such slots on h. Property 1 ensures that, for each so-
lution S to Formulation 2, there are other []y.p | 74| ! — 1 different
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equivalent solutions to S. Since such solutions are all equivalent,
each of them has the same representation in terms of the decision
variables of Formulation 2.

Algorithm 4.1 generates a possible schedule that belongs to the
class of equivalent schedules defined by a solution to Formula-
tion 2. In more detail, such an algorithm first initializes the sched-
ule S to the empty set at line 1, together with the sets jé for each
d € P needed for subsequent computations (lines 2-4). Then, for
each d, h, and t such that Yy, =1, a job in 7 is assigned to d
consecutive slots on machine h starting from slot t (lines 5-9). Fi-
nally, the computed schedule S is returned (line 10). At the end of
the algorithm, jé = ¢ for each d e P, all the jobs in 7 are assigned,
and there are no slots on the same machine assigned to more than
one job.

Algorithm 4.1 Generate-schedule.

Input: The assignment variables Yy, de P,he H,t €T
Output: A schedule &
et S« 0
: ford e P do
Let jé <~ Jy
end for
. for (d,h,f) e {(d,h,t):Yyp,=1,deP.heH t T} do
Let j e Jé
S« SUGhAEf+1,... . f+d—1})
I AN
: end for
10: return S

QU hN=

N

Formulation 2 is characterized by |P|MK + 2 decision variables
and |P|+ MK + |PIM Y 4.p(K —d+ 1) + 2 constraints. The former
number is due to the |P|MK variables Yy, je J,he H,t €T, to-
gether with C™3* and E, while the latter one is due to constraints
(16)-(20). Let us now compare the number of variables needed by
Formulation 1 and Formulation 2. The worst case for Formulation 2
occurs when |P| =N, i.e, when all the processing times in J are
distinct. In this case, Formulation 2 has the same number NMK + 2
of decision variables characterizing Formulation 1. On the contrary,
the most convenient situation for Formulation 2 occurs when the
processing times of all the jobs in 7 are equal, i.e., when |P| = 1.
In this case, Formulation 1 is still characterized by NMK + 2 de-
cision variables, while Formulation 2 has only MK + 2 variables.
Thus, Formulation 2 uses fewer decision variables than Formula-
tion 1, except for the case |P| = N when the two formulations are
equivalent in terms of number of decision variables.

Let us now better characterize the worst case for the number of
decision variables of Formulation 2. Toward this end, we observe
that a necessary condition for an instance of the BPMSTP to admit
at least a feasible solution is that the sum of all the time slots
required by the jobs in 7 does not exceed the overall number MK
of slots available for the scheduling, i.e.,

N <) pj <MK,
jeg

(22)

where the equality °;. ; pj = N holds when p; = 1 for each j € J.
We formulate the following stronger necessary condition for feasi-
bility by building upon (22).

Proposition 1 (Necessary condition for the existence of a solu-
tion). For a BPMSTP instance that admits at least a feasible solution,
the following inequality holds:

Pl < L—1 +x/;+8MKJ. (23)
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Proof. First, is used as a reference to assess the effectiveness of the novel
1Pl PIPI ) heuristic proposed in this paper;
. PP +1 ot . -
ij _ Z |Jald > Z' _ > (24) (c) prﬁsilntl the novel tlzeur.lstlc approach, i.e., Enhianczd he},ll)l'lstllcl
e iep - scheduler (EHS), that improves SGS-ES. We also describe a

the “building blocks” that characterize EHS.
since | 73| > 1 and the elements in P are pairwise distinct positive

integers. By combining (22) with (24), we obtain Before entering into the details of the different solution
PP +1) approaches, we provide some fundamental concepts in multi-
7 < MK, objective combinatorial optimization (Branke et al., 2008; Deb,
2 2001). For the purposes of this paper, we restrict our attention
which entails |P|2 + |P| — 2MK < 0, and therefore to the bi-objective case of the BPMSTP. We refer to the feasi-
bility region of the BPMSTP as X. Moreover, let S and S’ be

0<|P| < —1+v1+8MK V1+8MK. two distinct solutions in X. We say that S dominates S’ if ei-
2 ther Cnax(S) < Gmax(8') and E(S) < E(S'), 0F Cinax(S) < Cmax(S")

a and E(S) <E(S’); in particular, S strictly dominates S’ if both

Cmax (S) < Cnax(8") and E(S) < E(S’) hold, otherwise S weakly
dominates S’. Furthermore, given a subset O C X, the set of non-
dominated solutions in O exactly contains each and every solution
in O that is not dominated by another solution in O itself. A so-
lution S is Pareto-optimal, or Pareto-efficient, if no other solution in
X dominates S. Specifically, S is strictly (weakly) Pareto-optimal if
there is no other solution in X that weakly (strictly) dominates it.
Finally, the Pareto front is the set of points in the space of the ob-
jectives associated with the solutions in the set of Pareto-optimal
solutions, also called Pareto-optimal set.

The remainder of this section is structured as follows. First,
we describe the exact algorithm in Section 5.1 (goal (a)). Then,
we recall the heuristic presented by Anghinolfi et al. (2021) in
Section 5.2 (goal (b)). Lastly, we introduce the novel heuristic for
the BPMSTP in Section 5.3 (goal (c)), which builds upon the al-
gorithmic ideas presented in Section 5.2 to increase the computa-
tional efficiency while improving the quality of the computed so-
lutions at the same time.

We observe that, since (22) and (23) only depend on the pa-
rameters of the BPMSTP, they are valid for both Formulation 1 and
Formulation 2. In more detail, Proposition 1 is useful to identify a
larger class of unfeasible solutions with respect to (22), and there-
fore it enables avoiding solving several instances for Formulation 2
by simply checking the validity of (23) beforehand.

In order to illustrate how Proposition 1 provides a better de-
scription of the worst case of Formulation 2 as regards the num-
ber of decision variables, we consider an instance with K =200
and M = 10 as a simple example. The greatest value of N for the
existence of at least a feasible solution corresponds to the case
pj=1 for all je 7, and it is equal to MK =2 x 103, owing to
(22). In this case, the number of decision variables of Formula-
tion 1 is 4 - 106 + 2, whereas it is equal to 2 x 103 + 2 for Formula-
tion 2 since |P| = 1. Observe that, for such an instance, condition
(23) also holds. Instead, if |P| =N, the number of decision vari-
ables for Formulation 1 and Formulation 2 is the same. In particu-
lar, according to Proposition 1, a necessary condition for feasibility
is N< |[(-1++16001) /2] = 62. Hence, in order for the consid-
ered instance to be possibly feasible, the number of the variables 5.1. The exact algorithm
has to be no greater than 1.24 x 10° + 2. The necessary condition

(22) would instead provide the higher upper bound M2K? +2 = The proposed exact algorithm for the BPMSTP relies on the
4 x 105 4 2. combination of MILP and the e-constraint method for multi-
To complete the comparison of Formulation 1 and Formula- objective optimization, first introduced by Haimes et al. (1971) and

tion 2, we also have to take into account the number and nature of further discussed by Chankong & Haimes (2008). Specifically, the
the sets of constraints. However, as we highlight in Section 5.1, a exact algorithm iteratively exploits either Formulation 1 or Formu-
discussion of such constraints is not relevant in the framework of lation 2 to compute the set of Pareto-optimal solutions for a given

the developed exact solution algorithm. In Section 6, we also re- BPMSTP instance Z. Without loss of generality, in this subsection,
port the significantly lower computational effort required to solve we describe the algorithm by only referring to Formulation 2.
Formulation 2 with respect to Formulation 1 in all the considered The basic idea of the e-constraint method is to minimize (or
experimental tests. maximize) one of the objectives while the other ones are con-
We conclude this section by observing that, since all the op- strained to be lower (or greater) than fixed values. For the con-
timal solutions of the BPMSTP are equivalent from a theoretical sidered instance Z of the BPMSTP, the exact algorithm first sets an

standpoint, practitioners may be interested in evaluating all of upper bound on the makespan and then minimizes the TEC. The
them and then selecting the most suitable one according to their algorithm iterates over the previous two steps and progressively

specific needs. Thus, instead of focusing on finding a single solu- reduces the upper bound until an unfeasible solution is found. In

tion S, in the following sections we develop exact and heuristic this way, the algorithm is able to find all the points of the two-
approaches to compute all the different optimal solutions. dimensional Pareto front of Z.

First, we observe that, for a BPMSTP instance Z, each Pareto-

5. Solution approaches optimal solution S* of Z corresponds to a non-dominated point

(CMax(5*), E(S*)) in the optimal Pareto front. In particular, there

In this section, we describe the exact algorithm and the novel  are at most K — K(Z) 41 points in the optimal Pareto front, where

heuristic for the BPMSTP proposed in this paper. Specifically, the
main goals of the section are the following:
_ , K(7)=max{| > pj/M |.max{p;} . (25)
(a) present the proposed exact solution algorithm based on ies jeg
the e-constraint method and Formulation 2 discussed in
Section 4.2; Indeed, since the processing times p;, j € J, are integer numbers,
(b) summarize the current state-of-the-art heuristic algorithm CmaX(S*) is an integer that ranges between the lower bound K(7)
for the BPMSTP presented in Anghinolfi et al. (2021), i.e., and the upper bound K. However, we observe that K(Z) given by

Split-greedy scheduler with exchange search (SGS-ES), which (25) is not a tight lower bound for all the instances of the BPMSTP.
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Example 2. Let us consider a BPMSTP instance with a set of N = 4
jobs, denoted by jU, j@ j® and j®, with processing times 2,
9, 9, and 10, respectively, to be scheduled on M = 3 machines with
u; =up; =u3 =1, and a number K =11 of time slots. The lower
bound for CM3* given by (25) is equal to 10, but there is no feasi-
ble solution with such a makespan. In fact, jobs j@, j3, and j©®
have to be scheduled on three different machines, without leaving
two consecutive free time slots for j(».

We now define, for a given K such that 1 < K <K, a downsized
instance of the BPMSTP as

D) = (7.{pj. j e T} H. {up. h e H},
{1.....K}. {ce.t e {1.....K}}). (26)

A downsized instance (26) considers a subset of slots
{1,2,...,K} c T instead of the whole set of time slots 7. Then, we
define the reduced formulation of the BPMSTP as the optimization
of (15) subject to constraints (16)-(18) and (21). In other words,
the reduced formulation only requires the minimization of the
TEC without considering constraints (19) and (20) that are related
to the makespan.

Algorithm 5.1 reports the pseudo-code of the proposed exact
solution algorithm for the BPMSTP based on the aforementioned
ideas. It takes a BPMSTP instance Z as input and returns the set
of the Pareto-optimal solutions for Z as output. The algorithm first
initializes the solution set © and the parameter K at line 1. The lat-
ter is used in the downsized instances within the subsequent loop.
Then, Algorithm 5.1 repeats lines 2-10 until either K is lower than
the lower bound K(Z) or an unfeasible solution is obtained before
reaching K(Z). In more detail, the reduced formulation associated
with D(K) is solved at line 3. Then, if no feasible solution exists,
the loop is stopped (line 5). Otherwise, Algorithm 4.1 is called to
obtain an optimal schedule S* for D(K) (line 7). Afterward, S* is
added to O (line 8). The number of slots K for the next iteration is
updated as C™M3*(S*) — 1 at line 9. In fact, we observe that any so-
lution &’ # S* to D(K) such that CMaX(S*) < CMax(s’) < K is either
equivalent to or weakly dominated by S*. Otherwise, S’ would be
the solution computed at line 3, as it would achieve a better TEC
than S*. Then, Algorithm 5.1 computes the set F of strictly Pareto-
optimal solutions for Z by identifying the non-dominated solutions
in O (line 11) and excluding the weakly Pareto-optimal solutions.
Finally, Algorithm 5.1 returns the set of Pareto-optimal solutions F
(line 12).

Algorithm 5.1 Exact algorithm for the BPMSTP.

Input: A BPMSTP instance 7
Output: The set F of Pareto-optimal solutions for Z

1: Let O« ¢gand K < K
2: while K > K(Z) do

3. Solve the reduced formulation of D(K) with MILP
4: if no feasible solution exists then

5: break

6: end if

7:

Let S* be the schedule computed with Algorithm 4.1 from
the optimal solution to D(K)

8:  Update O < OU{S*}

9 K< (Cmax(se)—1

10: end while

11: Let F be the set of non-dominated solutions in O

12: return F

The computational efficiency of solving the reduced formula-
tion of D(K) with MILP at line 3 in Algorithm 5.1 can be enhanced
by providing an initial feasible solution to the MILP solver using a
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given heuristic. Toward this end, we propose the use of the heuris-
tic schemes described later on in Section 5.3 to perform initializa-
tion. The computational advantages of such a choice are investi-
gated in Section 6.

5.2. Split-greedy heuristic and exchange search

In this subsection, we summarize the Split-greedy heuristic
(SGH) and Exchange search (ES) introduced by Anghinolfi et al.
(2021) to solve the BPMSTP by describing the concepts at the foun-
dation of the two algorithms. Toward this end, for a given BPMSTP
instance Z, we first denote a location as a pair | = (h, A), where
h e H and A is a subset of consecutive slots in 7. In addition, [ is
a free location for job j if | A| = pj, i.e., the number of slots is equal
to the processing time of the job, and the slots in A are free, i.e,,
no job is assigned. Instead, [ is a split-location for job j if A is a set
of p; slots such that there is at least a pair of slots in A that are
not consecutive, and the following condition holds: for each pair of
slots t,t' € A, t #t/, either t and t’ are consecutive, or t and t’ are
not consecutive and, for each slot t”” € 7 such that t <t” < t/, there
is some job in 7 \ {j} assigned to t”. If all the slots in A are free,
then [ is a free split-location. Finally, a split-schedule is a preemptive
schedule where at least one job is assigned to a split-location.

The core idea of SGH is to greedily assign the jobs in 7 to free
locations or free split-locations with the smallest-cost. If the re-
sulting schedule is a split-schedule, then it is converted into an
equivalent feasible one. We recall that two schedules are equiva-
lent if they have the same makespan and TEC. The pseudo-code
of SGH is reported in Algorithm 5.2. Formally, the algorithm takes

Algorithm 5.2 Split-greedy heuristic (SGH).

Input: A downsized BPMSTP instance D(K) as in (26)
Output: A schedule S for D(K)
: Let S be an empty schedule
cLet S <0, heH
: for each d € P in non-increasing order do
Let Ly, h € H, be the lists of the smallest-cost, free
locations and free split-locations on h for j: p; =d
for each j € J; do
if Ly, =9, Vh € H then return S
7: Select a location [ = (fl, A) from the smallest-cost
locations in Jyy{l € Ly p} randomly
Assign job j to fby updating S; as S; < S U {{J, h, A}
Update list Ldﬁ by removing the locations affected by the
assignment of j
10: end for
11: end for
12: Let S <« Upew Sh
13: if S is a split-schedule then convert it into an equivalent feasi-
ble schedule
14: return S

AW N =

A

© ®

a BPMSTP instance D(K) as input, with K such that 1 <K <K,
and returns a schedule S as output. If S is empty, then either no
solution exists for D(K), or SGH is not able to compute one. In
fact, determining whether a feasible schedule exists within a given
makespan is already an AP-complete problem (Garey & Johnson,
1978). First, SGH initializes S as an empty schedule (line 1) and
Sy as an empty set for each h € # (line 2). Then, it iterates over
each d € P in non-increasing order (line 3), according to the well-
known longest processing time first (LPT) rule (Pinedo, 2016). For
a fixed d, SGH builds a list L; j, of the free locations and free split-
locations on machine h for any job with processing time d (line 4).
Afterward, the algorithm iterates over each j € J; (line 5). If there
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Fig. 3. Example of conversion of a split-schedule (a) into a feasible schedule (b). The two jobs j and j@ in (a) are assigned to split-locations on machines 1 and 2,

respectively. Instead, all the jobs in (b) are feasibly scheduled.

are no free locations for j in Ly, h € A, then SGH cannot compute
a feasible schedule for D(K), and it consequently returns an empty
schedule (line 6). Otherwise, at each iteration, SGH randomly se-
lects one of the smallest-cost locations [ = (fl, A) from the loca-
tions in the lists L , h € # (line 8). Then, j is assigned to f(line 8),
and L, ; is updated by removing locations that are not free after
the assignment of j, and by adding the new split-locations that
may have arisen from the assignment of j (line 9). Subsequently,
SGH updates S as the union of the single-machine schedules S,
h € H (line 12). Finally, if S is a split-schedule, SGH converts it into
an equivalent feasible schedule (line 13). Specifically, the sequence
of jobs on each machine is preserved in the converted schedule,
and each job starts as soon as possible, but not earlier than its
start time in the original split-schedule. Fig. 3 reports an example
of such a conversion. Eventually, SGH returns the computed feasi-
ble schedule S at line 14.

ES is a local search algorithm that takes a feasible schedule S
for a BPMSTP instance D(K) as input and attempts to improve the
TEC without worsening the makespan. The improving moves per-
formed by ES are based on the notion of exchangeable period se-
quence (EPS). An EPS is an ordered pair (&, h), where £ C T is a
set of consecutive time slots on a machine h € # such that, if a job
j is assigned to a time slot in £ on h, then j is scheduled on h, and
the time slots where it is processed are in £. In particular, an EPS-]
is an EPS that only contains slots assigned to a single job. Instead,
an EPS-I is an EPS containing at least an idle slot. We generally
refer to an EPS-J and an EPS-I by using the notation (&), k') and
(&', Y, respectively, where hl € # is the machine associated with
the EPS-] and h' € # is the one associated with the EPS-I.

For a given schedule S and an EPS (&, h), we denote the set of
the job assignments in the subset £ € 7 of time slots on machine
h e # in the schedule S as S py. Formally, Sy, is the set of the
assignments (j, hj, 7;) € § such that hj=h and 7; C £. Then, let
(&', 1") be another EPS such that |£| = |£’|. An EPS swap is a pro-
cedure that reassigns the jobs in S 5 to a subset of slots of &’ on
machine /', and the jobs in S ) to a subset of slots of £ on h,
without changing the relative assignments of the jobs. Specifically,
if job j is assigned to the i-th slot of £ on machine h before the
EPS swap, then j is assigned to the i-th slot of & on machine h’
after the swap, and vice-versa. The assignments of the jobs to the
slots of an EPS £ on a machine h can be changed by using an EPS
rearrangement, which is a procedure that reschedules the jobs in
S(e.py In € on machine h with the goal of reducing the TEC. An EPS
move combines an EPS swap with an EPS rearrangement. In partic-
ular, an EPS move involving two EPSs (£, h) and (£, h’) such that
|€] = |&'|, respectively, first applies an EPS swap of them, and then
an EPS rearrangement of both, separately.

The pseudo-code of ES is reported in Algorithm 5.3. For a given
input schedule S, the core idea of ES is to perform all the EPS
moves for S that improve the TEC of S, without worsening its
makespan. Specifically, for each d € P taken in non-increasing or-
der, and for each EPS-] (&, W) with a number of time slots |&J]| = d,
ES considers every EPS-1 (&!, h!) with |&l| = |&Y|, until it performs
an improving EPS move that involves & and &'. Afterward, ES pro-
ceeds with the next EPS-] (lines 6-10). At the end of the iterations
(line 15), ES stops if it did not find an improving EPS move for

852

Algorithm 5.3 Exchange search (ES).

A feasible schedule S for a downsized BPMSTP instance
D(K) as in (26)

Output: A feasible schedule S’ for D(K), withCMaX(8’) < CMax(S)
and E(S) <E(S)

Input:

1: repeat

2 Let ¢ < false

3 for d € P in non-increasing order do

4; for each EPS-] (&J, W) in S such that |€)| = d do

5: for each EPS-1 (¢!, h!) in S such that |€!| = d do

6 Let &’ be the schedule resulting from the EPS
move involving (&!, k) and (&', h!) in

7: if E(S’) < E(S) then

8: Let S « &’

9: L < true

10: break

11: end if

12: end for

13: end for

14: end for

15: until ¢ is false

16: &' <~ S

17: return S’

each d € J. Otherwise, it starts over with the iterations to search
for another improving EPS move.

Example 3. Fig. 4 provides an example of EPS move involving the
EPS-] & = {1, 2,3, 4,5} on machine 1, associated with job j(, and
the EPS-1 &' = {4, 5,6,7, 8} on machine 2, including jobs j® and
j® and an idle slot (see Fig. 4(a)). The cost associated with & and
&lin Fig. 4(a) is 52. Fig. 4(b) shows the result of the EPS swap of &
and &!. After the EPS swap, the cost associated with & and &! in-
creases to 56. The EPS rearrangement of & involving jobs j and
j©) in Fig. 4(b) yields the schedule in Fig. 4(c). In such a schedule,
the cost associated with j), j® and j® is equal to 49, i.e. it is
reduced as compared to the original cost before the move (equal
to 52).

Lastly, we describe the Split-greedy scheduler (SGS) heuristic,
which is used to compute a set of non-dominated solutions for
an instance Z of the BPMSTP by using SGH. Similarly to the exact
algorithm introduced in Section 5.1, SGS exploits the e-constraint
method for multi-objective optimization. Specifically, it first initial-
izes a set F of heuristic solutions to an empty set. Then, it iterates
over K from the initial value K to the lower bound K(Z). At each it-
eration, SGS solves the BPMSTP instance D(K) with SGH instead of
using a MILP solver as in line 3 of Algorithm 5.1. If there is no fea-
sible solution for D(K), SGS returns an empty set. Otherwise, the
set F is updated by adding the solution to D(K), and then, differ-
ently from line 9 of Algorithm 5.1, K is decreased by 1. At the end
of iterations, SGS returns the set of non-dominated solutions in F.

SGS may be combined with ES to improve the computed so-
lutions. Split-greedy scheduler with exchange search (SGS-ES) is the
algorithm proposed in Anghinolfi et al. (2021) as the result of such
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Fig. 4. Example of an EPS move: starting schedule (a); schedule after the EPS swap (b); final schedule after the EPS rearrangements (c). The schedule involves five jobs
(named j@®, j@, j3 j® and j®) on two machines (denoted by 1 and 2) with energy consumption rate u; = 1 and u, = 2.
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Fig. 5. Sketch of the structure of EHS (a), proposed in this paper as the novel heuristic for the BPMSTP, and SGS-ES (b), introduced by Anghinolfi et al. (2021). Figures (a) and
(b) highlight the algorithmic flow that characterizes the different components of EHS (i.e., A-SGH, R-ES, and ESR) and SGS-ES (i.e., SGH, and ES), respectively. Both algorithms
take a BPMSTP instance Z as input and return the set of non-dominated solutions in O as output. The inner part of the bounding boxes depicts the flow for a single iteration

of the algorithms.

a combination. In more detail, SGS-ES differs from SGS since it im-
proves the solution computed by SGH by using ES before adding
such a solution to F.

5.3. The novel algorithms

In this subsection we introduce the novel heuristic proposed
in this paper for the BPMSTP, called Enhanced heuristic scheduler
(EHS). Such a heuristic builds upon SGH and ES, and also ex-
ploits a novel exact algorithm based on dynamic programming
that separately optimizes the cost associated with the schedule on
each machine. Section 5.3.1 describes Split-greedy heuristic with as-
signment history (A-SGH), which exploits SGH as a subroutine to
build a feasible schedule. Section 5.3.2 presents Exchange search
with rescheduling (R-ES), which constitutes a local search that
improves over ES to provide better computational performances.
Section 5.3.3 introduces the novel exact algorithm based on dy-
namic programming called Exact single-machine rescheduler (ESR)
that, given an input single-machine schedule, efficiently computes
the minimum-cost schedule that preserves the original processing
sequence. Such an algorithm constitutes an important component
of EHS, as it enables to further reduce the cost of the schedule on
each machine. Section 5.3.4 finally describes EHS. As showcased
in Section 6, EHS is able to obtain high-quality solutions with a
low computational burden, thus outperforming the state-of-the-art
heuristics for the BPSMTP. Fig. 5 displays a graphical comparison of
the structure of EHS (Fig. 5(a)) and SGS-ES (Fig. 5(b)), along with
the algorithmic flow characterizing their components.

5.3.1. Split-greedy heuristic with assignment history

We first observe that, as pointed out in Section 5.2, both the ex-
act algorithm and SGS-ES solve a sequence of downsized instances
for distinct numbers K of time slots. As a result, for a given BPM-
STP instance 7 and a positive number of available time slots K < K,
the optimal solutions of the two instances D(K) and D(K + 1) are
generally unrelated. However, the heuristic solutions to D(K) and
D(K 4+ 1) generated by SGS-ES share a similar structure. Indeed,
many jobs in a solution to D(K +1) are intuitively expected to
have the same assignment in a solution to D(K), as the two in-
stances only differ for the last time slot K + 1, which is not avail-
able in D(K). Formally, let S’ be a solution to D(K +1). Then, the
assignments in S’ involving jobs whose last slot is no greater than
K can be exploited to compute a solution S to D(K). Assignments
involving slot K + 1 are instead unfeasible for S, as its makespan
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has to be less than or equal to K. Hence, the jobs involved in such
assignments have to be rescheduled in S.

These observations lie at the core of Split-greedy Heuristic with
Assignment History (A-SGH), which solves D(K) by exploiting a
subset of the job assignments in S’ and employs SGH as a sub-
routine to schedule the jobs whose assignment in S’ is unfeasible
for D(K). Specifically, the fundamental idea underlying A-SGH is to
start from an initially empty schedule S, and perform the follow-
ing steps for each d € P considered in non-increasing order, where
5;(8’) is the first slot of j in the schedule S’

(i) update S with the set of job assignments (j, h;, 7)) € &', je
Jg» such that s;(8') + pj—1 < Rand Su (j, h;, T;) is feasible;

(ii) schedule all the jobs that could not be scheduled in S during
step (i) through SGH.

Step (i) updates S with all the assignments in S’ for the jobs in
Jy that are feasible in S. Then, step (ii) relies on SGH to schedule
in S the jobs that are disregarded in step (i).

The pseudo-code of A-SGH is reported at Algorithm 5.4. A-SGH
takes the BPMSTP instance D(K) and the solution S’ to the BPM-
STP instance D(K + 1) as inputs and returns a schedule S for D(K).
Hereinafter, with a slight abuse of notation, we refer to S, as the
single-machine schedule obtained by considering the jobs sched-
uled on machine h, i.e., {(j. hj,T;) € §,h; = h}. As a practical note,
we observe that S, can be easily accessed by implementing S as
a collection {Sy, h € #} of single-machine schedules, one for each
h € H. A-SGH first initializes S (line 1) as an empty schedule and
declares 7; (line 2) according to (12). Then, A-SGH starts iterat-
ing over each d € P according to the LPT rule (line 3). As the first
step in the loop, the set Q is initialized as an empty set (line 4).
Such a set is used in the subsequent lines to keep track of the
jobs involved in the assignments of S’ that are unfeasible for S.
Then, A-SGH iterates over each j e J; to schedule all the jobs in
Jy (lines 5-21). At each iteration, it verifies if the assignment of
job j in S’ is also feasible for S. In this case, the assignment of
jin &’ is repeated in S; otherwise, j is added to Q. Then, A-SGH
computes the sets £ and R of the possible predecessors and suc-
cessors of job j on hj., respectively, if the assignment of j in S’ was
the same as in S (lines 7-8), where 7(S) denotes the set of jobs
scheduled in S. If £ is non-empty, A-SGH sets [ as the predeces-
sor of j with the greatest start time in £ (line 10). Similarly, if R
is non-empty, A-SGH sets iI as the successor of j with the lowest
start time in R (line 13). If the processing of j ends after K in &,
or there would exist an overlapping predecessor [ or successor 7 of
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Algorithm 5.4 Split-greedy heuristic with assignment history (A-
SGH).

Input:

A downsized BPMSTP instance D(K)
A schedule S’ = {(J, h},7;./) : h;. € H,?}’ C T,Vje J} for the
BPMSTP instance D(K + 1)
Output: A schedule S for D(K)

1: Let S be an empty schedule

2 letJy«{jeJ:pj=d},deP

3: for d € P in non-increasing order do

4: Let Q < ¢

5 for j € J; do

6: /| Compute the predecessors and the successors of job j
in schedule S

7: Let£<—{l:lej,s,(8)fsj(S’),hlzhj.}
8: Let7€<—{r:rej,sr(8)>sj(8’),hr:h;.}
9: if £ # ¢ then
10: Let [ < argmax{s,(S)}
leL
11: end if
12: if R # ¢ then
13: Let ii < argmin{s;(S)}
rerR
14: end if
15: /| Check whether the assignment of j in &' is also
feasible in S
16: if s;(S') +pj—1>K or (£ # ¢ and
$i(8) + p;— 1=5;(8")) or (R # ¢ and
53(8)<s;(S8") + p; — 1) then
17: Q <« Qu{j} [/ If not, add j to the separate set of

jobs Q to be scheduled after the end of the loop
18: else

19: Sy < Sy U (], hj., Tj’) || Otherwise, perform the
] ]
same assignment in S
20: end if
21: end for

222 8 « SGH((Q.{pj.j e Q). H. {up. he H}.{1.....K}.
fer.te {1.....K}))

23: if S = ¢ then return ¢

24 S« SUS

25: end for

26: return S

Jj on machine h} if job j was assigned in S as in &’ (line 16), then
job j is added to the set Q (line 17). Otherwise, the assignment
of j in &' is feasible in S as well, and therefore S is updated ac-
cordingly (line 19). Finally, A-SGH schedules the jobs belonging to
the set Q by using SGH (line 22). If SGH cannot compute a feasible
schedule for D(K) for the jobs in Q, ie. 8 is empty, then A-SGH
returns an empty schedule as well and stops (line 23). Otherwise,
S is properly updated at line 24. Finally, A-SGH returns the com-
puted feasible schedule at line 26.

5.3.2. Exchange search with rescheduling

In this subsection, we present Exchange search with reschedul-
ing (R-ES), which builds upon ES (Algorithm 5.3) and circumvents
its computational drawbacks. In particular, among all possible EPS
moves, ES also considers the moves involving EPS-Is containing
only free slots, hereinafter referred to as empty (see line 5 of
Algorithm 5.3). However, given two machines K, h' € #, if an EPS
move involving an EPS-J (&, h) and an empty EPS-I (€', h") is
found to be not improving, then the other subsequent EPS moves
involving (&, W) and other empty EPS-Is whose cost is higher than
the cost of (€', h') cannot be improving as well within the same
iteration over (&), W). In fact, ES iterates over the EPS-Is by disre-
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garding their energy cost. In this way, it considers the empty EPS-Is
in no specific order. These observations may prospect a high com-
putational burden, especially in the last iterations performed by ES,
when the number of possible improving EPS moves is smaller as
compared to the first iterations. The core idea of R-ES is to apply a
local search strategy that improves a feasible input schedule S, by
first applying ES while disregarding the empty EPS-Is and then per-
forming the rescheduling of each job (ordered according to the LPT
rule) to take into account all such empty EPS-Is. In particular, R-ES
removes a job at a time from the current schedule S, and greedily
reinserts the same job in S by assigning it to the free location or
free split-location with the smallest-cost in S.

The pseudo-code of R-ES is reported in Algorithm 5.5. R-ES

Algorithm 5.5 Exchange search with rescheduling (R-ES).

A feasible schedule S for the downsized BPMSTP instance
DK) as in (26)
Output: A feasible schedule &’ for D(K), with CMaX(S’) < CMaxX(s)
and E(S") <E(S)

1: repeat

2 Let S’ < S

3: Update S with ES by disregarding empty EPS-Is (at line 5 of

Algorithm 5.3)
4 for d € P in non-increasing order do

Input:

5: Let Ly, h € #H, be the lists of the smallest-cost free
locations and split-locations on h for any j: p; =d

6 for j e J,; do

7: S <8\ (Jhj,Tp)

8: Update L, , by adding location (hj, 7;)

9: Select a location [ = (h, A) from the smallest-cost
locations in Jyey{! € Ly} randomly

10: Assign job j to [ by adding (j, h, A) to S;

11: Update list L m by removing the locations affected by
the assignment of j

12: end for

13: end for

14: if S is a split-schedule then convert it into an equivalent

feasible schedule
15: until E(S) < E(S’)
16: return S’

takes a feasible schedule S for the downsized BPMSTP instance
D(K) as input and returns a feasible schedule S’ for D(K) with
CMX(§") < (MX(S) and E(S’) < E(S). In fact, the purpose of R-
ES is to improve the TEC of S, while possibly improving also
the makespan as a byproduct of the performed EPS moves. How-
ever, the makespan cannot be worsened by construction, as in ES.
Specifically, R-ES iteratively improves the TEC of S until at least
an improving move is performed (see the loop at lines 1-15). At
the beginning of the loop, R-ES stores the current schedule in &’
(line 3). This allows checking the termination condition at the end
of the loop (line 15). Then, it tries to improve S by applying ES
without considering the empty EPS-Is in S (line 3). Next, similarly
to SGH (Algorithm 5.2), R-ES iterates over the processing times of
the jobs in 7 in non-increasing order (lines 4-13), by first building
the list of free locations and free split-locations (line 5) as in line 4
of Algorithm 5.2. Subsequently, it iterates over each j € J; (lines 6-
12). Inside this loop, R-ES first removes the assignment (j, h;, 7;)
from S (line 7) and then adds the new free location (h;, T;) to Ly
(line 8). Afterward, R-ES reassigns j in S through lines 9-11, which
are identical to lines 7-9 of SGH (Algorithm 5.2). If the resulting
schedule is a split-schedule, then it is converted into a feasible one
(line 14). R-ES stops the loop if it is unable to further improve the
TEC of S (line 15), i.e., if E(S) = E(S’). Otherwise, it starts another
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iteration to search for further improvements. Eventually, R-ES re-
turns the resulting schedule (line 16).

5.3.3. Exact single-machine rescheduler

In this subsection, we introduce a novel algorithm based on dy-
namic programming that is able to further improve the TEC of a
single-machine feasible schedule S, for some h € H over the time
slots t =1,2, ..., R, with K < K. We refer to such an algorithm as
Exact Single-machine Rescheduler (ESR). ESR computes the assign-
ment of the jobs scheduled on machine h so as to minimize the
energy cost of the jobs scheduled on the machine while preserving
the processing sequence of such jobs. The design of ESR is inspired
by the work of Chen et al. (2021), who investigated the problem
of minimizing the TEC of a preemptive schedule on a single ma-
chine. Toward the end of describing ESR, we first denote by ¢/ the
set {j(1, j@ ..., jU} of the U > 0 jobs scheduled on the machine,
and, with a slight abuse of notation, we define

q¥ =pje. i=12..U

for easier readability. We refer to

U
1.2, K=->"qW+1

S t), i=1,2,.. .U t=
u=i

as the optimal schedule for jobs j®,ji+D . i@ in the time

slots ¢, t+1,....., K - YU ;g™ + 1. Observe that a feasible schedule

for the last i jobs in the processing sequence on machine h requires
at least leziq(“) time slots for processing. We also define

t+1-1

B =3¢, t=12..KI1=12.. K-t+1
k=t

as the cumulative cost of time slots t,t+1,..., t +1— 1. For each

i=1,2,...,Uand t =1,2,...,K, we refer to
Vie :=E(S*(i, 1))

as the energy cost of the schedule S*(i, t). Then, ESR employs the
following recursive relation for the value of the energy cost of the
optimal schedule S*(i, t):

Ve = min {me, BT LV g0 } i=1,2,....U,
i—1 R U
t=Yq"+1,... . K-> q". (27)
u=i

u=1

Observe that the first i — 1 jobs and the last i+ 1 jobs in the pro-
cessing sequence require at least 3. Y ¢® and Y9, ;g™ time
slots for processing, respectively. Eq. (27) recursively expresses the
cost of the optimal schedule S*(i,t) as the minimum between (i)
the cost V;,,; of the optimal schedule $*(i,t + 1) (where job j&
does not start on time slot t) and (ii) the cost of scheduling job
jO starting from time slot t plus the cost of optimally scheduling
the last i+ 1 jobs in the processing sequence in the time slots af-
ter t+q® — 1, that is the cost V, , ., o of the optimal schedule

S*(i+1,t+q"). The base case conditions for Eq. (27) are given
by

V.

_pk .
1~K7251]=i q(u)+] = BR*ZH:[Q(“H’]’ 1= 1, 2, .

U, (28)

~

Vupie:=0, t=1,2,... K (29)

The base case condition (28) ensures that the optimal cost

Vik—z‘j:,.q(wﬂ of scheduling the last i jobs in the processing se-

quence on the machine in the last Zgz,-q(”) time slots is indeed
the sum of the costs of the slots from K — Y"Y_;q® +1 to K, for
i=1,2,...,U. Condition (29) allows correctly expressing Vy . as
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min{VU,M,Bg*q(U)’]} for t =1,2,...,K — qU. Finally, we refer to
Wi =0 (S*(i, 1)), (30)

as the first time slot of job j® in schedule S*(i, t).
The pseudo-code of ESR is reported in Algorithm 5.6. ESR takes

Algorithm 5.6 Exact single-machine rescheduler (ESR).

Input: A feasible single-machine schedule S, on some machine
he# foraset of U= 0jobs = {jD,j@ ... jO}cg
in the time slots t = 1,2, ..., R with K <K
The optimal schedule S; for the jobs in ¢/ in the time slots
K.
: || Parameter initialization
:let«0Oandrj«<O0fori=0,1,...,U
: fori< 1toU do
Set i < q® +1_q, 1r; < qU=D 41y 4
end for
: /| Initialization of base case values
:Let Vi < 0, Wj, <0 fori=1,2,...,.U+1,t=1,2,...,K
:fori< 1toU do
Lett « K—ry_jq+1
Vie < 35
Wie <t
: end for
: /| Main loop
: for i < U downto 1 do
for t < K —ry_;,; downto ; + 1 do

i pt+qD—1
if B, + Vi+l.t+q(i) <

Set Vi, < BH 1 1y
else
Set Vip < Vieyr, Wie < Wirq
end if
end for
end for
|| Generation of a schedule with the computed optimal cost
Let Sp <9, k<0
fori < 1toU do
Set k « VVi,kH
Sy Spu{jO h (k. k+1,... k+qD—1}}
Set k — k+q® —1
end for
return S;

Output:

© 00 g U A WN =

_m s
oA W N = o

_
@

Vity1 then

17: Wi <t
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

+1.t+q®°

a feasible single-machine schedule S for some machine h € % as
input and returns a feasible schedule that achieves the minimum
energy cost on machine h while preserving the original job pro-
cessing sequence in the schedule S;,. First, ESR initializes the pa-
rameters [;,r; for i=0,1,..., U, so that [; and r; are equal to the
sum of the processing times of the first and the last i jobs in
the processing sequence, respectively, and [y =g = 0 (lines 2-5).
Subsequently, ESR declares the optimal cost V;, and the first time
slot W;, for jobifori=1,2,...,U, t=1,2,...,K, and it also sets
Vyp1t=0 for t = 1,2....,K according to condition (29) (line 7).
Then, it iterates over each i=1,2,...,U (lines 8-12) to initialize
Vie with t =K -YY ;g™ +1=K—ry_j;; +1 according to (28).
ESR also consistently sets the start time W;, of job i to t (line 11).
Afterward, ESR enters the main loop of the algorithm (lines 14-
22), which provides a bottom-up implementation of the recursive
relation (27). Finally, ESR exploits the information computed at the
previous lines to build a schedule with optimal cost given by V; ;
(lines 24-29). Toward this end, the new schedule S; and the aux-
iliary variable k are set to an empty schedule and to 0, respec-
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tively (line 24). Then, at each iteration of lines 25-29, (i) the start
time W, of job i is assigned to the variable k (line 26), (ii) Sj
is updated by assigning job j@ to the location (h, {k,k+1,..., k+
q® —1}) (line 27), and finally (iii) k is updated so that the next
iteration (if i < U) considers the optimal assignment for job i+ 1
after time slot k+q® — 1, i.e., after the last slot used to process
job i (line 28). Lastly, ESR returns the new schedule S;. Observe
that, at the first iteration, i.e., when i =1, k is first set as Wj ;.

5.3.4. Enhanced heuristic scheduler

We are finally able to describe Enhanced heuristic scheduler
(EHS), which combines A-SGH, R-ES, and ESR to solve instances of
the BPMSTP. This algorithm computes a set of non-dominated so-
lutions for an instance Z of the BPMSTP with a very low computa-
tional burden. Clearly, EHS benefits from the aforementioned com-
putational improvements of A-SGH and R-ES since it applies such
two algorithms sequentially. However, such a combination entails a
further advantage with respect to SGS-ES. Specifically, within SGS-
ES, it is useless to consider EPS swaps in ES involving an EPS-] and
an empty EPS-I before the first improving EPS move since ES is
preceded by SGH, i.e., a constructive greedy heuristic based on the
LPT rule. Indeed, as empty EPS-Is correspond to free locations, if
there was such an improving EPS swap, then the empty EPS-I in-
volved in the swap would have been greedily chosen by SGH as
a free location for the job in the involved EPS-]. The further im-
provements of the schedules on the various machines enabled by
ESR provide very effective results.

The pseudo-code of EHS is reported in Algorithm 5.7. EHS is

Algorithm 5.7 Enhanced heuristic scheduler (EHS).

Input: A BPMSTP instance Z
Output: A set of non-dominated heuristic solutions to Z
1: Let K(Z) be the lower bound defined in (25)
2Lt O« ¢ K< K S «¢
3: while K > K(7) do
4: Let D(K) be an instance as in (26)
5: /] If it is the first iteration of the loop, compute the schedule
with SGH
if S’ = ¢ then
S « SGH(D(K))
else [/ Otherwise, compute it with A-SGH, by exploiting
previous job assignments

o: S « A-SGH(D(K), ")
10: end if
11: if S is unfeasible then // Checks if S = ¢

12: break

13: end if

14: S’ < R-ES(S) [/ Apply R-ES to improve the TEC of S

15: /| Apply ESR to further improve the TEC by minimizing the
cost on each machine

16: Let S < ¢

17: for h € 4 do

18: Sp < ESR(S{])

19: §" < 8"us;

20: end for

21:  Set O < 0uU{s"}

22 K<K-1

23: end while

24: return the set of non-dominated solutions in O

based on the e-constraint method, like the exact algorithm de-
scribed in Section 5.1. In more detail, it first initializes the set O
of computed solutions to an empty set and K to K (line 2). Then,
EHS iterates over K from K to the lower bound K(Z) (lines 3-23).
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At the first iteration, i.e., when K = K, EHS cannot exploit any pre-
vious assignment, S’ is empty, and the solution S for D(K) is gen-
erated with SGH (line 7). Instead, for K=K -1,K -2, ..., K@), it
is possible to leverage the assignments in the feasible schedule S’
to compute S. Hence, in this case, EHS computes the solution S for
D(K) by using A-SGH (line 9). The loop is stopped at line 12 if S is
unfeasible. Otherwise, S is improved through R-ES (line 14) as well
as ESR (lines 17-20), and the resulting schedule is assigned to S”.
Then, EHS updates the set © by adding S” (line 21) and decreases
K by 1 (line 22). Finally, it returns the set of non-dominated solu-
tions in O (line 24).

6. Numerical results

In this section, we report the results of the experimental tests
aimed at evaluating the performance of the solution approaches
described in Section 5. Specifically, the tests are motivated by the
following goals:

(a) investigate the differences between Formulation 1 and For-
mulation 2 when used in the exact algorithm from an ex-
perimental standpoint;

(b) assess the effectiveness of EHS with respect to the state-of-
the-art heuristic SGS-ES (Anghinolfi et al., 2021), as well as
the constructive heuristic CH by Wang et al. (2018) and an
implementation of the Non-dominated Sorting Genetic Algo-
rithm (NSGA-III) (Deb & Jain, 2013) initialized with CH;

(c) measure the speed-up achieved by the exact algorithm

when provided with an initial solution computed by EHS;

evaluate the performance of EHS with respect to the exact
algorithm with Formulation 2. In particular, the comparison

of their computational times allows us to investigate the im-

pact of the trade-off between solution quality and computa-

tional efficiency.

o
=

The remainder of this section is organized as follows.
Section 6.1 provides a description of the test instances and
the implementation of the algorithms. Section 6.2 presents the
metrics used to evaluate the performance of the algorithms.
Section 6.3 focuses on goal (a), Section 6.4 deals with goal (b),
while Section 6.5 addresses both goals (c) and (d).

6.1. Test instances and implementation details

The experimental tests were carried out on a set of 90 BPMSTP
instances, numbered from 1 to 90. The first 60 instances were orig-
inally proposed by Wang et al. (2018), while the last set of 30 in-
stances was introduced by Anghinolfi et al. (2021). Instances 1-30,
31-60, and 61-90 are called small-scale, medium-scale, and large-
scale instances, respectively. The instances differ in the values of
the number of jobs N, the number of machines M, and the num-
ber of time slots K. In particular, the values of N, M, and K for
instances 1-30 are no greater than the values of N, M, and K, re-
spectively, for instances 31-60. The same applies to instances 31—
60 and 61-90. Appendix A provides a description of all the consid-
ered 90 instances.

Concerning implementation, we used the Java 16 programming
language for the exact algorithm (Algorithm 5.1), EHS, SGS-ES, CH,
and NSGA-III. The exact algorithm also exploits the Java CPLEX
20.1.0 APL In particular, we set the maximum optimality gap of the
MILP solver to 1076 and a time limit of 4 hours. As regards CH and
NSGA-III, we reimplemented and adapted the MATLAB code shared
by Wang et al. (2018). More specifically, we developed the imple-
mentation of NSGA-III consistently with the design proposed by
Wang et al. (2018) for NSGA-I], i.e., we used the same solution rep-
resentation, initialization procedure, crossover and mutation oper-
ators, as well as the same parameter settings (more details can be
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found in Wang et al,, 2018). We performed all the experimental
tests on a Windows 10 system equipped with an Intel Core i9-
9900K Octa-core 3.6 GHz processor and 16 GB of RAM. For the sake
of computational performance, the implementation of the exact al-
gorithm does not generate a CPLEX representation of the mathe-
matical formulation for D(I?) from scratch at each iteration, as it
may be suggested by the pseudo-code at line 3 of Algorithm 5.1.
Instead, such a representation is generated only at the first itera-
tion, i.e,, for K = K. The CPLEX representations in the subsequent
iterations are obtained from the first one by adding proper con-
straints, which set the decision variables related to the slots that
are not in D(K) to zero as follows:

Xine=0, jeJ heH K-pj+1<t<K
for Formulation 1, and
Yyne=0 dePheH,K—d+1<t<K

for Formulation 2. Such constraints avoid assigning jobs with com-
pletion times exceeding K. As a consequence, the makespan cannot
exceed K, as desired. According to experimental evidence, the com-
putational overhead caused by such additional constraints is lower
than the one due to the generation of new CPLEX representa-
tions at each iteration. The numerical results obtained with the
algorithm implementations are available at “https://github.com/
ORresearcher/Exact-and-Heuristic-Solution-Approaches-for-Energy
-Efficient-Identical-Parallel-Machine-Scheduling”.

6.2. Performance metrics

Comparing different solutions to the same instance of a multi-
objective optimization problem is not a straightforward task. In
fact, in contrast to single-objective optimization problems, the so-
lution to an instance of a multi-objective problem is a set of non-
dominated points. As a consequence, we employ two distinct state-
of-the-art metrics for the purpose of comparing different sets of
non-dominated points, so as to provide an in-depth analysis of the
performances achieved by the proposed solution approaches. More
specifically, we use two convergence and distribution metrics, ac-
cording to the classification proposed by Audet et al. (2021). Given
a set of non-dominated points, such metrics are indeed able to
quantify at the same time how close such a set is to the Pareto
front and how it is distributed in the objectives space.

Let O C R" be a set of non-dominated points in the objective
space, and F be its reference Pareto-optimal front. The first met-
ric used in this paper, called Hypervolume (Guerreiro et al., 2021;
Zitzler & Thiele, 1999), measures the hypervolume covered by O
with respect to a reference point in the space of the objectives. As
such, it can be used to compare two or more fronts by assuming a
common reference point. Formally, let r be a reference point in R".
Then, the Hypervolume of O is the measure of the region weakly
dominated by © and bounded above by r, i.e.,

HO)=A({qeR":dpeO:p=<qg=r}}),

where A(-) is the Lebesgue measure. Larger Hypervolume values
denote a better approximation of the Pareto-optimal front. We ob-
serve that the Hypervolume metric is Pareto-compliant, as pointed
out by Zitzler et al. (2007).

The other metric used for comparisons is called Modi-
fied inverted generation distance (IGD") (Ishibuchi et al., 2015).
IGD" is a metric that extends the Inverted generation distance
(IGD) (Coello Coello & Reyes Sierra, 2004) to achieve Pareto-
compliance. Both IGD and IGD* measure the quality of a set of
non-dominated points © computed by an algorithm in compari-
son to a set of reference solutions F, which typically consists of a
set of Pareto-optimal solutions. In particular, IGD measures the av-
erage distance from each point in F to the nearest point in O by

857

European Journal of Operational Research 311 (2023) 845-866

generally using the Euclidean distance metric. Lower values for IGD
correspond to a better approximation of the Pareto front. However,
IGD fails to be compliant with the Pareto-dominance relation when
comparing two different non-dominated sets. In fact, IGD may not
always assign the lower value to the dominating set. IGD™ over-
comes this drawback by employing a different distance metric that
we denote by d*(.,-). Specifically, given a reference point p € F
and a non-dominated point g € O, such a distance is computed as

n

d*(p.q) = | Y_ (max{g; — pi. 0})* ] .

i=1
where p; and g; are the values of p and g, respectively, associated
with the ith objective. Then, the IGD* value for the set O of non-
dominated points is given by
1 .
> mind*(p, q).
qe0
peF

IGD*(0) = 7

6.3. Comparing the two mathematical formulations

This subsection evaluates the two mathematical formulations
introduced in Section 3 when used in the exact algorithm, by com-
paring the computational times achieved on the test instances. To-
ward this end, the MILP solver used at line 3 of Algorithm 5.1 was
first implemented with Formulation 1, and then with Formula-
tion 2.

Table 1 reports the results of the comparison for instances 1-
60. The exact algorithm was not able to solve large-scale instances
61-90 with Formulation 1 due to the memory constraints of the
experimental setup. On the other hand, Formulation 2 was capa-
ble of solving all of such instances, as reported in later subsec-
tions. Table 1 shows the computational times obtained by using
Formulation 1 and Formulation 2, along with their percentage de-
viation A. Formally, given the computational times 8¢y ; and 8, ;,
i=1,2,...,60, obtained with Formulation 1 and Formulation 2,
respectively, the value of the percentage deviation for the ith in-
stance is given by 1 — &g, ;/8F1 so that an improvement of For-
mulation 2 with respect to Formulation 1 is always expressed as
a percentage between 0% and 100%. In the table, all the values of
the computational times were rounded to 4 decimal places. The
best result for each instance is highlighted in bold, according to
the actual (non-rounded) value. At the bottom of the table, the
rows “Avg.” and “Std dev.” report the averages and the standard
deviation, respectively, of the computational times and percentage
deviations on instances 1-30 and 31-60. The row “N. best” shows
the number of instances where one of the implementations of the
exact algorithm outperforms or equals the other, while “N. draw”
indicates the number of instances such that the various approaches
obtain the same performance. Finally, the last row displays the
p-values obtained with the non-parametric Wilcoxon signed rank
test (Gibbons & Chakraborti, 2020), aimed at assessing the statisti-
cal significance of the difference between the computational times
obtained by Formulation 1 and Formulation 2. In more detail, we
assume that, if p is smaller than 0.05, then we can reject the null
hypothesis that the two formulations generate non-significantly
different results. In the tables presented in the remainder of the
section, we adopt the same conventions used in Table 1 as regards
boldface highlighting, decimal rounding, and rows “Avg.”, “Std dev.”
“N. best”, “N. draw”, and p. The following subsections display the
percentage deviation for Hypervolume and IGD* as well. Through-
out the section, the symbol A, used for the percentage deviation,
reports the solution approach that is evaluated for the considered
metric as a subscript, and the one used as a reference as a su-
perscript. For instance, in this subsection, we aim at showing the
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Comparison of the computational times obtained by the exact algorithm when using Formulation 1
(F1) and Formulation 2 (F2) for instances 1-30 and 31-60.

Instance CPU time (s) Instance CPU time (s)

F1 F2 AR (%) F1 F2 AR (%)
1 0.7670  0.3525 54.04 31 7.4852 0.9499 87.31
2 0.6523 04799 26.43 32 21.4092 1.1458 94.65
3 0.3438  0.3041 11.54 33 67.1348 1.5192 97.74
4 03968 0.5265 —32.67 34 178.3155 2.2330 98.75
5 04713  0.4288 9.02 35 265.2156 2.5779 99.03
6 0.6932  0.4466 35.57 36 10.3682 0.9013 91.31
7 0.6179 0.3865 37.44 37 29.6823 1.3302 95.52
8 09727  0.5586  42.57 38 129.6473 2.5866 98.00
9 0.5401 0.2809  47.99 39 219.0398 2.7987 98.72
10 09134 0.7209 21.07 40 416.4091 4.1294 99.01
11 0.7175 04399 38.69 41 16.1153 0.9398 94.17
12 1.2644  0.7382  41.62 42 38.0861 1.7630 95.37
13 0.8214 04236  48.43 43 124.4411 2.6687 97.86
14 1.2381 0.6709  45.81 44 333.3671 3.7989 98.86
15 0.7826  0.3676 53.04 45 650.1111 5.8304 99.10
16 1.7645  0.7276  58.76 46 45.6422 3.4909 92.35
17 1.1950 0.5931 50.37 47 98.6533 4.2710 95.67
18 24932 1.0311 58.64 48 296.3851 7.3489 97.52
19 1.2564 0.4866 61.27 49 1242.2259  17.5062  98.59
20 1.8639  0.6527 64.98 50 12914013 11.3853  99.12
21 22242  0.6678 69.98 51 132.9453 7.2481 94.55
22 2.8476  0.9895 65.25 52 101.9938 5.3167 94.79
23 1.5190 04635 69.49 53 509.0894 10.1980 98.00
24 4.1561 1.2782 69.24 54 819.4229 12.6210 98.46
25 1.1941 0.2998 74.89 55 22255660 18.1268  99.19
26 3.1824 0.8721 72.60 56 93.0159 4.1815 95.50
27 1.6282 04519 72.25 57 231.8769 10.9855  95.26
28 46395 1.1910 7433 58 537.1396 13.1024  97.56
29 3.7396  0.9733 73.97 59 17052297 21.4852 98.74
30 43741 09687 77.85 60 2329.4400 20.7640 99.11
Avg. 1.6424  0.6258  49.82 Avg. 472.2285 6.7735 96.66
Std dev.  1.2561 0.2731  24.57 Std dev. 646.3344 6.2401 2.80
N. best 1 29 N. best 0 30
N. draw 0 N. draw 0
] 2.3534E-06 P 1.7344E-06

computational times obtained with Formulation 2 in comparison
with the ones of Formulation 1, and we consistently express the
percentage deviation between the computational times as Ag

The implementation of the exact algorithm based on Formu-
lation 2 outperforms the one exploiting Formulation 1 in all in-
stances with the only exception of instance 4, where Formulation 2
is 32.67% worse than Formulation 1. However, the average compu-
tational time of the former implementation on medium-scale in-
stances 31-60 is two orders of magnitude lower than the average
time achieved by the latter, with a remarkable average percentage
deviation equal to 96.66%. Moreover, the computational advantage
of Formulation 2 with respect to Formulation 1 on the small-scale
instances, i.e., instances 1-30, is still noteworthy, with an average
percentage deviation of 49.82%. We observe that the small values
of p denote the statistical significance of the numerical results.

6.4. Comparing EHS with the other heuristics

This subsection first compares EHS, i.e.,, the novel heuristic
proposed in this paper, with the state-of-the-art heuristic SGS-
ES. Tables 2-4 report the values of the performance metrics in-
troduced in Section 6.2, i.e., Hypervolume and IGD*, and the com-
putational times obtained by EHS and SGS-ES on instances 1-30,
31-60 and 61-90, respectively. Each of the three tables adopts the
same conventions used for Table 1. In particular, A}%3ES denotes
the percentage deviation of the performance of EHS with respect
to SGS-ES. For instance, a positive value of A3GSES for the com-
putational times indicates that EHS requires less time than SGS-ES.
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On the other hand, a positive value of AS3ES for the Hypervolume
highlights that EHS is able to compute a better Pareto front with
respect to SGS-ES. Throughout the section, whenever the percent-
age deviation cannot be computed due to a division by zero, we
write a dash instead. Since both EHS and SGS-ES perform stochas-
tic choices, we averaged the results obtained over 10 independent
runs of the algorithms.

The numerical results show that EHS achieves better results
than SGS-ES in terms of Hypervolume and IGD* for most of in-
stances 1-30 and 31-60, and for all instances 61-90. The results
obtained in terms of Hypervolume are coherent with those ob-
tained in terms of IGD*. Furthermore, EHS outperforms SGS-ES in
terms of computational times on 83 instances over 90, with the
average of 10.12%, 48.97%, and 63.04% improvements on instances
1-30, 31-60, and 61-90, as shown in Tables 2-4, respectively. Such
improvements are significant also in the case of instances 1-30,
where the CPU times are in the orders of few milliseconds, and
where also the exact algorithm using Formulation 2 is able to find
a solution always in less than 5 seconds (see Table 1). The small
values of p support the relevance of these results, proving that the
difference between the series of data is statistically significant. This
is more evident for instances 61-90, where the p-values are in the
order of 10-% or 10-8. Thus, we conclude that EHS proves to be
more computationally efficient with respect to SGS-ES while pre-
serving the quality of the computed solutions. In more detail, EHS
consistently outperforms SGS-ES on all the large-scale instances
61-90, as regards the values of Hypervolume, IGD*, and computa-
tional times. These results showcase the capability of EHS to gen-
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Comparison of the results obtained by EHS and SGS-ES for instances 1-30. The table shows the values of the Hypervolume, IGD*, and computational times achieved by the

two heuristics, along with the related percentage deviations.

Instance Hypervolume IGD* CPU time (s)

EHS SGS-ES ASGTES (%) EHS SGS-ES ASGEES (%) EHS SGS-ES ASSEES (%)
1 0.6976 0.6976 0.00 0.0000 0.0000 - 0.0042 0.0024 -71.26
2 0.7683 0.7683 0.00 0.0000 0.0000 - 0.0060 0.0059 -1.03
3 0.7425 0.7425 0.00 0.0000 0.0000 - 0.0034 0.0037 8.63
4 0.7438 0.7438 0.00 0.0000 0.0000 - 0.0067 0.0091 25.89
5 0.4531 0.4531 0.00 0.0000 0.0000 - 0.0043 0.0054 20.93
6 0.7532 0.7532 0.00 0.0000 0.0000 - 0.0085 0.0116 26.73
7 0.7460 0.7460 0.00 0.0000 0.0000 - 0.0035 0.0059 39.66
8 0.7745 0.7745 0.00 0.0013 0.0014 0.79 0.0082 0.0098 16.12
9 0.7336 0.7317 0.27 0.0205 0.0208 1.50 0.0045 0.0046 3.58
10 0.7514 0.7514 0.00 0.0003 0.0004 20.00 0.0118 0.0137 14.24
11 0.8013 0.8017 —-0.05 0.0009 0.0004 -163.64 0.0055 0.0077 28.42
12 0.8212 0.8212 0.00 0.0024 0.0025 2.41 0.0102 0.0148 30.89
13 0.7259 0.7256 0.04 0.0000 0.0004 100.00 0.0032 0.0031 -2.97
14 0.8139 0.8137 0.03 0.0009 0.0012 23.05 0.0095 0.0104 8.71
15 0.7563 0.7559 0.05 0.0081 0.0087 7.39 0.0051 0.0054 6.28
16 0.7722 0.7722 0.00 0.0013 0.0013 0.80 0.0106 0.0153 30.75
17 0.8077 0.8077 0.00 0.0000 0.0000 - 0.0058 0.0079 26.62
18 0.8485 0.8484 0.01 0.0027 0.0029 533 0.0135 0.0193 30.12
19 0.6900 0.6900 0.00 0.0000 0.0000 - 0.0039 0.0038 -2.73
20 0.7533 0.7533 0.00 0.0016 0.0016 2.93 0.0104 0.0104 0.30
21 0.7508 0.7509 -0.01 0.0012 0.0011 -9.50 0.0063 0.0060 —-5.09
22 0.7989 0.7987 0.03 0.0005 0.0009 42.77 0.0164 0.0196 16.40
23 0.7063 0.7064 -0.01 0.0006 0.0006 0.00 0.0072 0.0082 12.19
24 0.8026 0.8022 0.05 0.0042 0.0048 12.39 0.0148 0.0185 20.12
25 0.5789 0.5785 0.06 0.0006 0.0011 42.54 0.0051 0.0042 -19.62
26 0.7294 0.7294 0.00 0.0000 0.0000 - 0.0080 0.0084 4.99
27 0.7455 0.7455 0.00 0.0005 0.0005 3.45 0.0068 0.0070 3.36
28 0.7967 0.7968 -0.01 0.0002 0.0001 —60.00 0.0125 0.0143 12.50
29 0.7706 0.7703 0.04 0.0037 0.0038 1.63 0.0069 0.0075 7.60
30 0.8402 0.8403 -0.01 0.0018 0.0016 —13.58 0.0192 0.0217 11.29
Avg. 0.7491 0.7490 0.02 0.0018 0.0019 1.01 0.0081 0.0095 10.12
Std dev. 0.0764 0.0764 0.05 0.0039 0.0040 48.92 0.0041 0.0054 20.36
N. best 13 5 15 4 24 6
N. draw 12 11 0
P 0.0642 0.0442 0.0001

erate high-quality Pareto fronts while preserving uniformity in the
distribution of non-dominated points.

We now compare EHS with the previous heuristics proposed by
Wang et al. (2018), i.e., the constructive heuristic named CH and
NSGA-III (Deb & Jain, 2013), initialized with CH. In this case, the
comparison is not possible for all the instances 1-90. In fact, as
also pointed out in (Anghinolfi et al., 2021, pages 419 and 429),
the original CH heuristic by Wang et al. (2018) may be unable to
build feasible schedules, even if a feasible schedule exists, when no
location including only free adjacent slots is available for a job due
to previous assignments.

Table 5 reports the results in terms of Hypervolume and IGD*
only for the instances such that CH is able to compute a fea-
sible solution. The computational times of NSGA-III include the
time needed to perform initialization, i.e., to run CH. The per-
centage deviation AE;SSt is the deviation of the best heuristic be-
tween CH and NSGA-IIl with respect to EHS. The p-values in
the columns related to NSGA-III are obtained by comparing EHS
with NSGA-III, while the p-values in the columns for CH refer
to the comparison between EHS and CH. The results highlight
that CH is unable to find a feasible solution for most of the
large instances 61-90. Overall, CH can find a feasible solution for
only 48 out of 90 instances. For such instances, the superiority
of EHS with respect to the other heuristics is evident, both in
terms of accuracy and computational times. In more detail, EHS
achieves the best result on 47, 46, and 45 instances (out of 48 in-
stances) in terms of Hypervolume, IGD*, and computational time,
respectively.
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6.5. The exact algorithm and EHS

This subsection first presents an evaluation of the computa-
tional advantage introduced by the use of EHS to provide an initial
solution for the MILP solver used by the implementation of the
exact algorithm (Algorithm 5.1) based on Formulation 2. Further-
more, this subsection compares the exact algorithm with EHS to
measure the trade-off between the quality of solutions and com-
putational requirements.

Table 6 shows the values of the computational times obtained
for instances 1-90 by the exact algorithm based on Formulation 2
with and without providing the solution computed by EHS as an
initial solution to the MILP solver. In the table, F2 denotes the re-
sults obtained by using the exact algorithm using Formulation 2,
while F2-init denotes the results obtained with the exact algo-
rithm based on Formulation 2 when performing initialization with
EHS. The table adopts the same conventions used for Tables 1-
4. In particular, AE2 . . indicates the percentage deviation of the
computational times of the exact algorithm exploiting the initial
solution provided by EHS with respect to the implementation of
the exact algorithm without initialization. We observe that the
times reported for the latter implementation include the compu-
tational overhead due to the execution of EHS for initialization.
Table 6 highlights that, differently from the implementation of the
exact algorithm with Formulation 1, the memory requirements of
Formulation 2 enable to solve the large-scale instances 61-90 as
well (we recall that Formulation 1 was able to find a solution only
for the first 60 instances, as pointed out in Section 6.3). However,
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Table 3
Comparison of the results obtained by EHS and SGS-ES for instances 31-60. The table shows the values of the Hypervolume, IGD*, and computational times achieved by the
two heuristics, along with the related percentage deviations.

Instance Hypervolume IGD* CPU time (s)
EHS SGS-ES AFTES (%) EHS SGS-ES ALSES (%) EHS SGS-ES AFTES (%)

31 0.8816 0.8813 0.03 0.0017 0.0023 26.67 0.0243 0.0384 36.88
32 0.8116 0.8109 0.09 0.0007 0.0016 59.20 0.0383 0.0551 30.42
33 0.7766 0.7769 -0.03 0.0012 0.0009 —22.41 0.0563 0.0767 26.67
34 0.6915 0.6916 -0.03 0.0103 0.0102 -117 0.0878 0.0946 717
35 0.6011 0.6011 0.01 0.0000 0.0001 86.67 0.0510 0.0483 —-5.72
36 0.8545 0.8541 0.05 0.0021 0.0033 37.30 0.0299 0.0641 53.27
37 0.8709 0.8710 -0.01 0.0033 0.0034 418 0.0477 0.0914 47.77
38 0.8393 0.8397 -0.05 0.0071 0.0066 —6.42 0.0768 0.1351 4315
39 0.7702 0.7700 0.02 0.0026 0.0028 6.80 0.1072 0.2147 50.05
40 0.7762 0.7730 0.42 0.0056 0.0083 32.88 0.1778 02913 38.96
41 0.9259 0.9259 -0.01 0.0026 0.0024 —-8.47 0.0319 0.0651 50.98
42 0.8528 0.8529 0.00 0.0013 0.0012 —4.73 0.0474 0.1035 5417
43 0.8613 0.8614 -0.01 0.0016 0.0020 16.97 0.0814 01566 48.04
44 0.8229 0.8223 0.07 0.0050 0.0056 10.51 0.1221 0.2399 4910
45 0.7904 0.7899 0.07 0.0034 0.0040 16.40 0.1993 0.4059 50.91
46 0.8166 0.8162 0.05 0.0096 0.0093 —-3.22 0.1764 0.3468 4912
47 0.8493 0.8494 0.00 0.0041 0.0044 6.57 0.2868 0.6161 53.46
48 0.8742 0.8725 019 0.0026 0.0040 35.48 0.4227 0.8131 48.01
49 0.8039 0.8020 0.23 0.0023 0.0034 33.22 0.6800 11943 43.06
50 0.8222 0.8158 0.78 0.0063 0.0109 42,01 0.8537 1.5257 44.05
51 0.8377 0.8370 0.09 0.0139 0.0152 8.88 0.2841 0.6305 54.94
52 0.8667 0.8656 012 0.0038 0.0051 25.71 0.3933 0.9671 59.33
53 0.8880 0.8875 0.06 0.0038 0.0045 15.90 0.5025 1.3249 62.07
54 0.8836 0.8836 0.00 0.0024 0.0024 2.62 0.6990 1.8315 61.83
55 0.8450 0.8445 0.07 0.0004 0.0009 51.02 0.9189 2.8734 68.02
56 0.8831 0.8824 0.08 0.0042 0.0053 20.25 0.3502 0.9294 62.32
57 0.7440 0.7432 011 0.0111 0.0122 9.14 0.4964 14716 66.27
58 0.9058 0.9057 0.01 0.0008 0.0012 27.27 0.6180 2.0238 69.46
59 0.8893 0.8880 0.14 0.0033 0.0040 16.45 0.9788 3.8813 74.78
60 0.8173 0.8169 0.04 0.0029 0.0034 1313 1.0671 3.6342 70.64
Avg. 0.8285 0.8277 0.09 0.0040 0.0047 18.63 0.3302 0.8715 48.97
std dev. 0.0668 0.0668 0.16 0.0034 0.0037 22.46 0.3223 1.0614 17.49
N. best 22 8 24 6 29 1
N. draw 0 0 0
p 0.0004 0.0001 1.9209E-06

Table 4

Comparison of the results obtained by EHS and SGS-ES for instances 61-90. The table shows the values of the Hypervolume, IGD*, and computational times achieved by the
two heuristics, along with the related percentage deviations.

Instance Hypervolume IGD* CPU time (s)

EHS SGS-ES AFSES (%) EHS SGS-ES AES (%) EHS SGS-ES ATES (%)
61 0.8178 0.8162 019 0.0039 0.0050 21.31 8.0704 18.6766 56.79
62 0.8272 0.8262 013 0.0034 0.0040 16.76 16.0995 53.8304 70.09
63 0.7660 0.7645 0.20 0.0036 0.0046 2143 10.9416 22.1941 50.70
64 0.7842 0.7827 019 0.0035 0.0044 19.77 17.9779 49,0354 63.34
65 0.7221 0.7205 0.22 0.0064 0.0072 1137 13.6809 25.6876 46.74
66 0.8008 0.7984 0.30 0.0045 0.0060 24.54 221340 65.3891 66.15
67 0.7558 0.7549 012 0.0028 0.0033 15.12 11.7066 22.0816 46.98
68 0.7388 0.7372 0.22 0.0045 0.0054 16.19 28.1576 72.8456 61.35
69 0.7369 0.7356 017 0.0043 0.0047 9.62 14.0772 22.0728 36.22
70 0.7481 0.7450 0.41 0.0065 0.0087 24,61 37.2852 77.6561 51.99
71 0.7997 0.7980 0.21 0.0046 0.0055 16.53 8.1154 21.7973 62.77
72 0.8724 0.8703 0.24 0.0031 0.0044 29.50 14.4530 56.3769 74.36
73 0.7929 0.7913 0.20 0.0042 0.0051 16.68 10.9099 26.4831 58.80
74 0.8486 0.8471 017 0.0030 0.0039 23.90 18.1652 67.1380 72.94
75 0.7850 0.7835 019 0.0033 0.0042 20.50 11.5784 30.1399 61.58
76 0.8503 0.8488 018 0.0037 0.0047 2053 20.8766 79.8189 73.85
77 0.7453 0.7442 0.14 0.0049 0.0056 12.48 14.0398 31.9174 56.01
78 0.7884 0.7866 0.23 0.0041 0.0051 20.47 31.7094 92.9936 65.90
79 0.7472 0.7451 0.28 0.0039 0.0052 25.92 20.5086 402177 49,01
80 0.8133 0.8117 019 0.0031 0.0041 23.92 30.8912 86.7287 64.38
81 0.8158 0.8140 0.23 0.0047 0.0058 19.43 9.2991 32.5687 7145
82 0.8630 0.8615 018 0.0043 0.0055 2214 17.8626 79.0559 77.41
83 0.8174 0.8159 018 0.0038 0.0048 21.92 13.1299 36.6585 64.18
84 0.8270 0.8261 011 0.0032 0.0039 16.53 21.7891 97.6430 77.68
85 0.8210 0.8200 012 0.0035 0.0040 12.59 14.7378 422191 65.09
86 0.8283 0.8272 0.14 0.0039 0.0045 1418 24.7579 111.6060 77.82
87 0.8054 0.8040 017 0.0042 0.0049 13.36 16.2661 45.2810 64.08
88 0.8364 0.8351 0.16 0.0032 0.0041 2161 33.0019 128.1692 74.25
89 0.7622 0.7588 0.44 0.0051 0.0076 32.06 23.8458 63.2728 6231
90 0.8080 0.8068 015 0.0042 0.0049 14.24 45.2837 136.8648 66.91
Avg. 0.7975 0.7959 0.20 0.0040 0.0050 19.31 19.3784 57.8807 63.04
std dev. 0.0401 0.0402 0.08 0.0009 0.0011 5.36 91422 32.9438 10.33
N. best 30 0 30 0 30 0
N. draw 0 0 0
p 1.7344E-06 1.7344E-06 1.7344E-06
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Comparison of the results obtained by EHS and NSGA-III and CH for all the instances such that CH returns a feasible solution. The table shows the values of the Hypervolume,
IGD*, and computational times achieved by the three approaches, along with the related percentage deviations computed with respect to the best competitor of EHS.

Instance ~ Hypervolume IGD+ CPU time (s)

EHS NSGA-III CH AbSt (%) EHS NSGA-III CH ARt (%) EHS NSGA-III CH ALt (%)
1 0.6976  0.6962 0.6906 0.21 0.0000 0.0023 0.0066 100.00 0.0042 10.9688 0.0206 79.77
2 0.7683  0.7683 0.7671 0.01 0.0000 0.0001 0.0020 100.00 0.0060 10.9884 0.0215 72.13
3 0.7425  0.7425 0.7425 0.00 0.0000 0.0000 0.0000 - 0.0034 10.8791 0.0099 65.75
7 0.7460  0.7452 0.7449 0.11 0.0000 0.0007 0.0011 100.00 0.0035 10.6625 0.0082 56.87
10 0.7514  0.7510 0.7506 0.05 0.0003  0.0005 0.0010 40.00 0.0118 10.9952 0.0312 62.27
12 0.8212  0.8208 0.8208 0.05 0.0024  0.0023 0.0032 —-8.00 0.0102 10.8785 0.0435 76.56
13 0.7259  0.7243 0.7243 0.22 0.0000 0.0020 0.0020 100.00 0.0032 10.8018 0.0067 51.33
14 0.8139 0.8121 0.8121 0.22 0.0009 0.0034 0.0035 72.40 0.0095 10.6095 0.0213 55.16
16 0.7722  0.7688 0.7687 0.43 0.0013  0.0057 0.0058 76.47 0.0106 10.9737 0.0396 73.26
17 0.8077 0.8063 0.8063 0.17 0.0000 0.0017 0.0017 100.00 0.0058 10.8916 0.0182 68.05
18 0.8485  0.8461 0.8461 0.28 0.0027  0.0052 0.0052 48.43 0.0135 10.8807 0.0504 73.30
19 0.6900 0.6862 0.6852 0.56 0.0000 0.0035 0.0045 100.00 0.0039 10.8885 0.0079 51.06
21 0.7508  0.7452 0.7451 0.74 0.0012  0.0064 0.0064 81.08 0.0063 10.6952 0.0122 48.31
22 0.7989 0.7931 0.7930 0.73 0.0005 0.0062 0.0063 91.95 0.0164 10.7534 0.0747 78.08
23 0.7063  0.7021 0.7021 0.60 0.0006 0.0057 0.0057 90.32 0.0072 10.9184 0.0103 29.93
25 0.5789 0.5725 0.5723 1.11 0.0006 0.0065 0.0067 90.55 0.0051 10.8099 0.0074 30.92
26 0.7294 0.7198 0.7170 1.32 0.0000 0.0060 0.0086 100.00 0.0080 10.8309 0.0700 88.56
27 0.7455  0.7440 0.7440 0.21 0.0005 0.0028 0.0028 83.53 0.0068 10.7334 0.0075 9.65
28 0.7967 0.7943 0.7943 0.31 0.0002  0.0027 0.0027 91.62 0.0125 10.8425 0.0764 83.57
31 0.8816 0.8715 0.8715 1.15 0.0017 0.0106 0.0106 84.02 0.0243 11.0500 0.1584 84.68
32 0.8116  0.7980 0.7980 1.68 0.0007 0.0118 0.0118 94.34 0.0383 11.3557 0.1010 62.05
33 0.7766  0.7733 0.7733 0.43 0.0012  0.0044 0.0044 73.68 0.0563 11.7489 0.0634 11.30
34 0.6915 0.6794 0.6793 1.75 0.0103  0.0212 0.0213 51.40 0.0878 12.3398 0.0622 —41.16
35 0.6011  0.5875 0.5875 2.27 0.0000 0.0150 0.0150 99.95 0.0510 13.1657 0.0578 11.62
36 0.8545 0.8437 0.8434 1.26 0.0021  0.0072 0.0074 70.85 0.0299 11.4679 0.1026 70.81
37 0.8709  0.8658 0.8658 0.58 0.0033  0.0075 0.0075 56.02 0.0477 11.6202 0.1056 54.79
38 0.8393 0.8372 0.8372 0.25 0.0071  0.0087 0.0087 19.31 0.0768 12.2492 0.2738 71.96
39 0.7702  0.7651 0.7651 0.66 0.0026  0.0071 0.0071 62.80 0.1072 12.9709 0.1297 17.30
40 0.7762  0.7592 0.7592 2.19 0.0056 0.0194 0.0194 71.30 0.1778 13.8076 0.1656 -7.39
41 0.9259 0.9253 0.9253 0.06 0.0026  0.0036 0.0036 28.84 0.0319 11.5631 0.1355 76.46
42 0.8528  0.8505 0.8505 0.28 0.0013  0.0039 0.0039 67.44 0.0474 12.0115 0.1300 63.52
44 0.8229 0.8197 0.8196 0.39 0.0050 0.0077 0.0077 35.46 0.1221 13.1930 0.1538 20.61
45 0.7904 0.7800 0.7800 1.32 0.0034 0.0113 0.0113 70.19 0.1993 14.5432 0.1684 —18.35
46 0.8166  0.8088 0.8084 0.95 0.0096 0.0149 0.0152 35.45 0.1764 13.1718 2.0441 91.37
47 0.8493  0.8463 0.8463 0.36 0.0041  0.0062 0.0062 33.48 0.2868 13.2982 2.1061 86.38
48 0.8742 0.8654 0.8654 1.01 0.0026  0.0092 0.0092 71.98 0.4227 13.7993 2.1209 80.07
50 0.8222  0.8003 0.8003 2.66 0.0063  0.0233 0.0233 72.89 0.8537 15.1520 2.3195 63.20
51 0.8377 0.8281 0.8280 1.15 0.0139 0.0163 0.0174 15.04 0.2841 15.2817 3.9061 92.73
52 0.8667 0.8636 0.8635 0.35 0.0038  0.0071 0.0071 45.93 0.3933 15.8807 3.9766 90.11
53 0.8880 0.8847 0.8847 0.38 0.0038  0.0072 0.0072 47.72 0.5025 16.2283 4.0585 87.62
55 0.8450 0.8411 0.8411 0.47 0.0004 0.0034 0.0034 87.32 0.9189 17.6802 4.1856 78.05
56 0.8831 0.8794 0.8788 0.42 0.0042  0.0079 0.0086 46.15 0.3502 17.8474 6.1874 94.34
57 0.7440 0.7363 0.7353 1.03 0.0111  0.0152 0.0161 27.05 0.4964 18.0846 6.1088 91.87
58 0.9058  0.9046 0.9046 0.13 0.0008  0.0030 0.0030 72.03 0.6180 18.9285 6.1696 89.98
60 0.8173  0.8148 0.8148 0.31 0.0029  0.0054 0.0054 45.76 1.0671 20.9968 6.3643 83.23
66 0.8008 0.7805 0.7805 2.53 0.0045 0.0195 0.0195 76.84 22.1340 2235118 206.0299 89.26
74 0.8486  0.8379 0.8379 1.26 0.0030 0.0105 0.0105 71.87 18.1652  149.1959 132.1338 86.25
86 0.8283 0.8157 0.8157 1.52 0.0039 0.0123 0.0123 68.47 24.7579  149.0026 129.1161 80.83
Avg. 0.7955 0.7896 0.7893 0.75 0.0028  0.0076 0.0079 67.28 1.5140 22.8568 10.8161 60.79
Std dev.  0.0724  0.0730 0.0733 0.69 0.0032  0.0057 0.0057 26.90 5.3139 40.4773 38.9220 32.12
N. best 47 0 1 46 1 0 45 0 3
N. draw 0 1 0
P 2.3968E-09  1.7378E-09 2.7281E-09  2.3968E-09 1.6310E-09  3.4284E-08

the maximum time limit of 4 hours for the MILP solver was not
sufficient to compute the optimal Pareto fronts for instances 62,
79, 83, 85, 86, 88, and 89. On the contrary, the initialization of the
exact algorithm through EHS allows solving instances 62, 83, 85,
86, and 89 within the time limit. Moreover, such an initialization
enables large time savings in 88 instances over 90, with the excep-
tion of instances 79 and 88, where the time limit is again reached.

With a little abuse of notation, in the remainder of this subsec-
tion, we simply refer to the implementation of Algorithm 5.1 based
on Formulation 2 with the initialization provided by EHS as “ex-
act algorithm with initialization”. Tables 7-9 report the results
of the comparison between the exact algorithm with initializa-
tion and EHS in terms of the performance metrics introduced in
Section 6.2 and computational times for instances 1-30, 31-60 and
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61-90 respectively. We remark that both tables adopt the conven-
tions introduced in the previous subsections.

We first focus on Tables 7 and 8. It is interesting to observe
that EHS is able to compute the optimal Pareto front for instances
1,2,4,5,6, 7 10, 13, 17, 19, and 26. In fact, EHS and the exact al-
gorithm achieved the same values of Hypervolume and IGD*. For
the other instances, the quality of results provided by the exact
algorithm is always larger than the one given by EHS. The compu-
tational times of EHS are always less than the ones of the exact
algorithm with initialization, with the minimum percentage devi-
ation being equal to 71.14%, and an average of 97.28% and 89.47%
deviation for instances 1-30 and 31-60, respectively. Similar argu-
ments can be reported as regards the results for the large-scale
instances 61-90 shown in Table 9, where the percentage deviation
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Table 6
Comparison of the computational times obtained by the exact algorithm when using Formulation 2 (F2) and Formulation 2 with initialization provided by EHS (F2-init) for
instances 1-30, 31-60, and 61-90.

CPU time (s) CPU time (s) CPU time (s)
nstance b F-init AR, (%) nstance ) F2-nit AR, (%) nstance & F2-init AR (%)
1 0.3525 0.2150 39.01 31 0.9499 0.7694 19.01 61 827.0859 611.6478 26.05
2 0.4799 0.1387 71.10 32 1.1458 0.8805 23.15 62 14400.0000 1151.5676 92.00
3 0.3041 0.0892 70.68 33 1.5192 1.0644 29.94 63 1376.1149 1081.9362 21.38
4 0.5265 0.1154 78.09 34 2.2330 1.8488 17.21 64 2019.4856 1603.4638 20.60
5 0.4288 0.0789 81.60 35 2.5779 1.5583 39.55 65 1165.4502 1013.6229 13.03
6 0.4466 0.1060 76.26 36 0.9013 0.4714 47.70 66 2180.1869 1778.8279 18.41
7 0.3865 0.3000 22.40 37 1.3302 0.8897 33.12 67 1426.0655 1117.5993 21.63
8 0.5586 0.4035 27.77 38 2.5866 2.1766 15.85 68 5291.3348 4939.7465 6.64
9 0.2809 0.2154 23.31 39 2.7987 1.9215 31.34 69 2543.0730 2165.1171 14.86
10 0.7209 0.2146 70.23 40 41294 3.2607 21.04 70 2690.2322 2357.9327 12.35
11 0.4399 0.1624 63.09 41 0.9398 0.3561 62.11 71 1017.8704 815.0992 19.92
12 0.7382 0.3179 56.94 42 1.7630 0.6580 62.68 72 906.8871 717.3885 20.90
13 0.4236 0.2772 34.56 43 2.6687 1.9790 25.84 73 1201.6998 965.8806 19.62
14 0.6709 0.4220 37.10 44 3.7989 2.9698 21.83 74 1340.3735 1178.4611 12.08
15 0.3676 0.2575 29.95 45 5.8304 4.2192 27.63 75 1299.6371 1065.3111 18.03
16 0.7276 0.3325 54.30 46 3.4909 1.0783 69.11 76 1348.7682 1142.3735 15.30
17 0.5931 0.3609 39.15 47 42710 2.7043 36.68 77 1860.7451 1612.8176 13.32
18 1.0311 0.5939 42.40 48 7.3489 4.9430 32.74 78 2998.1649 2592.9869 13.51
19 0.4866 0.2932 39.73 49 17.5062 13.3570 23.70 79 14400.0000 14400.0000 0.00
20 0.6527 0.4862 25.52 50 11.3853 8.9311 21.56 80 2741.5972 2290.5488 16.45
21 0.6678 0.4605 31.04 51 7.2481 0.9845 86.42 81 828.6165 667.3496 19.46
22 0.9895 0.7531 23.89 52 5.3167 1.2420 76.64 82 2708.3709 1344.9350 50.34
23 0.4635 0.2670 42.40 53 10.1980 4.1180 59.62 83 14400.0000 1096.4566 92.39
24 1.2782 1.1608 9.19 54 12.6210 4.6798 62.92 84 2891.7570 1755.8605 39.28
25 0.2998 0.1972 34.23 55 18.1268 10.7669 40.60 85 14400.0000 1236.8127 91.41
26 0.8721 0.4775 45.25 56 41815 1.5448 63.06 86 14400.0000 1775.3635 87.67
27 0.4519 0.2971 34.25 57 10.9855 1.7778 83.82 87 1402.1250 1157.3959 17.45
28 1.1910 0.7695 35.39 58 13.1024 2.7290 79.17 88 14400.0000 14400.0000 0.00
29 0.9733 0.7052 27.55 59 21.4852 15.7179 26.84 89 14400.0000 8863.0899 38.45
30 0.9687 0.8249 14.85 60 20.7640 7.7110 62.86 90 3606.3123 3108.4430 13.81
Avg. 0.6258 0.3764 42.71 Avg. 6.7735 3.5770 43.46 Avg. 4882.3985 2666.9345 28.21
Std dev. 0.2731 0.2550 19.84 Std dev. 6.2401 3.9109 22.29 Std dev. 5422.8772 3563.0504 26.98
N. best 0 30 N. best 0 30 N. best 0 28
N. draw 0 N. draw 0 N. draw 2
P 1.7344E-06 P 1.7344E-06 P 3.7896E-06
13 x10%
9x10'1 10210° x10° _
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Fig. 6. Box-and-whiskers plots for the values of Hypervolume (a), IGD* (b), and computational times (c) of the solutions computed by the exact algorithm exploiting
Formulation 2 with initialization provided by EHS (F2-init), EHS itself, and SGS-ES on instances 61-90. In (c), we also show the computational times of the exact algorithm
exploiting Formulation 2 (F2), and we provide an enlargement of the box-and-whiskers plot of EHS and SGS-ES at a finer scale. We enhanced the readability of all the plots
by omitting the outliers.

of EHS with respect to the exact algorithm with initialization is fort. Furthermore, the solutions computed by EHS provide a sig-
equal to 98.85% on the average and never lower than 97%. In this nificant speed-up to the exact algorithm, which is able to compute
case, the quality of the solutions of the exact algorithm is always the optimal solution to the considered instances within a time that
better than the one of EHS, except for instances 79 and 88. In fact, is only two orders of magnitude greater than the one required by
the exact algorithm could not compute the optimal Pareto front for EHS. Finally, we observe that all the aforementioned considera-
such two instances within the 4 hours time limit. This motivates tions are always supported by the small p-values, which confirm
also the better average values of EHS with respect to F2-init, even the statistical difference between the results provided by the two
if the remaining 28 instances are characterized by the superiority approaches.

of F2-init. However, for the other instances, the values of Hyper- Figs. 6 and 7 provide visual support to our discussion. The fig-
volume and IGD™ are equal up to the second decimal place, hence ures also display the results achieved by SGS-ES so as to provide a
proving the effectiveness of EHS in finding a solution. more comprehensive evaluation of the novel solution approaches.

Overall, we can conclude that EHS constitutes an excellent Specifically, Fig. 6 provides the box-and-whiskers plots for Hyper-
trade-off between the quality of solutions and computational ef- volume (a), IGD* (b), and computational times (c) of the solu-
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Table 7
Comparison of the results obtained by the exact algorithm when using Formulation 2 with initialization provided by EHS (denoted by F2-init) and EHS itself for instances
1-30. The table shows the values of the Hypervolume, IGD*, and computational times achieved by the two approaches, along with the related percentage deviations.

Instance Hypervolume IGD* CPU time (s)
F2-init EHS AES (%) F2-init EHS AES (%) F2-init EHS AR (5)

1 0.6976 0.6976 0.00 0.0000 0.0000 - 0.2150 0.0042 98.06
2 0.7683 0.7683 0.00 0.0000 0.0000 - 0.1387 0.0060 95.68
3 0.7425 0.7425 0.00 0.0000 0.0000 - 0.0892 0.0034 96.19
4 0.7438 0.7438 0.00 0.0000 0.0000 - 01154 0.0067 94.16
5 0.4531 0.4531 0.00 0.0000 0.0000 - 0.0789 0.0043 94.56
6 0.7532 0.7532 0.00 0.0000 0.0000 - 0.1060 0.0085 91.99
7 0.7460 0.7460 0.00 0.0000 0.0000 - 0.3000 0.0035 98.82
8 0.7756 0.7745 0.14 0.0000 0.0013 100.00 0.4035 0.0082 97.96
9 0.7507 0.7336 227 0.0000 0.0205 100.00 0.2154 0.0045 97.93
10 0.7514 0.7514 0.00 0.0000 0.0003 100.00 0.2146 0.0118 94.52
1 0.8019 0.8013 0.08 0.0000 0.0009 100.00 0.1624 0.0055 96.62
12 0.8220 0.8212 0.10 0.0000 0.0024 100.00 0.3179 0.0102 96.79
13 0.7259 0.7259 0.00 0.0000 0.0000 - 0.2772 0.0032 98.83
14 0.8153 0.8139 017 0.0000 0.0009 100.00 0.4220 0.0095 97.74
15 0.7687 0.7563 1.61 0.0000 0.0081 100.00 0.2575 0.0051 98.04
16 0.7732 0.7722 0.13 0.0000 0.0013 100.00 0.3325 0.0106 96.82
17 0.8077 0.8077 0.00 0.0000 0.0000 - 0.3609 0.0058 98.39
18 0.8506 0.8485 0.25 0.0000 0.0027 100.00 0.5939 0.0135 97.73
19 0.6900 0.6900 0.00 0.0000 0.0000 - 0.2932 0.0039 98.68
20 0.7548 0.7533 0.19 0.0000 0.0016 100.00 0.4862 0.0104 97.86
21 0.7520 0.7508 0.16 0.0000 0.0012 100.00 0.4605 0.0063 98.64
22 0.7993 0.7989 0.05 0.0000 0.0005 100.00 0.7531 0.0164 97.83
23 0.7067 0.7063 0.05 0.0000 0.0006 100.00 0.2670 0.0072 97.30
24 0.8067 0.8026 0.52 0.0000 0.0042 100.00 11608 0.0148 98.73
25 0.5794 0.5789 0.08 0.0000 0.0006 100.00 0.1972 0.0051 97.42
26 0.7294 0.7294 0.00 0.0000 0.0000 - 0.4775 0.0080 98.32
27 0.7458 0.7455 0.04 0.0000 0.0005 100.00 0.2971 0.0068 97.72
28 0.7970 0.7967 0.03 0.0000 0.0002 100.00 0.7695 0.0125 98.37
29 0.7743 0.7706 0.48 0.0000 0.0037 100.00 0.7052 0.0069 99.02
30 0.8413 0.8402 013 0.0000 0.0018 100.00 0.8249 0.0192 97.67
Avg. 0.7508 0.7503 0.22 0.0000 0.0018 100.00 0.3764 0.0081 97.28
std dev. 0.0768 0.0767 0.49 0.0000 0.0039 0.00 0.2550 0.0041 1.64
N. best 19 0 19 0 0 30
N. draw 11 11 0
p 1.3183E-04 1.3183E-04 1.7344E-06

Table 8

Comparison of the results obtained by the exact algorithm when using Formulation 2 with initialization provided by EHS (denoted by F2-init) and EHS itself for instances
31-60. The table shows the values of the Hypervolume, IGD*, and computational times achieved by the two approaches, along with the related percentage deviations.

Instance Hypervolume IGD* CPU time (s)

F2-init EHS AES (%) F2-init EHS ABS (%) F2-init EHS AR (5)
31 0.8829 0.8816 0.15 0.0000 0.0017 100.00 0.7694 0.0243 96.85
32 0.8122 0.8116 0.08 0.0000 0.0007 100.00 0.8805 0.0383 95.65
33 0.7783 0.7766 0.21 0.0000 0.0012 100.00 1.0644 0.0563 94.71
34 0.7021 0.6915 1.52 0.0000 0.0103 100.00 1.8488 0.0878 95.25
35 0.6012 0.6011 0.00 0.0000 0.0000 100.00 1.5583 0.0510 96.72
36 0.8563 0.8545 0.21 0.0000 0.0021 100.00 0.4714 0.0299 93.65
37 0.8731 0.8709 0.26 0.0000 0.0033 100.00 0.8897 0.0477 94.64
38 0.8464 0.8393 0.84 0.0000 0.0071 100.00 21766 0.0768 96.47
39 0.7733 0.7702 0.40 0.0000 0.0026 100.00 1.9215 0.1072 94.42
40 0.7823 0.7762 0.77 0.0000 0.0056 100.00 3.2607 0.1778 94.55
41 0.9267 0.9259 0.08 0.0000 0.0026 100.00 0.3561 0.0319 91.04
42 0.8535 0.8528 0.08 0.0000 0.0013 100.00 0.6580 0.0474 92.79
43 0.8630 0.8613 019 0.0000 0.0016 100.00 1.9790 0.0814 95.89
44 0.8279 0.8229 0.61 0.0000 0.0050 100.00 2.9698 0.1221 95.89
45 0.7936 0.7904 0.40 0.0000 0.0034 100.00 4.2192 0.1993 95.28
46 0.8266 0.8166 121 0.0000 0.0096 100.00 1.0783 0.1764 83.64
47 0.8523 0.8493 0.34 0.0000 0.0041 100.00 2.7043 0.2868 89.40
48 0.8760 0.8742 0.21 0.0000 0.0026 100.00 4.9430 0.4227 91.45
49 0.8064 0.8039 0.31 0.0000 0.0023 100.00 13.3570 0.6800 94.91
50 0.8320 0.8222 119 0.0000 0.0063 100.00 8.9311 0.8537 90.44
51 0.8459 0.8377 0.97 0.0000 0.0139 100.00 0.9845 0.2841 7114
52 0.8681 0.8667 017 0.0000 0.0038 100.00 1.2420 0.3933 68.33
53 0.8903 0.8880 0.25 0.0000 0.0038 100.00 41180 0.5025 87.80
54 0.8848 0.8836 0.14 0.0000 0.0024 100.00 4.6798 0.6990 85.06
55 0.8454 0.8450 0.04 0.0000 0.0004 100.00 10.7669 0.9189 91.47
56 0.8852 0.8831 0.23 0.0000 0.0042 100.00 1.5448 0.3502 77.33
57 0.7517 0.7440 1.02 0.0000 0.0111 100.00 1.7778 0.4964 72.08
58 0.9060 0.9058 0.02 0.0000 0.0008 100.00 2.7290 0.6180 77.35
59 0.8921 0.8893 0.31 0.0000 0.0033 100.00 15.7179 0.9788 93.77
60 0.8198 0.8173 0.31 0.0000 0.0029 100.00 7.7110 1.0671 86.16
Avg. 0.8318 0.7503 0.42 0.0000 0.0040 100.00 3.5770 0.3302 89.47
std dev. 0.0658 0.0767 0.41 0.0000 0.0034 0.00 3.9109 0.3223 8.27
N. best 30 0 30 0 0 30
N. draw 0 0 0
p 1.7344E-06 1.7344E-06 1.7344E-06
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Table 9
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Comparison of the results obtained by the exact algorithm when using Formulation 2 with initialization provided by EHS (denoted by F2-init) and EHS itself for instances
61-90. The table shows the values of the Hypervolume, IGD", and computational times achieved by the two approaches, along with the related percentage deviations.

Instance Hypervolume IGD* CPU time (s)
ini EHS (9 i EHS (9 i F2-init
F2-init EHS Fromit (%) F2-init EHS Bt (%) F2-init EHS AEHS‘“' (%)
61 0.8223 0.8178 0.55 0.0000 0.0039 100.00 611.6478 8.0704 98.68
62 0.8313 0.8272 0.50 0.0000 0.0034 100.00 1151.5676 16.0995 98.60
63 0.7704 0.7660 0.57 0.0000 0.0036 100.00 1081.9362 10.9416 98.99
64 0.7886 0.7842 0.56 0.0000 0.0035 100.00 1603.4638 17.9779 98.88
65 0.7299 0.7221 1.06 0.0000 0.0064 100.00 1013.6229 13.6809 98.65
66 0.8064 0.8008 0.70 0.0000 0.0045 100.00 1778.8279 221340 98.76
67 0.7590 0.7558 0.41 0.0000 0.0028 100.00 11175993 11.7066 98.95
68 0.7446 0.7388 0.77 0.0000 0.0045 100.00 4939.7465 28.1576 99.43
69 0.7418 0.7369 0.66 0.0000 0.0043 100.00 2165.1171 14.0772 99.35
70 0.7563 0.7481 1.09 0.0000 0.0065 100.00 2357.9327 37.2852 98.42
71 0.8052 0.7997 0.69 0.0000 0.0046 100.00 815.0992 8.1154 99.00
72 0.8762 0.8724 0.43 0.0000 0.0031 100.00 7173885 14.4530 97.99
73 0.7982 0.7929 0.66 0.0000 0.0042 100.00 965.8806 10.9099 98.87
74 0.8522 0.8486 0.42 0.0000 0.0030 100.00 1178.4611 18.1652 98.46
75 0.7890 0.7850 0.50 0.0000 0.0033 100.00 1065.3111 11.5784 98.91
76 0.8550 0.8503 0.55 0.0000 0.0037 100.00 1142.3735 20.8766 98.17
77 0.7514 0.7453 0.81 0.0000 0.0049 100.00 1612.8176 14.0398 99.13
78 0.7935 0.7884 0.64 0.0000 0.0041 100.00 2592.9869 31.7094 98.78
79 0.3657 0.7472 —104.34 0.1910 0.0039 —4849.50 14400.0000 20.5086 99.86
80 0.8171 0.8133 0.47 0.0000 0.0031 100.00 2290.5488 30.8912 98.65
81 0.8217 0.8158 0.72 0.0000 0.0047 100.00 667.3496 9.2991 98.61
82 0.8683 0.8630 0.61 0.0000 0.0043 100.00 1344.9350 17.8626 98.67
83 0.8221 0.8174 0.57 0.0000 0.0038 100.00 1096.4566 13.1299 98.80
84 0.8314 0.8270 0.53 0.0000 0.0032 100.00 1755.8605 21.7891 98.76
85 0.8250 0.8210 0.49 0.0000 0.0035 100.00 1236.8127 14.7378 98.81
86 0.8333 0.8283 0.60 0.0000 0.0039 100.00 1775.3635 24.7579 98.61
87 0.8106 0.8054 0.64 0.0000 0.0042 100.00 1157.3959 16.2661 98.59
88 0.7039 0.8364 —18.82 0.0375 0.0032 —1062.61 14400.0000 33.0019 99.77
89 0.7683 0.7622 0.80 0.0000 0.0051 100.00 8863.0899 23.8458 99.73
90 0.8131 0.8080 0.63 0.0000 0.0042 100.00 3108.4430 45.2837 98.54
Avg. 0.7851 0.7503 -3.52 0.0076 0.0040 —103.74 2666.9345 45.2837 98.85
Std dev. 0.0896 0.0767 19.37 0.0353 0.0009 921.09 3563.0504 9.1422 043
N. best 28 2 28 2 0 30
N. draw 0 0 0
P 3.5888E-04 3.5888E-04 1.7344E-06
940 —F2init 6Ll
920 = IASES 255
—EHS 4
2000 F2-init @Zﬁﬁ e F2 i e
—F2- 860 —F2-init
1800 —SGS-ES 840 & —SGS-ES 2:i
1600 —EHS o2 —EHS
O 62 64 66":3 70 72 74 o 4 175 180 13; 190 195
L'l_J 1400 bt - G
1200 F3 ~ ==
—SGS-ES
1000 16 —EHS
2 g
800 ——L_ =155
100 200 300 400 500 15
CmaX 84 86 8 90 92 94 CmaX 380 400 420 440 460
cmax cmax
(@) (®)

Fig. 7. Pareto fronts of instance 40 (a) and instance 90 (b) computed by the exact algorithm exploiting Formulation 2 with initialization provided by EHS (F2-init), EHS itself,
and SGS-ES. Enlargements of two different parts of the fronts are also reported to appreciate the difference between the various algorithms at a finer scale.

tions computed by the exact algorithm with initialization, EHS it-
self and SGS-ES on the large-scale instances, i.e., 61-90. In partic-
ular, Fig. 6(c) also displays the computational times obtained by
the exact algorithm. The plots are consistent with the conclusions
drawn in this section on the comparisons between the exact al-
gorithm exploiting Formulation 2 (with and without initialization)
and EHS, as well as EHS itself and SGS-ES (see Subsection 6.4), ac-
cording to the numerical results presented in the tables. Fig. 6(c)
magnifies the box-and-whiskers plots related to EHS and SGS-ES so
as to provide a more accurate comparison of their computational
times on a different scale. Finally, Fig. 7 provides a graphical rep-
resentation of the Pareto fronts computed by the exact algorithm
with initialization and EHS for instances 40 (a) and 90 (b). Enlarge-
ments of different portions of the figure allow the reader to appre-

ciate the differences between the displayed Pareto fronts with a
finer level of detail.

7. Conclusions

Energy-efficient manufacturing has become a compelling mat-
ter in the latest years, owing to the pressing environmental issues
and the consequent desire to shift toward sustainable production.
In this context, the development of suitable scheduling models and
efficient solution approaches plays an essential role in the defini-
tion of a new paradigm that encompasses both productivity goals
and environmental awareness.

In this paper, we have considered the bi-objective scheduling
problem of simultaneously minimizing the makespan and the TEC
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of a set of independent jobs on parallel identical machines, called
the Bi-objective scheduling on parallel identical machines with
time-of-use costs problem (BPMSTP). We have introduced a combi-
natorial property that has provided a novel description of the solu-
tion space of the BPMSTP. This characterizing property has enabled
the development of a compact formulation that constitutes the
foundation of an exact algorithm for the problem. Such an algo-
rithm significantly improves upon the previous exact approaches,
as it has reduced the computational times by two orders of mag-
nitude for several instances in the test dataset. We have also pre-
sented a novel heuristic for the BPMSTP, called Enhanced heuris-
tic scheduler (EHS). Such a heuristic is based on several ideas that
enable an accurate and fast resolution of both small and large in-
stances. We have shown that EHS outperforms the previous state-
of-the-art heuristic for the BPMSTP, called Split-greedy scheduler
with exchange search (SGS-ES). Furthermore, EHS has also proved
able to speed up the exact algorithm, by further reducing its com-
putational burden.

Summarizing, the novelty of this paper constitutes a significant
step in the development of effective solution approaches, both ex-
act and heuristic, for the BPMSTP. This work will hopefully en-
able additional research on identical parallel machine scheduling
under TOU costs in the future, by encouraging the design of sim-
pler and/or faster approaches. In this respect, as future research
directions, we plan to address the generalization of the combina-
torial properties of the BPMSTP to similar problems. For instance,
classical objectives in scheduling, such as the total weighted tar-
diness or the maximum lateness, could be considered along with
the makespan or the TEC in order to increase the capability of
the problem to model real manufacturing systems. From a math-
ematical standpoint, we will consider different representations
of the time horizon, so as to possibly develop continuous-time
or sequence-based formulations that are ubiquitous in classical
scheduling. From the computational viewpoint, we will investigate
the possibility of speeding up the exact algorithm by tackling the
sequential single-objective problems through parallel computing,
so as to fully exploit the available CPU and memory resources. Fi-
nally, we will focus on extending the local search used by EHS to
consider larger sets of improving moves, which may further en-
hance the quality of solutions at the expense of slightly increasing
computational times.
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Appendix A. Test instances

In this Appendix, we report the details of the set of test in-
stances used in Section 6. For each instance, the number of jobs
N, the number of machines M, and the number of time slots K is
given by an element (N, M, K) of the Cartesian product between

 {6,10, 15, 20, 25}, {3, 5,7}, and {50, 80} for instances 1-30;

{30, 60, 100, 150, 200}, {8, 16,25}, and {100,300} for in-
stances 31-60, except for instances 41-44, where the num-
ber of machines is equal to 20 instead of 25;

{250,300, 350, 400, 500}, {25, 30, 40}, and {350, 500} for in-
stances 61-90.

The processing times p; € Z,, for each j in the set of jobs
J, were randomly drawn from the uniform distributions U[1, 4],
U[1, 4], and UJ[1, 12] for instances 1-30, 31-60, and 61-90, respec-
tively. Similarly, the consumption rates u, € Z., for each h in the
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set of machines H, were drawn from U[1, 3], U[1, 3], and U[1, 6] for
instances 1-30, 31-60, and 61-90, respectively. Furthermore, the
time slot costs ¢; € Z, for each t in the set of time slots 7, belong
to the sets {1,2, 3,4}, {1,2,3,4}, and {1, 2, ..., 8} for instances 1-
30, 31-60, and 61-90, respectively. The number |P| of distinct pro-
cessing times is in {3,4,5} for instances 1-30 and {3, 4} for in-
stances 31-60, while it is equal to 12 for instances 61-90. Finally,
the maximum processing time is equal to |P| for all the instances,
except for instances 1, 3, 4, 6, 9, 12, and 15, where it is equal to 5.
The whole set of instances is available at “https://github.com/
ORresearcher/Exact-and-Heuristic-Solution-Approaches-for-Ene
rgy-Efficient-Identical-Parallel-Machine-Scheduling”.
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