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Nowadays, energy-efficient scheduling has assumed a key role in ensuring the sustainability of manu- 

facturing processes. In this context, we focus on the bi-objective problem of scheduling a set of jobs 

on identical parallel machines to simultaneously minimize the maximum completion time and the total 

energy consumption over a time horizon partitioned into a set of discrete slots. The energy costs are 

determined by a time-of-use pricing scheme, which plays a crucial role in regulating energy demand 

and flattening its peaks. First, we uncover a symmetry-breaking property that characterizes the struc- 

ture of the solution space of the problem. As a consequence, we provide a novel, compact mixed-integer 

linear programming formulation at the core of an efficient exact solution algorithm. A thorough exper- 

imental campaign shows that the use of the novel mathematical programming formulation enables the 

solution of larger-scale instances and entails a reduction in the computational times as compared to the 

formulation already available in the literature. Furthermore, we propose a new heuristic that improves 

the state-of-the-art in terms of required computational effort and quality of solutions. Such a heuristic 

outperforms the existing heuristics for the problem and is also capable of speeding up the exact solution 

algorithm when used for its initialization. Finally, we introduce a novel dynamic programming algorithm 

that is able to compute the optimal timing of the jobs scheduled on each machine to further improve the 

performance of the new heuristic. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

In the last years, the compelling challenges in environmental 

ustainability have led to the development of a new paradigm for 

anufacturing that allows planning the production while restrain- 

ng the resulting energetic expenditure. Such a paradigm, called 

nergy-efficient scheduling or green scheduling ( Gao et al., 2020 ), 

nables an energy-conscious approach to job scheduling in pro- 

uction. Among the demand-response strategies to regulate energy 

eneration, provisioning, and consumption, time-of-use (TOU) pric- 

ng schemes have proven useful to flatten the peaks in customers’ 

emand to limit the resulting environmental pollution ( Wang & Li, 

015 ). In the literature, one of the most considered energy-aware 

oals is the minimization of the total energy cost (TEC), that is the 

um of the costs associated with the time slots where some job is 

rocessed. 
∗ Corresponding author. 
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In many applications, the need of minimizing energy costs may 

onflict with other typical goals of scheduling problems, such as 

he minimization of the makespan ( Jia et al., 2017; Jiang & Wang, 

020 ) or the minimization of the total weighted tardiness ( Fang 

 Lin, 2013; Zhang & Chiong, 2016 ). In this paper, we consider a 

i-objective scheduling problem with TOU costs, where N inde- 

endent, non-preemptable jobs with no release time have to be 

cheduled on M identical, parallel, and single-server machines over 

 time horizon of K time slots to simultaneously minimize the 

akespan and the TEC. From now on, we refer to such a problem 

s Bi-objective identical parallel machine scheduling with Time-of-Use 

osts problem (BPMSTP). 

The BPMSTP was first investigated by Wang et al. (2018) , who 

roposed a constructive heuristic endowed with local search ca- 

abilities and presented the first mixed-integer linear program- 

ing (MILP) formulation for the problem. Subsequently, Anghinolfi

t al. (2021) proposed a faster and more accurate heuristic ap- 

roach, by enhancing the constructive heuristic of Wang et al. 

2018) and exploiting some intuitions on the combinatorics of the 

roblem. To the best of our knowledge, the work of Anghinolfi

t al. (2021) currently constitutes the state-of-the-art heuristic for 

he BPMSTP ( Catanzaro et al., 2023 ). In this manuscript, we build 
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pon the results of Anghinolfi et al. (2021) by proposing a novel 

ILP formulation and a heuristic that achieves higher computa- 

ional performances. Specifically, the contribution of this paper is 

hreefold. The first contribution concerns a formal description of 

undamental concepts regarding the combinatorics of the BPMSTP. 

n particular, we establish equivalence relations between different 

olutions by highlighting structural symmetries inherent to the so- 

ution space. The existence of such relations allows us to provide a 

ompact MILP formulation for the BPMSTP. The compactness of the 

ovel formulation also enables the development of a fast, exact so- 

ution algorithm. Such results constitute an important step toward 

he discovery of novel combinatorial properties of multi-objective 

OU scheduling problems with multiple machines. These problems 

ave been widely investigated in the last decade (see, e.g., Castro 

t al., 2013; Li et al., 2016; Mitra et al., 2012; Moon et al., 2013;

eng et al., 2018 , and the related discussion in Section 2 ). The

econd contribution is the development of a heuristic approach 

or the BPMSTP that vastly improves upon the one proposed by 

nghinolfi et al. (2021) in terms of both required computational ef- 

ort and quality of solutions, by performing several enhancements 

o the involved algorithms. Such a heuristic also exploits a novel 

xact algorithm based on dynamic programming that efficiently 

etermines the optimal timing of jobs in a single-machine sched- 

le to minimize its energy cost. Lastly, the third contribution re- 

ards the combination of the first and the second ones to provide 

n initial solution to the proposed exact algorithm to further re- 

uce the computational effort required to solve the BPMSTP opti- 

ally. 

Concerning the complexity of the BPMSTP, we remark that the 

roblem of minimizing the TEC within some given deadline is 

nown to be strongly N P -hard, even on a single machine ( Chen & 

hang, 2019 ). As a consequence, the BPMSTP is strongly N P -hard, 

s already hinted by Wang et al. (2018) . Furthermore, Fang et al. 

2016) and Chen & Zhang (2019) both considered the problem of 

inimizing the TEC on a single machine, showing that it can be 

olved by using exact algorithms with a polynomial and pseudo- 

olynomial running time when time slots costs satisfy some spe- 

ific properties. Determining the existence of similar algorithms for 

he BPMSTP still constitutes an open problem. 

The rest of this paper is organized as follows. In Section 2 , we

eport an overview of the literature on scheduling with energy- 

fficiency criteria, by specifically focusing on scheduling with TOU 

osts. In Section 3 , we discuss the problem statement and the 

xisting state-of-the-art mathematical formulation. In Section 4 , 

e analyze the combinatorial properties of the BPMSTP, and we 

resent the novel MILP formulation. In Section 5 , we present 

he exact algorithm for the BPMSTP and the novel heuristic ap- 

roach, and in Section 6 we discuss the numerical results obtained 

n an extensive experimental campaign. We draw conclusions in 

ection 7 , by also prospecting possible future developments of our 

ork. 

. Literature review 

Energy-efficient scheduling has become a relevant topic in pro- 

uction planning due to the growing interest of the manufacturing 

ndustry in environmentally-sustainable production over the last 

ears (see, e.g., Gahm et al., 2016; Giret et al., 2015 ). The shift

oward sustainable manufacturing is the result of the worldwide 

rowth of customers’ demands as well as more severe standards 

or environmental pollution, such as CO 2 emissions and extensive 

and use. Haapala et al. (2013) were among the first authors to 

tress the importance of energy efficiency as a part of produc- 

ion scheduling in modern manufacturing. In the last decade, sev- 

ral works in scheduling have pursued sustainable production as 

heir key goal. Among the most recent contributions, we men- 
846 
ion Karimi et al. (2021) in the context of additive manufacturing, 

imed at minimizing energy cost in response to time-varying elec- 

ricity prices and demand charges, Zhou et al. (2020) for single- 

achine batch processing with dynamic job arrival times, Barak 

t al. (2021) for resource-constrained flexible manufacturing sys- 

ems, and Zeng et al. (2022) for multi-objective flow shop schedul- 

ng. In more detail, while Karimi et al. (2021) proposed a mathe- 

atical model for the problem at hand, Barak et al. (2021) ; Zhou 

t al. (2020) and Zeng et al. (2022) employed multi-objective meta- 

euristics. In particular, Zeng et al. (2022) presented an imple- 

entation of the non-dominated sorting genetic algorithm ( Deb 

t al., 2002 ), a well-known evolutionary algorithm in the literature 

f multi-objective optimization ( Absalom et al., 2021 ). According 

o Gao et al. (2020) , evolutionary algorithms are widely used to 

olve scheduling problems that deal with several objectives and 

onstraints (see, among others, Faria et al., 2019; Lei et al., 2018; 

ang et al., 2016 ). Manufacturing is not the only field that was able

o benefit from energy-aware scheduling practices. Among others, 

e mention scheduling in datacenters ( Caviglione et al., 2021 ), 

eal-time systems ( Bambagini et al., 2016 ), and distributed systems 

 Agrawal & Rao, 2014 ). 

The literature on energy-efficient scheduling with TOU pricing 

chemes can be classified according to the number of optimization 

bjectives, the type of processing environment, and the considered 

olution approaches. We refer the reader to ( Catanzaro et al., 2023 ) 

or a comprehensive survey of the problems, models, and algo- 

ithms in the field. Hereinafter, we review some of the most recent 

nd relevant works characterized by (i) the optimization of a sin- 

le objective on parallel machines, (ii) the use of multi-objective 

odels and metaheuristics for multiple machines, and (iii) the in- 

estigation of multi-objective approaches for some compelling ap- 

lication cases. 

First, concerning single-objective parallel machine problems, 

ing et al. (2016) presented a time-indexed MILP model for the job 

cheduling problem of minimizing the TEC on parallel unrelated 

achines. The authors also proposed a further approach based on 

 Dantzig–Wolfe decomposition algorithm for the problem. Cheng 

t al. (2018) expanded the work of Ding et al. (2016) by provid- 

ng an improved MILP formulation that uses fewer decision vari- 

bles and constraints. Such a formulation was able to outperform 

he one proposed by Ding et al. (2016) on a large set of instances.

esides the TEC, another objective function that is often considered 

n the literature on scheduling with TOU costs is the linear combi- 

ation of the TEC with the makespan, which enables the simulta- 

eous minimization of both. Usually, the former has a unitary co- 

fficient, while the latter is weighted by a constant that represents 

 penalty, such as maintenance and overtime costs. This objective 

unction is also compelling in practical applications, as it is able 

o capture productivity requirements with environmental aware- 

ess. Moon et al. (2013) proposed a time-indexed MILP formula- 

ion for the problem of minimizing such an objective on unrelated 

arallel machines. This formulation was later improved by Cheng 

t al. (2019) through a set of strengthening inequalities. Pei et al. 

2021) generalized the problem faced by Moon et al. (2013) and 

heng et al. (2019) by considering the minimization of the linear 

ombination of the makespan and the TEC on unrelated parallel 

achines, where both objectives are weighted by positive penalty 

actors. The authors proposed a non-linear mathematical program- 

ing formulation for the problem and then developed an approxi- 

ation algorithm based on a single-objective relaxation. 

In the following, we discuss multi-objective models and meta- 

euristics. Cheng et al. (2017) focused on the simultaneous mini- 

ization of the makespan and the TEC for a single-machine batch 

cheduling problem. In this problem, the involved machine re- 

uires an additional amount of power to switch between idle 

nd operational states. Qian et al. (2020) also considered batch 
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Fig. 1. Example of a schedule of five jobs (named j (1) , j (2) , j (3) , j (4) , and j (5) ) on 

two machines (denoted by 1 and 2), with energy consumption rates u 1 = 1 and 

u 2 = 2 . The K = 8 time slots are displayed as squares below the corresponding en- 

ergy cost on the two machines. 
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cheduling. In particular, the authors investigated the problem of 

inimizing the makespan and the TEC on uniform batch machines 

nd proposed a multi-objective evolutionary algorithm exploiting 

daptive clustering that extracts information on the solution space 

o ensure diversity in the populations of solutions. Jiang & Wang 

2020) addressed a flexible job shop scheduling problem that re- 

uires the minimization of both the makespan and the TEC. The 

uthors presented a MILP model and a multi-objective evolution- 

ry algorithm based on decomposition as a solution approach. Sin 

 Chung (2020) took into account preventive maintenance in a 

ingle-machine scheduling problem with the objective of simulta- 

eously minimizing the TEC and machine unavailability. Similarly 

o Jiang & Wang (2020) , the work of Sin & Chung (2020) proposed

 MILP model together with a hybrid multi-objective genetic al- 

orithm in order to solve large instances of the problem. Finally, 

eng et al. (2018) focused on a bi-objective scheduling problem on 

niform parallel machines, which requires minimizing the TEC and 

he number of used machines. The latter objective is also signifi- 

ant for applications, where higher machine uptime conflicts with 

aintenance shifts and increases the overall power consumption. 

he authors developed an iterative search framework based on an 

nsertion algorithm for the single-objective problem that consists 

n minimizing the TEC with a fixed number of machines. 

Finally, we consider application cases. We observe that TOU 

ricing schemes can be interpreted as a possible way to implement 

he general concept of demand side management, which consists 

f either reducing energy consumption or rescheduling and shift- 

ng energy demand to off-peak hours (see, e.g., Golmohamadi, 

022; Panda et al., 2022 and the references therein). More specif- 

cally, Mitra et al. (2012) provided a MILP formulation for opti- 

al operational production planning for power-intensive processes 

n continuous manufacturing, using non-dispatchable demand re- 

ponse programs based on a discrete-time representation. Castro 

t al. (2013) presented resource-task network MILP formulations 

f a steel plant, by investigating the impact of fluctuating en- 

rgy prices on the scheduling of operations that can be obtained 

hrough the participation in price- and incentive-based industrial 

emand side management programs. Subsequently, Castro et al. 

2020) presented another MILP formulation for optimal schedul- 

ng under TOU electricity pricing to model processing tasks with 

ariable electrode mass depletion and replacement tasks that re- 

enerate the mass. Among other studies on practical applications 

vailable in the literature on TOU pricing schemes, Forghani et al. 

2021) investigated the interaction among TOU electricity prices, 

roduction scheduling, and preventive maintenance of continuous 

lurry ball mills by proposing a mixed-integer energy-cost-aware 

ierarchical formulation modeling approach. Furthermore, Sharma 

t al. (2015) focused on a flexible flow shop scheduling problem 

ith speed-scaling machines that require the minimization of the 

arbon footprint, which is affected by the time-varying availabil- 

ty of renewables, as well as the optimization of the TEC under 

OU costs. Li et al. (2016) proposed heuristic approaches for par- 
847 
llel machine scheduling problems in green manufacturing, with 

he goal of minimizing the makespan or the total completion time, 

ubject to proper constraints on the value of the cost. Finally, 

ocholl et al. (2020) investigated a bi-objective parallel batch ma- 

hine scheduling problem based on the fabrication of semicon- 

uctor wafers. In particular, the authors proposed three different 

euristics based on a genetic algorithm that computes the start 

imes of the batches to minimize energy consumption. The pro- 

osed algorithms were enhanced with a local search to further im- 

rove the solutions computed by the heuristics. 

. Problem statement and previous formulation 

In this section, we first formally describe the problem consid- 

red in this paper, i.e., the BPMSTP. Subsequently, we report the 

ormulation of the problem provided by Anghinolfi et al. (2021) , 

hich currently constitutes the state-of-the-art in the literature. 

Let J = { 1 , . . . , N} be the set of jobs , H = { 1 , . . . , M} the set

f identical machines , and T = { 1 , . . . , K} the set of available time

lots . Jobs are non-preemptable and are characterized by an inte- 

er processing time p j ≤ K, j ∈ J , corresponding to an integer num- 

er of distinct time slots. Machines are endowed with an energy 

onsumption rate , which is denoted by u h > 0 for the generic ma- 

hine h ∈ H. Moreover, a non-negative cost c t ≥ 0 , t ∈ T , is asso-

iated with each time slot. The processing of a job j ∈ J during a

ubset T j ⊆ T of p j consecutive time slots on machine h ∈ H corre- 

ponds to the assignment of job j to T j on machine h . In this case,

ob j is said to be scheduled in the time slots in T j on machine h .

f no job is processed by machine h ∈ H in the time slot t ∈ T , we

ay that t is free on h . Then, we define a schedule 

 = 

{
( j, h j , T j ) : h j ∈ H, T j ⊆ T , ∀ j ∈ J 

}
(1) 

s the set of the assignments of the jobs in J such that each job

j ∈ J is scheduled on one and only one machine h j ∈ H, and at

ost a single job in J is assigned to each time slot in T on each

achine in H. If T j is a set of p j consecutive time slots for each

j ∈ J , then schedule S is feasible . Fig. 1 sketches an example of a

chedule with five jobs on two machines over eight time slots. The 

ompletion time C j (S) of a job j ∈ J in schedule S is the largest

ime slot in T j , that is, C j (S) = max t∈T j t , j ∈ J . Furthermore, the

akespan C max of a schedule S is the largest among the completion 

imes of the jobs in J , i.e., 

 

max (S) = max { C j (S) : j ∈ J } . (2) 

et h j ∈ H be the machine where job j ∈ J is processed. The 

nergy cost associated with the processing of job j in S is 

 h j 

∑ 

t∈T j c t . As a consequence, the TEC of S is given by 

(S) = 

∑ 

j∈J 
u h j 

∑ 

t∈T j 
c t . (3) 

hen, the BPMSTP consists in finding a feasible schedule S that 

imultaneously minimizes (2) and (3) . Hereinafter, since S is a 

easible solution to the BPMSTP, we use the expressions “feasible 

chedule” and “feasible solution” interchangeably. Moreover, we 

mit the dependence of C j , C 
max , and E on S to avoid burdening 

he notation. We also refer to the ordered tuple I = (J , { p j , j ∈
 } , H, { u h , h ∈ H} , T , { c t , t ∈ T } ) as an instance of the BPMSTP. 

In the remainder of the section, we describe the MILP formu- 

ation of the BPMSTP provided by Anghinolfi et al. (2021) , referred 

o as “Formulation 1”. Toward this end, we denote by 

 j,h,t ∈ { 0 , 1 } , ∀ j ∈ J , h ∈ H, t ∈ T , 
 binary decision variable that is equal to 1 if t is the start time 

lot of job j on machine h , and 0 otherwise. Moreover, we express 

he makespan in (2) and the TEC in (3) with the decision variables 

 

max ≥ 0 and E ≥ 0 , respectively. 
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Fig. 2. Example of a schedule of seven jobs (named j (1) , j (2) , j (3) , j (4) , j (5) , j (6) , and 

j (7) ) on three machines (denoted by 1, 2, and 3) with energy consumption rates 

u 1 = 1 , u 2 = 2 , and u 3 = 3 . The arrows showcase possible swaps of jobs resulting in 

different, equivalent feasible solutions. 
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Formulation 1. 

in C max , (4) 

in E, (5) 

ubject to 

 = 

∑ 

h ∈H 

u h 

∑ 

j∈J 

K−p j +1 ∑ 

t=1 

X j,h,t 

( 

t+ p j −1 ∑ 

i = t 
c i 

) 

, (6) 

 

 ∈H 

K−p j +1 ∑ 

t=1 

X j,h,t = 1 , ∀ j ∈ J , (7) 

 

j∈J 

t ∑ 

i = max { 1 ,t−p j +1 } 
X j,h,i ≤ 1 , ∀ h ∈ H, t ∈ T , (8) 

 

 ∈H 

K−p j +1 ∑ 

t=1 

(t + p j − 1) X j,h,t ≤ C max , ∀ j ∈ J , (9) 

 

max ≤ K, (10) 

 

max ≥ 0 , E ≥ 0 , X j,h,t ∈ { 0 , 1 } , ∀ j ∈ J , h ∈ H, t ∈ T . (11)

The objectives (4) and (5) minimize the makespan and the 

EC, respectively, consistently with definitions (2) and (6) . Con- 

traints (7) impose that each job j ∈ J starts in a single slot on

 single machine. Constraints (8) avoid more than one job being 

rocessed in the same time slot on the same machine. The left- 

and side of (9) defines the completion time of each job in J ,

hich must not exceed the makespan C max . In turn, the makespan 

annot be greater than the number of time slots K owing to (10) . 

inally, (11) defines the decision variables. Formulation 1 employs 

MK + 2 decision variables and 2 N + MK + 2 constraints. The for-

er number is due to the NMK variables X j,h,t , j ∈ J , h ∈ H, t ∈ T ,
ogether with C max and E, while the latter one is due to constraints 

6) –(10) . 

Observe that Formulation 1 exploits a discrete-time representa- 

ion, i.e., the time horizon is partitioned into a finite set of time 

lots consistently with the statement of the problem, and the pro- 

essing of each job starts at the beginning of a single time slot. 

o the best of our knowledge, the formulations for identical or un- 

elated parallel machines available in the literature on scheduling 

ith TOU costs always employ such discrete-time representations, 

n contrast to the continuous-time and sequence-based formula- 

ions that are often used in classical scheduling. In fact, time-based 

epresentations enable directly expressing the TEC as a linear com- 

ination of the TOU costs. 

The main drawback of Formulation 1 lies in the number of de- 

ision variables, which may become very large as the size of the 

PMSTP instances increases. We overcome this limitation in the 

ollowing section, by presenting a novel formulation that builds 

pon a combinatorial property to enable a compact representation 

f the solution space. 

. New mathematical perspectives 

The purpose of this section is to describe the novel mathemat- 

cal advancements in the BPMSTP proposed in this paper. Specifi- 

ally, we describe a fundamental combinatorial property of the so- 

ution space of the BPMSTP in Section 4.1 . As a consequence, we 

re able to provide a new compact formulation for the problem in 

ection 4.2 . 
848 
.1. Insights on the combinatorics of the solution space 

The solution space of the BPMSTP is characterized by a 

ymmetry-breaking combinatorial property that enables the iden- 

ification of equivalence classes of solutions for a given BPMSTP 

nstance that are different in structure, but that are identical in 

erms of makespan and TEC. Such a property is based on the in- 

uition that, given a schedule S , if two jobs scheduled in S have 

he same processing time, then exchanging them in S does not al- 

er the makespan nor the TEC of S . 

Hereinafter, we formalize this property. Toward this end, we 

rst define 

 := 

{
d : ∃ j ∈ J , p j = d 

}
s the set of distinct processing times of the jobs in J . We also

efine 

 d := 

{
j : j ∈ J , p j = d 

}
, d ∈ P, (12) 

s the subset of jobs with processing time equal to d. We say that

wo feasible solutions S and S ′ to the BPMSTP are equivalent if 

hey have the same value for C max and E. Then, the following prop- 

rty holds. 

roperty 1. For each feasible solution S to the BPMSTP, there are at 

east 
∏ 

d∈P |J d | − 1 other different, equivalent f easible solutions. 

roof. Let the schedule S be given as in (1) . Let also Z =
{ h j , T j } , j ∈ J } be the set of all distinct unordered pairs of ma-

hines and consecutive time slots such that there is a job j ∈ J 

cheduled in the time slots in T j on machine h j in the sched- 

le S . We observe that Z can be rewritten as 
⋃ 

d∈P Z d , where 

 d = {{ h j , T j } , j ∈ J d } . Since all the jobs in J d require the same

umber d of time slots, all the possible assignments of the jobs in 

 d to the elements of Z d , for each d ∈ P , generate schedules that

re equivalent to S . As the number of distinct assignments of the 

obs in J d to Z d corresponds to the number |J d | ! of permutations

f the jobs in J d , the distinct number of assignments of the jobs in

 to Z is the product of |J d | ! for each d ∈ P . The observation that

chedule S is one of such assignments concludes the proof. �

In the following, we illustrate Property 1 through a numerical 

xample. 

xample 1. Let us consider Fig. 2 , which depicts a possible sched- 

le for jobs j (1) , j (2) , j (3) , j (4) , j (5) , j (6) , and j (7) with process-

ng times p j (1) = 4 , p j (2) = p j (4) = 3 , p j (3) = p j (5) = p j (6) = 2 , and

p j (7) = 1 , on three machines with energy consumption rates u 1 = 

 , u 2 = 2 , and u 3 = 3 , over a time horizon that consists of K = 10

ime slots. We observe that assigning j (2) in place of j (4) , and vice-

ersa, does not affect the makespan nor the TEC of the schedule, 

ince the two jobs j (2) and j (4) have the same processing time. 

 similar argument applies to the three jobs j (3) , j (5) , and j (6) .
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ndeed, since the number of jobs |J d | with the same processing 

ime d is equal to 1, 3, 2, and 1 when d is equal to 1, 2, 3, and

, respectively, there are at least other different 
∏ 

d∈P |J d | ! − 1 = 

! 2! 3! 1! − 1 = 11 schedules equivalent to the one depicted in the

gure, according to Property 1 . 

.2. A compact mixed-integer linear programming formulation 

We provide a novel formulation that exploits the inherent sym- 

etries of the solution space by building upon the MILP formula- 

ion presented by Anghinolfi et al. (2021) and Property 1 , described 

n Section 4.1 . First, we denote by 

 d,t = 

t+ d−1 ∑ 

k = t 
c k , ∀ d ∈ P, t = 1 , . . . , K − d + 1 , (13) 

he cumulative cost associated with the d consecutive time slots 

, t + 1 , . . . , t + d − 1 . As a consequence, any job j with processing

ime p j = d assigned to machine h starting at time slot t is charac- 

erized by an energy cost equal to u h b d,t . Let also 

 d,h,t ∈ { 0 , 1 } , ∀ d ∈ P, h ∈ H, t ∈ T , 

e a binary decision variable that is equal to 1 if t is the first slot

f a job with processing time equal to d on machine h , and 0 oth-

rwise. 

Formulation 2. 

in C max , (14) 

in E, (15) 

ubject to 

 = 

∑ 

h ∈H 

u h 

∑ 

d∈P 

K−d+1 ∑ 

t=1 

b d,t Y d,h,t , (16) 

 

 ∈H 

K−d+1 ∑ 

t=1 

Y d,h,t = |J d | , ∀ d ∈ P, (17) 

 

∈P 

t ∑ 

i = max { 1 ,t−d+1 } 
Y d,h,i ≤ 1 , ∀ h ∈ H, t ∈ T , (18) 

t + d −1) Y d,h,t ≤ C max , ∀ d ∈ P, h ∈ H, t = 1 , . . . , K − d + 1 , (19)

 

max ≤ K, (20) 

 

max ≥ 0 , E ≥ 0 , Y d,h,t ∈ { 0 , 1 } , ∀ d ∈ P, h ∈ H, t ∈ T . (21)

The objectives (14) and (15) minimize the makespan and the 

EC, respectively, with the TEC here given by (16) . Constraints 

17) impose that, for each distinct processing time d ∈ J d , exactly 

J d | jobs with processing time d are assigned to some subsets of 

lots on the machines. Eq. (18) guarantees that, on each machine, 

t most a single job is processed in each time slot. The left-hand 

ide of (19) defines the completion time of jobs, which must be 

ess than or equal to the makespan C max . Similarly to Formula- 

ion 1, C max must not exceed the scheduling horizon K, owing to 

20) . Lastly, (21) defines the decision variables. 

Each feasible solution to Formulation 2 defines a class of equiv- 

lent schedules. Indeed, Formulation 2 guarantees that, for each 

 d,h,t = 1 , a job with processing time d is non-preemptively sched- 

led in the slots t, t + 1 , . . . , t + d − 1 on machine h , but it does not

pecify which particular job j ∈ J , with processing time p j = d, is

ssigned to such slots on h . Property 1 ensures that, for each so-

ution S to Formulation 2, there are other 
∏ 

d∈P |J d | ! − 1 different 
849 
quivalent solutions to S . Since such solutions are all equivalent, 

ach of them has the same representation in terms of the decision 

ariables of Formulation 2. 

Algorithm 4.1 generates a possible schedule that belongs to the 

lass of equivalent schedules defined by a solution to Formula- 

ion 2. In more detail, such an algorithm first initializes the sched- 

le S to the empty set at line 1, together with the sets J 

′ 
d 

for each

 ∈ P needed for subsequent computations (lines 2–4). Then, for 

ach d, h , and t such that Y d,h,t = 1 , a job in J 

′ 
d 

is assigned to d

onsecutive slots on machine h starting from slot t (lines 5–9). Fi- 

ally, the computed schedule S is returned (line 10). At the end of 

he algorithm, J 

′ 
d 

= ∅ for each d ∈ P , all the jobs in J are assigned,

nd there are no slots on the same machine assigned to more than 

ne job. 

lgorithm 4.1 Generate-schedule. 

nput: The assignment variables Y d,h,t , d ∈ P, h ∈ H, t ∈ T 
utput: A schedule S 

1: Let S ← ∅ 
2: for d ∈ P do 

3: Let J 

′ 
d 

← J d 

4: end for 

5: for ( ̂  d , ̂  h , ̂  t ) ∈ { (d, h, t) : Y d,h,t = 1 , d ∈ P, h ∈ H, t ∈ T } do 

6: Let j ∈ J 

′ 
ˆ d 

7: S ← S ∪ ( j, ̂  h , { ̂ t , ̂  t + 1 , . . . , ̂  t + 

ˆ d − 1 } ) 
8: J 

′ 
ˆ d 
← J 

′ 
ˆ d 
\ { j} 

9: end for 

0: return S 

Formulation 2 is characterized by |P| MK + 2 decision variables 

nd |P| + MK + |P| M 

∑ 

d∈P (K − d + 1) + 2 constraints. The former

umber is due to the |P| MK variables Y d,h,t , j ∈ J , h ∈ H, t ∈ T , to-

ether with C max and E, while the latter one is due to constraints 

16) –(20) . Let us now compare the number of variables needed by 

ormulation 1 and Formulation 2. The worst case for Formulation 2 

ccurs when |P| = N, i.e., when all the processing times in J are

istinct. In this case, Formulation 2 has the same number NMK + 2 

f decision variables characterizing Formulation 1. On the contrary, 

he most convenient situation for Formulation 2 occurs when the 

rocessing times of all the jobs in J are equal, i.e., when |P| = 1 .

n this case, Formulation 1 is still characterized by NMK + 2 de- 

ision variables, while Formulation 2 has only MK + 2 variables. 

hus, Formulation 2 uses fewer decision variables than Formula- 

ion 1, except for the case |P| = N when the two formulations are 

quivalent in terms of number of decision variables. 

Let us now better characterize the worst case for the number of 

ecision variables of Formulation 2. Toward this end, we observe 

hat a necessary condition for an instance of the BPMSTP to admit 

t least a feasible solution is that the sum of all the time slots 

equired by the jobs in J does not exceed the overall number MK

f slots available for the scheduling, i.e., 

 ≤
∑ 

j∈J 
p j ≤ MK, (22) 

here the equality 
∑ 

j∈J p j = N holds when p j = 1 for each j ∈ J .

e formulate the following stronger necessary condition for feasi- 

ility by building upon (22) . 

roposition 1 (Necessary condition for the existence of a solu- 

ion) . For a BPMSTP instance that admits at least a feasible solution, 

he following inequality holds: 

P| ≤
⌊

−1 + 

√ 

1 + 8 MK 

2 

⌋
. (23) 
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roof. First, 

 

j∈J 
p j = 

∑ 

d∈P 
|J d | d ≥

|P| ∑ 

i =1 

i = 

|P | (|P | + 1) 

2 

(24) 

ince |J d | ≥ 1 and the elements in P are pairwise distinct positive 

ntegers. By combining (22) with (24) , we obtain 

|P | (|P | + 1) 

2 

≤ MK, 

hich entails |P | 2 + |P | − 2 MK ≤ 0 , and therefore 

 ≤ |P| ≤ −1 + 

√ 

1 + 8 MK 

2 

. 

�

We observe that, since (22) and (23) only depend on the pa- 

ameters of the BPMSTP, they are valid for both Formulation 1 and 

ormulation 2. In more detail, Proposition 1 is useful to identify a 

arger class of unfeasible solutions with respect to (22) , and there- 

ore it enables avoiding solving several instances for Formulation 2 

y simply checking the validity of (23) beforehand. 

In order to illustrate how Proposition 1 provides a better de- 

cription of the worst case of Formulation 2 as regards the num- 

er of decision variables, we consider an instance with K = 200 

nd M = 10 as a simple example. The greatest value of N for the

xistence of at least a feasible solution corresponds to the case 

p j = 1 for all j ∈ J , and it is equal to MK = 2 × 10 3 , owing to

22) . In this case, the number of decision variables of Formula- 

ion 1 is 4 · 10 6 + 2 , whereas it is equal to 2 × 10 3 + 2 for Formula-

ion 2 since |P| = 1 . Observe that, for such an instance, condition

23) also holds. Instead, if |P| = N, the number of decision vari- 

bles for Formulation 1 and Formulation 2 is the same. In particu- 

ar, according to Proposition 1 , a necessary condition for feasibility 

s N ≤ � (−1 + 

√ 

16001 ) / 2 � = 62 . Hence, in order for the consid- 

red instance to be possibly feasible, the number of the variables 

as to be no greater than 1 . 24 × 10 5 + 2 . The necessary condition

22) would instead provide the higher upper bound M 

2 K 

2 + 2 = 

 × 10 6 + 2 . 

To complete the comparison of Formulation 1 and Formula- 

ion 2, we also have to take into account the number and nature of 

he sets of constraints. However, as we highlight in Section 5.1 , a 

iscussion of such constraints is not relevant in the framework of 

he developed exact solution algorithm. In Section 6 , we also re- 

ort the significantly lower computational effort required to solve 

ormulation 2 with respect to Formulation 1 in all the considered 

xperimental tests. 

We conclude this section by observing that, since all the op- 

imal solutions of the BPMSTP are equivalent from a theoretical 

tandpoint, practitioners may be interested in evaluating all of 

hem and then selecting the most suitable one according to their 

pecific needs. Thus, instead of focusing on finding a single solu- 

ion S , in the following sections we develop exact and heuristic 

pproaches to compute all the different optimal solutions. 

. Solution approaches 

In this section, we describe the exact algorithm and the novel 

euristic for the BPMSTP proposed in this paper. Specifically, the 

ain goals of the section are the following: 

(a) present the proposed exact solution algorithm based on 

the ε-constraint method and Formulation 2 discussed in 

Section 4.2 ; 

(b) summarize the current state-of-the-art heuristic algorithm 

for the BPMSTP presented in Anghinolfi et al. (2021) , i.e., 

Split-greedy scheduler with exchange search (SGS-ES), which 
850 
is used as a reference to assess the effectiveness of the novel 

heuristic proposed in this paper; 

(c) present the novel heuristic approach, i.e., Enhanced heuristic 

scheduler (EHS), that improves SGS-ES. We also describe all 

the “building blocks” that characterize EHS. 

Before entering into the details of the different solution 

pproaches, we provide some fundamental concepts in multi- 

bjective combinatorial optimization ( Branke et al., 2008; Deb, 

001 ). For the purposes of this paper, we restrict our attention 

o the bi-objective case of the BPMSTP. We refer to the feasi- 

ility region of the BPMSTP as X . Moreover, let S and S ′ be 

wo distinct solutions in X . We say that S dominates S ′ if ei- 

her C max (S) ≤ C max (S ′ ) and E(S) < E(S ′ ) , or C max (S) < C max (S ′ )
nd E(S) ≤ E(S ′ ) ; in particular, S strictly dominates S ′ if both 

 max (S) < C max (S ′ ) and E(S) < E(S ′ ) hold, otherwise S weakly

ominates S ′ . Furthermore, given a subset O ⊆ X , the set of non- 

ominated solutions in O exactly contains each and every solution 

n O that is not dominated by another solution in O itself. A so- 

ution S is Pareto-optimal , or Pareto-efficient , if no other solution in 

 dominates S . Specifically, S is strictly (weakly) Pareto-optimal if 

here is no other solution in X that weakly (strictly) dominates it. 

inally, the Pareto front is the set of points in the space of the ob-

ectives associated with the solutions in the set of Pareto-optimal 

olutions, also called Pareto-optimal set . 

The remainder of this section is structured as follows. First, 

e describe the exact algorithm in Section 5.1 (goal (a)). Then, 

e recall the heuristic presented by Anghinolfi et al. (2021) in 

ection 5.2 (goal (b)). Lastly, we introduce the novel heuristic for 

he BPMSTP in Section 5.3 (goal (c)), which builds upon the al- 

orithmic ideas presented in Section 5.2 to increase the computa- 

ional efficiency while improving the quality of the computed so- 

utions at the same time. 

.1. The exact algorithm 

The proposed exact algorithm for the BPMSTP relies on the 

ombination of MILP and the ε-constraint method for multi- 

bjective optimization, first introduced by Haimes et al. (1971) and 

urther discussed by Chankong & Haimes (2008) . Specifically, the 

xact algorithm iteratively exploits either Formulation 1 or Formu- 

ation 2 to compute the set of Pareto-optimal solutions for a given 

PMSTP instance I . Without loss of generality, in this subsection, 

e describe the algorithm by only referring to Formulation 2. 

The basic idea of the ε-constraint method is to minimize (or 

aximize) one of the objectives while the other ones are con- 

trained to be lower (or greater) than fixed values. For the con- 

idered instance I of the BPMSTP, the exact algorithm first sets an 

pper bound on the makespan and then minimizes the TEC. The 

lgorithm iterates over the previous two steps and progressively 

educes the upper bound until an unfeasible solution is found. In 

his way, the algorithm is able to find all the points of the two- 

imensional Pareto front of I . 

First, we observe that, for a BPMSTP instance I , each Pareto- 

ptimal solution S � of I corresponds to a non-dominated point 

C max (S � ) , E(S � )) in the optimal Pareto front. In particular, there 

re at most K − K (I) + 1 points in the optimal Pareto front, where

 (I) = max 

{ ⌊ ∑ 

j∈J 
p j /M 

⌋ 

, max 
j∈J 

{ p j } 
} 

. (25) 

ndeed, since the processing times p j , j ∈ J , are integer numbers, 

 

max (S � ) is an integer that ranges between the lower bound K (I) 

nd the upper bound K. However, we observe that K (I) given by 

25) is not a tight lower bound for all the instances of the BPMSTP. 
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xample 2. Let us consider a BPMSTP instance with a set of N = 4

obs, denoted by j (1) , j (2) , j (3) , and j (4) , with processing times 2,

, 9, and 10, respectively, to be scheduled on M = 3 machines with

 1 = u 2 = u 3 = 1 , and a number K = 11 of time slots. The lower

ound for C max given by (25) is equal to 10, but there is no feasi-

le solution with such a makespan. In fact, jobs j (2) , j (3) , and j (4) 

ave to be scheduled on three different machines, without leaving 

wo consecutive free time slots for j (1) . 

We now define, for a given 

ˆ K such that 1 ≤ ˆ K ≤ K, a downsized 

nstance of the BPMSTP as 

( ̂  K ) = 

(
J , { p j , j ∈ J } , H, { u h , h ∈ H} , 
{ 1 , . . . , ˆ K } , { c t , t ∈ { 1 , . . . , ˆ K }} ). (26) 

 downsized instance (26) considers a subset of slots 

 1 , 2 , . . . , ˆ K } ⊆ T instead of the whole set of time slots T . Then, we

efine the reduced formulation of the BPMSTP as the optimization 

f (15) subject to constraints (16) –(18) and (21) . In other words, 

he reduced formulation only requires the minimization of the 

EC without considering constraints (19) and (20) that are related 

o the makespan. 

Algorithm 5.1 reports the pseudo-code of the proposed exact 

olution algorithm for the BPMSTP based on the aforementioned 

deas. It takes a BPMSTP instance I as input and returns the set 

f the Pareto-optimal solutions for I as output. The algorithm first 

nitializes the solution set O and the parameter ˆ K at line 1. The lat- 

er is used in the downsized instances within the subsequent loop. 

hen, Algorithm 5.1 repeats lines 2–10 until either ˆ K is lower than 

he lower bound K (I) or an unfeasible solution is obtained before 

eaching K (I) . In more detail, the reduced formulation associated 

ith D( ̂  K ) is solved at line 3. Then, if no feasible solution exists, 

he loop is stopped (line 5). Otherwise, Algorithm 4.1 is called to 

btain an optimal schedule S � for D( ̂  K ) (line 7). Afterward, S � is 

dded to O (line 8). The number of slots ˆ K for the next iteration is 

pdated as C max ( S � ) − 1 at line 9. In fact, we observe that any so-

ution S ′ � = S � to D( ̂  K ) such that C max ( S � ) ≤ C max (S ′ ) ≤ ˆ K is either

quivalent to or weakly dominated by S � . Otherwise, S ′ would be 

he solution computed at line 3, as it would achieve a better TEC 

han S � . Then, Algorithm 5.1 computes the set F of strictly Pareto- 

ptimal solutions for I by identifying the non-dominated solutions 

n O (line 11) and excluding the weakly Pareto-optimal solutions. 

inally, Algorithm 5.1 returns the set of Pareto-optimal solutions F
line 12). 

lgorithm 5.1 Exact algorithm for the BPMSTP. 

nput: A BPMSTP instance I 
utput: The set F of Pareto-optimal solutions for I 

1: Let O ← ∅ and 

ˆ K ← K 

2: while ˆ K ≥ K (I) do 

3: Solve the reduced formulation of D( ̂  K ) with MILP 

4: if no feasible solution exists then 

5: break 

6: end if 

7: Let S � be the schedule computed with Algorithm 4.1 from 

the optimal solution to D( ̂  K ) 

8: Update O ← O ∪ {S � } 
9: ˆ K ← C max (S � ) − 1 

0: end while 

11: Let F be the set of non-dominated solutions in O 

2: return F 

The computational efficiency of solving the reduced formula- 

ion of D( ̂  K ) with MILP at line 3 in Algorithm 5.1 can be enhanced

y providing an initial feasible solution to the MILP solver using a 
851 
iven heuristic. Toward this end, we propose the use of the heuris- 

ic schemes described later on in Section 5.3 to perform initializa- 

ion. The computational advantages of such a choice are investi- 

ated in Section 6 . 

.2. Split-greedy heuristic and exchange search 

In this subsection, we summarize the Split-greedy heuristic 

SGH) and Exchange search (ES) introduced by Anghinolfi et al. 

2021) to solve the BPMSTP by describing the concepts at the foun- 

ation of the two algorithms. Toward this end, for a given BPMSTP 

nstance I , we first denote a location as a pair l = (h, A ) , where

 ∈ H and A is a subset of consecutive slots in T . In addition, l is

 free location for job j if |A| = p j , i.e., the number of slots is equal

o the processing time of the job, and the slots in A are free, i.e.,

o job is assigned. Instead, l is a split-location for job j if A is a set

f p j slots such that there is at least a pair of slots in A that are

ot consecutive, and the following condition holds: for each pair of 

lots t , t ′ ∈ A , t � = t ′ , either t and t ′ are consecutive, or t and t ′ are

ot consecutive and, for each slot t ′′ ∈ T such that t < t ′′ < t ′ , there

s some job in J \ { j} assigned to t ′′ . If all the slots in A are free,

hen l is a free split-location . Finally, a split-schedule is a preemptive 

chedule where at least one job is assigned to a split-location. 

The core idea of SGH is to greedily assign the jobs in J to free

ocations or free split-locations with the smallest-cost. If the re- 

ulting schedule is a split-schedule, then it is converted into an 

quivalent feasible one. We recall that two schedules are equiva- 

ent if they have the same makespan and TEC. The pseudo-code 

f SGH is reported in Algorithm 5.2 . Formally, the algorithm takes 

lgorithm 5.2 Split-greedy heuristic (SGH). 

nput: A downsized BPMSTP instance D( ̂  K ) as in (26) 

utput: A schedule S for D( ̂  K ) 

1: Let S be an empty schedule 

2: Let S h ← ∅ , h ∈ H 

3: for each d ∈ P in non-increasing order do 

4: Let L d,h , h ∈ H, be the lists of the smallest-cost, free 

locations and free split-locations on h for j : p j = d 

5: for each j ∈ J d do 

6: if L d,h = ∅ , ∀ h ∈ H then return S 
7: Select a location 

ˆ l = ( ̂ h , ˆ A ) from the smallest-cost 

locations in 

⋃ 

h ∈H 

{ l ∈ L d,h } randomly 

8: Assign job j to ˆ l by updating S ˆ h as S ˆ h ← S ˆ h ∪ { ( j, ̂  h , ˆ A ) } 
9: Update list L 

d, ̂ h 
by removing the locations affected by the 

assignment of j 

0: end for 

11: end for 

2: Let S ← 

⋃ 

h ∈H 

S h 
3: if S is a split-schedule then convert it into an equivalent feasi- 

ble schedule 

4: return S 

 BPMSTP instance D( ̂  K ) as input, with 

ˆ K such that 1 ≤ ˆ K ≤ K, 

nd returns a schedule S as output. If S is empty, then either no 

olution exists for D( ̂  K ) , or SGH is not able to compute one. In

act, determining whether a feasible schedule exists within a given 

akespan is already an N P -complete problem ( Garey & Johnson, 

978 ). First, SGH initializes S as an empty schedule (line 1) and 

 h as an empty set for each h ∈ H (line 2). Then, it iterates over

ach d ∈ P in non-increasing order (line 3), according to the well- 

nown longest processing time first (LPT) rule ( Pinedo, 2016 ). For 

 fixed d, SGH builds a list L d,h of the free locations and free split-

ocations on machine h for any job with processing time d (line 4). 

fterward, the algorithm iterates over each j ∈ J (line 5). If there 
d 



M. Gaggero, M. Paolucci and R. Ronco European Journal of Operational Research 311 (2023) 845–866 

Fig. 3. Example of conversion of a split-schedule (a) into a feasible schedule (b). The two jobs j (3) and j (2) in (a) are assigned to split-locations on machines 1 and 2, 

respectively. Instead, all the jobs in (b) are feasibly scheduled. 

a  

a

s

l

t  

a

t

m

S

h

a

o

a

s

o

b

f

T

f

q  

s  

 

t

i

a

r  

(  

t

 

t

h  

a  

(  

c  

m  

w

i  

E

a

s  

r

S
m

u  

|  

a

i

m

m

d  

E  

a

c

(

Algorithm 5.3 Exchange search (ES). 

Input: A feasible schedule S for a downsized BPMSTP instance 

D( ̂  K ) as in (26) 

Output: A feasible schedule S ′ for D( ̂  K ) , with C max (S ′ ) ≤ C max (S) 

and E(S ′ ) ≤ E(S) 

1: repeat 

2: Let ι ← false 

3: for d ∈ P in non-increasing order do 

4: for each EPS-J ( E J , h J ) in S such that |E J | = d do 

5: for each EPS-I ( E I , h I ) in S such that |E I | = d do 

6: Let S ′ be the schedule resulting from the EPS 

move involving (E J , h J ) and (E I , h I ) in S 
7: if E(S ′ ) < E(S) then 

8: Let S ← S ′ 
9: ι ← true 

10: break 

11: end if 

12: end for 

13: end for 

14: end for 

15: until ι is false 

16: S ′ ← S 
17: return S ′ 
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re no free locations for j in L d,h , h ∈ H, then SGH cannot compute

 feasible schedule for D( ̂  K ) , and it consequently returns an empty 

chedule (line 6). Otherwise, at each iteration, SGH randomly se- 

ects one of the smallest-cost locations ˆ l = ( ̂ h , ˆ A ) from the loca- 

ions in the lists L d,h , h ∈ H (line 8). Then, j is assigned to ˆ l (line 8),

nd L 
d, ̂ h 

is updated by removing locations that are not free after 

he assignment of j, and by adding the new split-locations that 

ay have arisen from the assignment of j (line 9). Subsequently, 

GH updates S as the union of the single-machine schedules S h , 
 ∈ H (line 12). Finally, if S is a split-schedule, SGH converts it into 

n equivalent feasible schedule (line 13). Specifically, the sequence 

f jobs on each machine is preserved in the converted schedule, 

nd each job starts as soon as possible, but not earlier than its 

tart time in the original split-schedule. Fig. 3 reports an example 

f such a conversion. Eventually, SGH returns the computed feasi- 

le schedule S at line 14. 

ES is a local search algorithm that takes a feasible schedule S
or a BPMSTP instance D( ̂  K ) as input and attempts to improve the 

EC without worsening the makespan. The improving moves per- 

ormed by ES are based on the notion of exchangeable period se- 

uence (EPS). An EPS is an ordered pair (E, h ) , where E ⊆ T is a

et of consecutive time slots on a machine h ∈ H such that, if a job

j is assigned to a time slot in E on h , then j is scheduled on h , and

he time slots where it is processed are in E . In particular, an EPS-J 

s an EPS that only contains slots assigned to a single job. Instead, 

n EPS-I is an EPS containing at least an idle slot. We generally 

efer to an EPS-J and an EPS-I by using the notation (E J , h J ) and

E I , h I ) , respectively, where h J ∈ H is the machine associated with

he EPS-J and h I ∈ H is the one associated with the EPS-I. 

For a given schedule S and an EPS (E, h ) , we denote the set of

he job assignments in the subset E ⊆ T of time slots on machine 

 ∈ H in the schedule S as S (E,h ) . Formally, S (E,h ) is the set of the

ssignments ( j, h j , T j ) ∈ S such that h j = h and T j ⊆ E . Then, let

E ′ , h ′ ) be another EPS such that |E| = | E ′ | . An EPS swap is a pro-

edure that reassigns the jobs in S (E,h ) to a subset of slots of E ′ on

achine h ′ , and the jobs in S (E ′ ,h ′ ) to a subset of slots of E on h ,

ithout changing the relative assignments of the jobs. Specifically, 

f job j is assigned to the i -th slot of E on machine h before the

PS swap, then j is assigned to the i -th slot of E ’ on machine h ′ 
fter the swap, and vice-versa. The assignments of the jobs to the 

lots of an EPS E on a machine h can be changed by using an EPS

earrangement , which is a procedure that reschedules the jobs in 

 (E,h ) in E on machine h with the goal of reducing the TEC. An EPS 

ove combines an EPS swap with an EPS rearrangement. In partic- 

lar, an EPS move involving two EPSs (E, h ) and (E ′ , h ′ ) such that

E| = | E ′ | , respectively, first applies an EPS swap of them, and then

n EPS rearrangement of both, separately. 

The pseudo-code of ES is reported in Algorithm 5.3 . For a given 

nput schedule S , the core idea of ES is to perform all the EPS 

oves for S that improve the TEC of S , without worsening its 

akespan. Specifically, for each d ∈ P taken in non-increasing or- 

er, and for each EPS-J (E J , h J ) with a number of time slots |E J | = d,

S considers every EPS-I (E I , h I ) with |E J | = |E I | , until it performs

n improving EPS move that involves E J and E I . Afterward, ES pro- 

eeds with the next EPS-J (lines 6–10). At the end of the iterations 

line 15), ES stops if it did not find an improving EPS move for 
a

852 
ach d ∈ J . Otherwise, it starts over with the iterations to search

or another improving EPS move. 

xample 3. Fig. 4 provides an example of EPS move involving the 

PS-J E J = { 1 , 2 , 3 , 4 , 5 } on machine 1, associated with job j (1) , and

he EPS-I E I = { 4 , 5 , 6 , 7 , 8 } on machine 2, including jobs j (4) and

j (5) and an idle slot (see Fig. 4 (a)). The cost associated with E J and

 

I in Fig. 4 (a) is 52. Fig. 4 (b) shows the result of the EPS swap of E J 
nd E I . After the EPS swap, the cost associated with E J and E I in-

reases to 56. The EPS rearrangement of E J involving jobs j (4) and 

j (5) in Fig. 4 (b) yields the schedule in Fig. 4 (c). In such a schedule, 

he cost associated with j (1) , j (4) , and j (5) is equal to 49, i.e., it is

educed as compared to the original cost before the move (equal 

o 52). 

Lastly, we describe the Split-greedy scheduler (SGS) heuristic, 

hich is used to compute a set of non-dominated solutions for 

n instance I of the BPMSTP by using SGH. Similarly to the exact 

lgorithm introduced in Section 5.1 , SGS exploits the ε-constraint 

ethod for multi-objective optimization. Specifically, it first initial- 

zes a set F of heuristic solutions to an empty set. Then, it iterates 

ver ˆ K from the initial value K to the lower bound K (I) . At each it-

ration, SGS solves the BPMSTP instance D( ̂  K ) with SGH instead of 

sing a MILP solver as in line 3 of Algorithm 5.1 . If there is no fea-

ible solution for D( ̂  K ) , SGS returns an empty set. Otherwise, the 

et F is updated by adding the solution to D( ̂  K ) , and then, differ-

ntly from line 9 of Algorithm 5.1 , ˆ K is decreased by 1. At the end

f iterations, SGS returns the set of non-dominated solutions in F . 

SGS may be combined with ES to improve the computed so- 

utions. Split-greedy scheduler with exchange search (SGS-ES) is the 

lgorithm proposed in Anghinolfi et al. (2021) as the result of such 
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Fig. 4. Example of an EPS move: starting schedule (a); schedule after the EPS swap (b); final schedule after the EPS rearrangements (c). The schedule involves five jobs 

(named j (1) , j (2) , j (3) , j (4) , and j (5) ) on two machines (denoted by 1 and 2) with energy consumption rate u 1 = 1 and u 2 = 2 . 

Fig. 5. Sketch of the structure of EHS (a), proposed in this paper as the novel heuristic for the BPMSTP, and SGS-ES (b), introduced by Anghinolfi et al. (2021) . Figures (a) and 

(b) highlight the algorithmic flow that characterizes the different components of EHS (i.e., A-SGH, R-ES, and ESR) and SGS-ES (i.e., SGH, and ES), respectively. Both algorithms 

take a BPMSTP instance I as input and return the set of non-dominated solutions in O as output. The inner part of the bounding boxes depicts the flow for a single iteration 

of the algorithms. 
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 combination. In more detail, SGS-ES differs from SGS since it im- 

roves the solution computed by SGH by using ES before adding 

uch a solution to F . 

.3. The novel algorithms 

In this subsection we introduce the novel heuristic proposed 

n this paper for the BPMSTP, called Enhanced heuristic scheduler 

EHS). Such a heuristic builds upon SGH and ES, and also ex- 

loits a novel exact algorithm based on dynamic programming 

hat separately optimizes the cost associated with the schedule on 

ach machine. Section 5.3.1 describes Split-greedy heuristic with as- 

ignment history (A-SGH), which exploits SGH as a subroutine to 

uild a feasible schedule. Section 5.3.2 presents Exchange search 

ith rescheduling (R-ES), which constitutes a local search that 

mproves over ES to provide better computational performances. 

ection 5.3.3 introduces the novel exact algorithm based on dy- 

amic programming called Exact single-machine rescheduler (ESR) 

hat, given an input single-machine schedule, efficiently computes 

he minimum-cost schedule that preserves the original processing 

equence. Such an algorithm constitutes an important component 

f EHS, as it enables to further reduce the cost of the schedule on 

ach machine. Section 5.3.4 finally describes EHS. As showcased 

n Section 6 , EHS is able to obtain high-quality solutions with a 

ow computational burden, thus outperforming the state-of-the-art 

euristics for the BPSMTP. Fig. 5 displays a graphical comparison of 

he structure of EHS ( Fig. 5 (a)) and SGS-ES ( Fig. 5 (b)), along with

he algorithmic flow characterizing their components. 

.3.1. Split-greedy heuristic with assignment history 

We first observe that, as pointed out in Section 5.2 , both the ex- 

ct algorithm and SGS-ES solve a sequence of downsized instances 

or distinct numbers ˆ K of time slots. As a result, for a given BPM- 

TP instance I and a positive number of available time slots ˆ K < K, 

he optimal solutions of the two instances D( ̂  K ) and D( ̂  K + 1) are

enerally unrelated. However, the heuristic solutions to D( ̂  K ) and 

( ̂  K + 1) generated by SGS-ES share a similar structure. Indeed, 

any jobs in a solution to D( ̂  K + 1) are intuitively expected to 

ave the same assignment in a solution to D( ̂  K ) , as the two in-

tances only differ for the last time slot ˆ K + 1 , which is not avail-

ble in D( ̂  K ) . Formally, let S ′ be a solution to D( ̂  K + 1) . Then, the

ssignments in S ′ involving jobs whose last slot is no greater than 

ˆ 
 can be exploited to compute a solution S to D( ̂  K ) . Assignments 

nvolving slot ˆ K + 1 are instead unfeasible for S , as its makespan 
853 
as to be less than or equal to ˆ K . Hence, the jobs involved in such

ssignments have to be rescheduled in S . 

These observations lie at the core of Split-greedy Heuristic with 

ssignment History (A-SGH), which solves D( ̂  K ) by exploiting a 

ubset of the job assignments in S ′ and employs SGH as a sub- 

outine to schedule the jobs whose assignment in S ′ is unfeasible 

or D( ̂  K ) . Specifically, the fundamental idea underlying A-SGH is to 

tart from an initially empty schedule S , and perform the follow- 

ng steps for each d ∈ P considered in non-increasing order, where 

 j (S ′ ) is the first slot of j in the schedule S ′ : 
(i) update S with the set of job assignments ( j, h j , T j ) ∈ S ′ , j ∈

J d , such that s j (S ′ ) + p j −1 ≤ ˆ K and S ∪ ( j, h j , T j ) is feasible;

(ii) schedule all the jobs that could not be scheduled in S during 

step (i) through SGH. 

Step (i) updates S with all the assignments in S ′ for the jobs in 

 d that are feasible in S . Then, step (ii) relies on SGH to schedule

n S the jobs that are disregarded in step (i). 

The pseudo-code of A-SGH is reported at Algorithm 5.4 . A-SGH 

akes the BPMSTP instance D( ̂  K ) and the solution S ′ to the BPM- 

TP instance D( ̂  K + 1) as inputs and returns a schedule S for D( ̂  K ) .

ereinafter, with a slight abuse of notation, we refer to S h as the 

ingle-machine schedule obtained by considering the jobs sched- 

led on machine h , i.e., { ( j, h j , T j ) ∈ S, h j = h } . As a practical note,

e observe that S h can be easily accessed by implementing S as 

 collection {S h , h ∈ H} of single-machine schedules, one for each 

 ∈ H. A-SGH first initializes S (line 1) as an empty schedule and 

eclares J d (line 2) according to (12) . Then, A-SGH starts iterat- 

ng over each d ∈ P according to the LPT rule (line 3). As the first

tep in the loop, the set Q is initialized as an empty set (line 4).

uch a set is used in the subsequent lines to keep track of the 

obs involved in the assignments of S ′ that are unfeasible for S . 

hen, A-SGH iterates over each j ∈ J d to schedule all the jobs in

 d (lines 5–21). At each iteration, it verifies if the assignment of 

ob j in S ′ is also feasible for S . In this case, the assignment of 

j in S ′ is repeated in S; otherwise, j is added to Q . Then, A-SGH 

omputes the sets L and R of the possible predecessors and suc- 

essors of job j on h ′ 
j 
, respectively, if the assignment of j in S ′ was 

he same as in S (lines 7-8), where J (S) denotes the set of jobs 

cheduled in S . If L is non-empty, A-SGH sets ˆ l as the predeces- 

or of j with the greatest start time in L (line 10). Similarly, if R
s non-empty, A-SGH sets ˆ u as the successor of j with the lowest 

tart time in R (line 13). If the processing of j ends after ˆ K in S ′ ,
r there would exist an overlapping predecessor ˆ l or successor ˆ r of 
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Algorithm 5.4 Split-greedy heuristic with assignment history (A- 

SGH). 

Input: A downsized BPMSTP instance D( ̂  K ) 

A schedule S ′ = { ( j, h ′ 
j 
, T ′ 

j 
) : h ′ 

j 
∈ H, T ′ 

j 
⊆ T , ∀ j ∈ J } for the 

BPMSTP instance D( ̂  K + 1) 

Output: A schedule S for D( ̂  K ) 

1: Let S be an empty schedule 

2: Let J d ← { j ∈ J : p j = d} , d ∈ P 

3: for d ∈ P in non-increasing order do 

4: Let Q ← ∅ 
5: for j ∈ J d do 

6: // Compute the predecessors and the successors of job j 

in schedule S 
7: Let L ← { l : l ∈ J , s l (S) ≤ s j (S ′ ) , h l = h ′ 

j 
} 

8: Let R ← { r : r ∈ J , s r (S) > s j (S ′ ) , h r = h ′ 
j 
} 

9: if L � = ∅ then 

10: Let ˆ l ← arg max 
l∈L 

{ s l (S) } 
11: end if 

12: if R � = ∅ then 

13: Let ˆ u ← arg min 
r∈R 

{ s r (S) } 
14: end if 

15: // Check whether the assignment of j in S ′ is also 

feasible in S 
16: if s j (S ′ ) + p j − 1 > ̂

 K or ( L � = ∅ and 

s ˆ l (S) + p ˆ l − 1 ≥s j (S ′ ) ) or ( R � = ∅ and 

s ˆ u (S) ≤s j (S ′ ) + p j − 1 ) then 

17: Q ← Q ∪ { j} // If not, add j to the separate set of 

jobs Q to be scheduled after the end of the loop 

18: else 

19: S h ′ 
j 
← S h ′ 

j 
∪ ( j, h ′ 

j 
, T ′ 

j 
) // Otherwise, perform the 

same assignment in S 
20: end if 

21: end for 

22: ˆ S ← SGH ((Q , { p j , j ∈ Q} , H, { u h , h ∈ H} , { 1 , . . . , ˆ K } , 
{ c t , t ∈ { 1 , . . . , ˆ K }} )) 

23: if ˆ S = ∅ then return ∅ 
24: S ← S ∪ 

ˆ S 
25: end for 

26: return S 
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if job j was assigned in S as in S ′ (line 16), then

ob j is added to the set Q (line 17). Otherwise, the assignment 

f j in S ′ is feasible in S as well, and therefore S is updated ac- 

ordingly (line 19). Finally, A-SGH schedules the jobs belonging to 

he set Q by using SGH (line 22). If SGH cannot compute a feasible

chedule for D( ̂  K ) for the jobs in Q , i.e., ˆ S is empty, then A-SGH

eturns an empty schedule as well and stops (line 23). Otherwise, 

is properly updated at line 24. Finally, A-SGH returns the com- 

uted feasible schedule at line 26. 

.3.2. Exchange search with rescheduling 

In this subsection, we present Exchange search with reschedul- 

ng (R-ES), which builds upon ES ( Algorithm 5.3 ) and circumvents 

ts computational drawbacks. In particular, among all possible EPS 

oves, ES also considers the moves involving EPS-Is containing 

nly free slots, hereinafter referred to as empty (see line 5 of 

lgorithm 5.3 ). However, given two machines h J , h I ∈ H, if an EPS

ove involving an EPS-J (E J , h J ) and an empty EPS-I (E I , h I ) is

ound to be not improving, then the other subsequent EPS moves 

nvolving (E J , h J ) and other empty EPS-Is whose cost is higher than

he cost of (E I , h I ) cannot be improving as well within the same

teration over (E J , h J ) . In fact, ES iterates over the EPS-Is by disre-
854
arding their energy cost. In this way, it considers the empty EPS-Is 

n no specific order. These observations may prospect a high com- 

utational burden, especially in the last iterations performed by ES, 

hen the number of possible improving EPS moves is smaller as 

ompared to the first iterations. The core idea of R-ES is to apply a 

ocal search strategy that improves a feasible input schedule S , by 

rst applying ES while disregarding the empty EPS-Is and then per- 

orming the rescheduling of each job (ordered according to the LPT 

ule) to take into account all such empty EPS-Is. In particular, R-ES 

emoves a job at a time from the current schedule S , and greedily 

einserts the same job in S by assigning it to the free location or 

ree split-location with the smallest-cost in S . 

The pseudo-code of R-ES is reported in Algorithm 5.5 . R-ES 

lgorithm 5.5 Exchange search with rescheduling (R-ES). 

nput: A feasible schedule S for the downsized BPMSTP instance

D( ̂  K ) as in (26) 

utput: A feasible schedule S ′ for D( ̂  K ) , with C max (S ′ ) ≤ C max (S)

and E(S ′ ) ≤ E(S) 

1: repeat 

2: Let S ′ ← S 
3: Update S with ES by disregarding empty EPS-Is (at line 5 of 

Algorithm 5.3) 

4: for d ∈ P in non-increasing order do 

5: Let L d,h , h ∈ H, be the lists of the smallest-cost free 

locations and split-locations on h for any j : p j = d 

6: for j ∈ J d do 

7: S ← S \ ( j, h j , T j ) 
8: Update L d,h by adding location (h j , T j ) 
9: Select a location 

ˆ l = ( ̂ h , ˆ A ) from the smallest-cost 

locations in 

⋃ 

h ∈H 

{ l ∈ L d,h } randomly 

0: Assign job j to ˆ l by adding ( j, ̂  h , ˆ A ) to S ˆ h 
11: Update list L 

d, ̂ h 
by removing the locations affected by 

the assignment of j 

2: end for 

3: end for 

4: if S is a split-schedule then convert it into an equivalent 

feasible schedule 

5: until E(S) < E(S ′ ) 
6: return S ′ 

akes a feasible schedule S for the downsized BPMSTP instance 

( ̂  K ) as input and returns a feasible schedule S ′ for D( ̂  K ) with

 

max (S ′ ) ≤ C max (S) and E(S ′ ) ≤ E(S) . In fact, the purpose of R-

S is to improve the TEC of S , while possibly improving also 

he makespan as a byproduct of the performed EPS moves. How- 

ver, the makespan cannot be worsened by construction, as in ES. 

pecifically, R-ES iteratively improves the TEC of S until at least 

n improving move is performed (see the loop at lines 1–15). At 

he beginning of the loop, R-ES stores the current schedule in S ′ 
line 3). This allows checking the termination condition at the end 

f the loop (line 15). Then, it tries to improve S by applying ES 

ithout considering the empty EPS-Is in S (line 3). Next, similarly 

o SGH ( Algorithm 5.2 ), R-ES iterates over the processing times of 

he jobs in J in non-increasing order (lines 4–13), by first building 

he list of free locations and free split-locations (line 5) as in line 4 

f Algorithm 5.2 . Subsequently, it iterates over each j ∈ J d (lines 6–

2). Inside this loop, R-ES first removes the assignment ( j, h j , T j )
rom S (line 7) and then adds the new free location (h j , T j ) to L d,h 

line 8). Afterward, R-ES reassigns j in S through lines 9–11, which 

re identical to lines 7–9 of SGH ( Algorithm 5.2 ). If the resulting

chedule is a split-schedule, then it is converted into a feasible one 

line 14). R-ES stops the loop if it is unable to further improve the 

EC of S (line 15), i.e., if E(S) = E(S ′ ) . Otherwise, it starts another
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teration to search for further improvements. Eventually, R-ES re- 

urns the resulting schedule (line 16). 

.3.3. Exact single-machine rescheduler 

In this subsection, we introduce a novel algorithm based on dy- 

amic programming that is able to further improve the TEC of a 

ingle-machine feasible schedule S h , for some h ∈ H over the time 

lots t = 1 , 2 , . . . , ˆ K , with 

ˆ K ≤ K. We refer to such an algorithm as

xact Single-machine Rescheduler (ESR). ESR computes the assign- 

ent of the jobs scheduled on machine h so as to minimize the 

nergy cost of the jobs scheduled on the machine while preserving 

he processing sequence of such jobs. The design of ESR is inspired 

y the work of Chen et al. (2021) , who investigated the problem 

f minimizing the TEC of a preemptive schedule on a single ma- 

hine. Toward the end of describing ESR, we first denote by U the 

et { j (1) , j (2) , . . . , j (U) } of the U > 0 jobs scheduled on the machine,

nd, with a slight abuse of notation, we define 

 

(i ) = p j (i ) , i = 1 , 2 , . . . , U 

or easier readability. We refer to 

 

� (i, t) , i = 1 , 2 , . . . , U, t = 1 , 2 , . . . , ˆ K −
U ∑ 

u = i 
q (u ) + 1 

s the optimal schedule for jobs j (i ) , j (i +1) , . . . , j (U) in the time

lots t, t + 1 , . . . , ˆ K − ∑ U 
u = i q 

(u ) + 1 . Observe that a feasible schedule

or the last i jobs in the processing sequence on machine h requires

t least 
∑ U 

u = i q 
(u ) time slots for processing. We also define 

 

t+ l−1 
t = 

t+ l−1 ∑ 

k = t 
c k , t = 1 , 2 , . . . , ˆ K , l = 1 , 2 , . . . , ˆ K − t + 1 , 

s the cumulative cost of time slots t, t + 1 , . . . , t + l − 1 . For each

 = 1 , 2 , . . . , U and t = 1 , 2 , . . . , ˆ K , we refer to 

 i,t := E(S � (i, t)) 

s the energy cost of the schedule S � (i, t) . Then, ESR employs the

ollowing recursive relation for the value of the energy cost of the 

ptimal schedule S � (i, t) : 

 i,t = min 

{ 

V i,t+1 , B 

t+ q (i ) −1 
t + V i +1 ,t+ q (i ) 

} 

, i = 1 , 2 , . . . , U, 

t = 

i −1 ∑ 

u =1 

q (u ) + 1 , . . . , ˆ K −
U ∑ 

u = i 
q (u ) . (27) 

bserve that the first i − 1 jobs and the last i + 1 jobs in the pro-

essing sequence require at least 
∑ i −1 

u =1 q 
(u ) and 

∑ U 
u = i +1 q 

(u ) time 

lots for processing, respectively. Eq. (27) recursively expresses the 

ost of the optimal schedule S � (i, t) as the minimum between (i) 

he cost V i,t+1 of the optimal schedule S � (i, t + 1) (where job j (i ) 

oes not start on time slot t) and (ii) the cost of scheduling job

j (i ) starting from time slot t plus the cost of optimally scheduling 

he last i + 1 jobs in the processing sequence in the time slots af-

er t + q (i ) − 1 , that is the cost V i +1 ,t+ q (i ) of the optimal schedule

 

� (i + 1 , t + q (i ) ) . The base case conditions for Eq. (27) are given

y 

 

i, ̂ K −∑ U 
u = i q (u ) +1 

= B 

ˆ K 
ˆ K −∑ U 

u = i q (u ) +1 
, i = 1 , 2 , . . . , U, (28) 

 U+1 ,t := 0 , t = 1 , 2 , . . . , ˆ K . (29) 

he base case condition (28) ensures that the optimal cost 

 

i, ̂ K −∑ U 
u = i q (u ) +1 

of scheduling the last i jobs in the processing se- 

uence on the machine in the last 
∑ U 

u = i q 
(u ) time slots is indeed 

he sum of the costs of the slots from 

ˆ K − ∑ U 
u = i q 

(u ) + 1 to ˆ K , for

 = 1 , 2 , . . . , U . Condition (29) allows correctly expressing V U,t as
855
in { V U,t+1 , B 
t+ q (U) −1 
t } for t = 1 , 2 , . . . , ˆ K − q (U) . Finally, we refer to

 i,t := s j (i ) (S � (i, t)) , (30) 

s the first time slot of job j (i ) in schedule S � (i, t) . 

The pseudo-code of ESR is reported in Algorithm 5.6 . ESR takes 

lgorithm 5.6 Exact single-machine rescheduler (ESR). 

nput: A feasible single-machine schedule S h on some machine 

h ∈ H for a set of U > 0 jobs U = { j (1) , j (2) , . . . , j (U) } ⊆ J 

in the time slots t = 1 , 2 , . . . , ˆ K with 

ˆ K ≤ K 

utput: The optimal schedule S � 
h 

for the jobs in U in the time slot

t = 1 , 2 , . . . , ˆ K . 

1: // Parameter initialization 

2: Let l i ← 0 and r i ← 0 for i = 0 , 1 , . . . , U 

3: for i ← 1 to U do 

4: Set l i ← q (i ) + l i −1 , r i ← q (U−i +1) + r i −1 

5: end for 

6: // Initialization of base case values 

7: Let V i,t ← 0 , W i,t ← 0 for i = 1 , 2 , . . . , U + 1 , t = 1 , 2 , . . . , ˆ K 

8: for i ← 1 to U do 

9: Let t ← 

ˆ K − r U−i +1 + 1 

0: V i,t ← B 
ˆ K 

t 

11: W i,t ← t 

2: end for 

3: // Main loop 

4: for i ← U downto 1 do 

5: for t ← 

ˆ K − r U−i +1 downto l i + 1 do 

6: if B 
t+ q (i ) −1 
t + V i +1 ,t+ q (i ) < V i,t+1 then 

17: Set V i,t ← B 
t+ q (i ) −1 
t + V i +1 ,t+ q (i ) , W i,t ← t 

18: else 

9: Set V i,t ← V i,t+1 , W i,t ← W i,t+1 

0: end if 

1: end for 

2: end for 

3: // Generation of a schedule with the computed optimal cost 

4: Let S � 
h 

← ∅ , k ← 0 

5: for i ← 1 to U do 

6: Set k ← W i,k +1 

27: S � 
h 

← S � 
h 

∪ { j (i ) , h, { k, k + 1 , . . . , k + q (i ) − 1 }} 
8: Set k ← k + q (i ) − 1 

9: end for 

0: return S � 
h 

 feasible single-machine schedule S h for some machine h ∈ H as 

nput and returns a feasible schedule that achieves the minimum 

nergy cost on machine h while preserving the original job pro- 

essing sequence in the schedule S h . First, ESR initializes the pa- 

ameters l i , r i for i = 0 , 1 , . . . , U , so that l i and r i are equal to the

um of the processing times of the first and the last i jobs in

he processing sequence, respectively, and l 0 = r 0 = 0 (lines 2–5). 

ubsequently, ESR declares the optimal cost V i,t and the first time 

lot W i,t for job i for i = 1 , 2 , . . . , U , t = 1 , 2 , . . . , ˆ K , and it also sets

 U+1 ,t = 0 for t = 1 , 2 , . . . , ˆ K according to condition (29) (line 7).

hen, it iterates over each i = 1 , 2 , . . . , U (lines 8–12) to initialize

 i,t with t = 

ˆ K − ∑ U 
u = i q 

(u ) + 1 = 

ˆ K − r U−i +1 + 1 according to (28) .

SR also consistently sets the start time W i,t of job i to t (line 11).

fterward, ESR enters the main loop of the algorithm (lines 14–

2), which provides a bottom-up implementation of the recursive 

elation (27) . Finally, ESR exploits the information computed at the 

revious lines to build a schedule with optimal cost given by V 1 , 1 
lines 24–29). Toward this end, the new schedule S � 

h 
and the aux- 

liary variable k are set to an empty schedule and to 0, respec- 
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ively (line 24). Then, at each iteration of lines 25–29, (i) the start 

ime W i,k +1 of job i is assigned to the variable k (line 26), (ii) S � 
h 

s updated by assigning job j (i ) to the location (h, { k, k + 1 , . . . , k +
 

(i ) − 1 } ) (line 27), and finally (iii) k is updated so that the next

teration (if i < U) considers the optimal assignment for job i + 1

fter time slot k + q (i ) − 1 , i.e., after the last slot used to process

ob i (line 28). Lastly, ESR returns the new schedule S � 
h 
. Observe 

hat, at the first iteration, i.e., when i = 1 , k is first set as W 1 , 1 . 

.3.4. Enhanced heuristic scheduler 

We are finally able to describe Enhanced heuristic scheduler 

EHS), which combines A-SGH, R-ES, and ESR to solve instances of 

he BPMSTP. This algorithm computes a set of non-dominated so- 

utions for an instance I of the BPMSTP with a very low computa- 

ional burden. Clearly, EHS benefits from the aforementioned com- 

utational improvements of A-SGH and R-ES since it applies such 

wo algorithms sequentially. However, such a combination entails a 

urther advantage with respect to SGS-ES. Specifically, within SGS- 

S, it is useless to consider EPS swaps in ES involving an EPS-J and

n empty EPS-I before the first improving EPS move since ES is 

receded by SGH, i.e., a constructive greedy heuristic based on the 

PT rule. Indeed, as empty EPS-Is correspond to free locations, if 

here was such an improving EPS swap, then the empty EPS-I in- 

olved in the swap would have been greedily chosen by SGH as 

 free location for the job in the involved EPS-J. The further im- 

rovements of the schedules on the various machines enabled by 

SR provide very effective results. 

The pseudo-code of EHS is reported in Algorithm 5.7 . EHS is 

lgorithm 5.7 Enhanced heuristic scheduler (EHS). 

nput: A BPMSTP instance I 
utput: A set of non-dominated heuristic solutions to I 

1: Let K (I) be the lower bound defined in (25) 

2: Let O ← ∅ , ˆ K ← K, S ′ ← ∅ 
3: while ˆ K ≥ K (I) do 

4: Let D( ̂  K ) be an instance as in (26) 

5: // If it is the first iteration of the loop, compute the schedule 

with SGH 

6: if S ′ = ∅ then 

7: S ← SGH (D( ̂  K )) 

8: else // Otherwise, compute it with A-SGH, by exploiting 

previous job assignments 

9: S ← A-SGH (D( ̂  K ) , S ′ ) 
0: end if 

11: if S is unfeasible then // Checks if S = ∅ 
2: break 

3: end if 

14: S ′ ← R-ES (S) // Apply R-ES to improve the TEC of S 
5: // Apply ESR to further improve the TEC by minimizing the 

cost on each machine 

6: Let S ′′ ← ∅ 
17: for h ∈ H do 

18: S � 
h 

← ESR (S ′ 
h 
) 

9: S ′′ ← S ′′ ∪ S � 
h 

0: end for 

1: Set O ← O ∪ {S ′′ } 
2: ˆ K ← 

ˆ K − 1 

3: end while 

4: return the set of non-dominated solutions in O 

ased on the ε-constraint method, like the exact algorithm de- 

cribed in Section 5.1 . In more detail, it first initializes the set O
f computed solutions to an empty set and 

ˆ K to K (line 2). Then, 

HS iterates over ˆ K from K to the lower bound K (I) (lines 3–23). 
856
t the first iteration, i.e., when 

ˆ K = K, EHS cannot exploit any pre- 

ious assignment, S ′ is empty, and the solution S for D(K) is gen- 

rated with SGH (line 7). Instead, for ˆ K = K − 1 , K − 2 , . . . , K (I) , it

s possible to leverage the assignments in the feasible schedule S ′ 
o compute S . Hence, in this case, EHS computes the solution S for 

( ̂  K ) by using A-SGH (line 9). The loop is stopped at line 12 if S is

nfeasible. Otherwise, S is improved through R-ES (line 14) as well 

s ESR (lines 17–20), and the resulting schedule is assigned to S ′′ . 
hen, EHS updates the set O by adding S ′′ (line 21) and decreases 

ˆ 
 by 1 (line 22). Finally, it returns the set of non-dominated solu- 

ions in O (line 24). 

. Numerical results 

In this section, we report the results of the experimental tests 

imed at evaluating the performance of the solution approaches 

escribed in Section 5 . Specifically, the tests are motivated by the 

ollowing goals: 

(a) investigate the differences between Formulation 1 and For- 

mulation 2 when used in the exact algorithm from an ex- 

perimental standpoint; 

(b) assess the effectiveness of EHS with respect to the state-of- 

the-art heuristic SGS-ES ( Anghinolfi et al., 2021 ), as well as 

the constructive heuristic CH by Wang et al. (2018) and an 

implementation of the Non-dominated Sorting Genetic Algo- 

rithm (NSGA-III) ( Deb & Jain, 2013 ) initialized with CH; 

(c) measure the speed-up achieved by the exact algorithm 

when provided with an initial solution computed by EHS; 

(d) evaluate the performance of EHS with respect to the exact 

algorithm with Formulation 2. In particular, the comparison 

of their computational times allows us to investigate the im- 

pact of the trade-off between solution quality and computa- 

tional efficiency. 

The remainder of this section is organized as follows. 

ection 6.1 provides a description of the test instances and 

he implementation of the algorithms. Section 6.2 presents the 

etrics used to evaluate the performance of the algorithms. 

ection 6.3 focuses on goal (a), Section 6.4 deals with goal (b), 

hile Section 6.5 addresses both goals (c) and (d). 

.1. Test instances and implementation details 

The experimental tests were carried out on a set of 90 BPMSTP 

nstances, numbered from 1 to 90. The first 60 instances were orig- 

nally proposed by Wang et al. (2018) , while the last set of 30 in-

tances was introduced by Anghinolfi et al. (2021) . Instances 1–30, 

1–60, and 61–90 are called small-scale, medium-scale, and large- 

cale instances, respectively. The instances differ in the values of 

he number of jobs N, the number of machines M, and the num- 

er of time slots K. In particular, the values of N, M, and K for

nstances 1–30 are no greater than the values of N, M, and K, re-

pectively, for instances 31–60. The same applies to instances 31–

0 and 61–90. Appendix A provides a description of all the consid- 

red 90 instances. 

Concerning implementation, we used the Java 16 programming 

anguage for the exact algorithm ( Algorithm 5.1 ), EHS, SGS-ES, CH, 

nd NSGA-III. The exact algorithm also exploits the Java CPLEX 

0.1.0 API. In particular, we set the maximum optimality gap of the 

ILP solver to 10 −6 and a time limit of 4 hours. As regards CH and

SGA-III, we reimplemented and adapted the MATLAB code shared 

y Wang et al. (2018) . More specifically, we developed the imple- 

entation of NSGA-III consistently with the design proposed by 

ang et al. (2018) for NSGA-II, i.e., we used the same solution rep- 

esentation, initialization procedure, crossover and mutation oper- 

tors, as well as the same parameter settings (more details can be 
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ound in Wang et al., 2018 ). We performed all the experimental 

ests on a Windows 10 system equipped with an Intel Core i9- 

900K Octa-core 3.6 GHz processor and 16 GB of RAM. For the sake 

f computational performance, the implementation of the exact al- 

orithm does not generate a CPLEX representation of the mathe- 

atical formulation for D( ̂  K ) from scratch at each iteration, as it 

ay be suggested by the pseudo-code at line 3 of Algorithm 5.1 . 

nstead, such a representation is generated only at the first itera- 

ion, i.e., for ˆ K = K. The CPLEX representations in the subsequent 

terations are obtained from the first one by adding proper con- 

traints, which set the decision variables related to the slots that 

re not in D( ̂  K ) to zero as follows: 

 j,h,t = 0 , j ∈ J , h ∈ H, ˆ K − p j + 1 < t ≤ K 

or Formulation 1, and 

 d,h,t = 0 , d ∈ P, h ∈ H, ˆ K − d + 1 < t ≤ K 

or Formulation 2. Such constraints avoid assigning jobs with com- 

letion times exceeding ˆ K . As a consequence, the makespan cannot 

xceed 

ˆ K , as desired. According to experimental evidence, the com- 

utational overhead caused by such additional constraints is lower 

han the one due to the generation of new CPLEX representa- 

ions at each iteration. The numerical results obtained with the 

lgorithm implementations are available at “https://github.com/ 

Rresearcher/Exact- and- Heuristic- Solution- Approaches- for- Energy 

 Efficient- Identical- Parallel- Machine- Scheduling ”. 

.2. Performance metrics 

Comparing different solutions to the same instance of a multi- 

bjective optimization problem is not a straightforward task. In 

act, in contrast to single-objective optimization problems, the so- 

ution to an instance of a multi-objective problem is a set of non- 

ominated points. As a consequence, we employ two distinct state- 

f-the-art metrics for the purpose of comparing different sets of 

on-dominated points, so as to provide an in-depth analysis of the 

erformances achieved by the proposed solution approaches. More 

pecifically, we use two convergence and distribution metrics, ac- 

ording to the classification proposed by Audet et al. (2021) . Given 

 set of non-dominated points, such metrics are indeed able to 

uantify at the same time how close such a set is to the Pareto 

ront and how it is distributed in the objectives space. 

Let O ⊆ R 

n be a set of non-dominated points in the objective 

pace, and F be its reference Pareto-optimal front. The first met- 

ic used in this paper, called Hypervolume ( Guerreiro et al., 2021; 

itzler & Thiele, 1999 ), measures the hypervolume covered by O
ith respect to a reference point in the space of the objectives. As 

uch, it can be used to compare two or more fronts by assuming a 

ommon reference point. Formally, let r be a reference point in R 

n . 

hen, the Hypervolume of O is the measure of the region weakly 

ominated by O and bounded above by r, i.e., 

 (O) = �({ q ∈ R 

n : ∃ p ∈ O : p ≤ q ≤ r}} ) , 
here �(·) is the Lebesgue measure. Larger Hypervolume values 

enote a better approximation of the Pareto-optimal front. We ob- 

erve that the Hypervolume metric is Pareto-compliant, as pointed 

ut by Zitzler et al. (2007) . 

The other metric used for comparisons is called Modi- 

ed inverted generation distance (IGD 

+ ) ( Ishibuchi et al., 2015 ). 

GD 

+ is a metric that extends the Inverted generation distance 

IGD) ( Coello Coello & Reyes Sierra, 2004 ) to achieve Pareto- 

ompliance. Both IGD and IGD 

+ measure the quality of a set of 

on-dominated points O computed by an algorithm in compari- 

on to a set of reference solutions F , which typically consists of a 

et of Pareto-optimal solutions. In particular, IGD measures the av- 

rage distance from each point in F to the nearest point in O by 
857 
enerally using the Euclidean distance metric. Lower values for IGD 

orrespond to a better approximation of the Pareto front. However, 

GD fails to be compliant with the Pareto-dominance relation when 

omparing two different non-dominated sets. In fact, IGD may not 

lways assign the lower value to the dominating set. IGD 

+ over- 

omes this drawback by employing a different distance metric that 

e denote by d + (·, ·) . Specifically, given a reference point p ∈ F
nd a non-dominated point q ∈ O, such a distance is computed as 

 

+ (p, q ) = 

( 

n ∑ 

i =1 

( max { q i − p i , 0 } ) 2 
) 

1 
2 

, 

here p i and q i are the values of p and q , respectively, associated 

ith the i th objective. Then, the IGD 

+ value for the set O of non-

ominated points is given by 

GD 

+ (O) = 

1 

|F| 
∑ 

p∈F 
min 

q ∈O 
d + (p, q ) . 

.3. Comparing the two mathematical formulations 

This subsection evaluates the two mathematical formulations 

ntroduced in Section 3 when used in the exact algorithm, by com- 

aring the computational times achieved on the test instances. To- 

ard this end, the MILP solver used at line 3 of Algorithm 5.1 was

rst implemented with Formulation 1, and then with Formula- 

ion 2. 

Table 1 reports the results of the comparison for instances 1–

0. The exact algorithm was not able to solve large-scale instances 

1–90 with Formulation 1 due to the memory constraints of the 

xperimental setup. On the other hand, Formulation 2 was capa- 

le of solving all of such instances, as reported in later subsec- 

ions. Table 1 shows the computational times obtained by using 

ormulation 1 and Formulation 2, along with their percentage de- 

iation �. Formally, given the computational times δF 1 ,i and δF 2 ,i , 

 = 1 , 2 , . . . , 60 , obtained with Formulation 1 and Formulation 2,

espectively, the value of the percentage deviation for the i th in- 

tance is given by 1 − δF 2 ,i /δF 1 ,i , so that an improvement of For- 

ulation 2 with respect to Formulation 1 is always expressed as 

 percentage between 0% and 100%. In the table, all the values of 

he computational times were rounded to 4 decimal places. The 

est result for each instance is highlighted in bold, according to 

he actual (non-rounded) value. At the bottom of the table, the 

ows “Avg.” and “Std dev.” report the averages and the standard 

eviation, respectively, of the computational times and percentage 

eviations on instances 1–30 and 31–60. The row “N. best” shows 

he number of instances where one of the implementations of the 

xact algorithm outperforms or equals the other, while “N. draw”

ndicates the number of instances such that the various approaches 

btain the same performance. Finally, the last row displays the 

p-values obtained with the non-parametric Wilcoxon signed rank 

est ( Gibbons & Chakraborti, 2020 ), aimed at assessing the statisti- 

al significance of the difference between the computational times 

btained by Formulation 1 and Formulation 2. In more detail, we 

ssume that, if p is smaller than 0.05, then we can reject the null 

ypothesis that the two formulations generate non-significantly 

ifferent results. In the tables presented in the remainder of the 

ection, we adopt the same conventions used in Table 1 as regards 

oldface highlighting, decimal rounding, and rows “Avg.”, “Std dev.”

N. best”, “N. draw”, and p. The following subsections display the 

ercentage deviation for Hypervolume and IGD 

+ as well. Through- 

ut the section, the symbol �, used for the percentage deviation, 

eports the solution approach that is evaluated for the considered 

etric as a subscript, and the one used as a reference as a su- 

erscript. For instance, in this subsection, we aim at showing the 

https://github.com/ORresearcher/Exact-and-Heuristic-Solution-Approaches-for-Energy-Efficient-Identical-Parallel-Machine-Scheduling
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Table 1 

Comparison of the computational times obtained by the exact algorithm when using Formulation 1 

(F1) and Formulation 2 (F2) for instances 1–30 and 31–60. 

Instance CPU time (s) Instance CPU time (s) 

F1 F2 �F1 
F2 (%) F1 F2 �F1 

F2 (%) 

1 0.7670 0.3525 54.04 31 7.4852 0.9499 87.31 

2 0.6523 0.4799 26.43 32 21.4092 1.1458 94.65 

3 0.3438 0.3041 11.54 33 67.1348 1.5192 97.74 

4 0.3968 0.5265 −32.67 34 178.3155 2.2330 98.75 

5 0.4713 0.4288 9.02 35 265.2156 2.5779 99.03 

6 0.6932 0.4466 35.57 36 10.3682 0.9013 91.31 

7 0.6179 0.3865 37.44 37 29.6823 1.3302 95.52 

8 0.9727 0.5586 42.57 38 129.6473 2.5866 98.00 

9 0.5401 0.2809 47.99 39 219.0398 2.7987 98.72 

10 0.9134 0.7209 21.07 40 416.4091 4.1294 99.01 

11 0.7175 0.4399 38.69 41 16.1153 0.9398 94.17 

12 1.2644 0.7382 41.62 42 38.0861 1.7630 95.37 

13 0.8214 0.4236 48.43 43 124.4411 2.6687 97.86 

14 1.2381 0.6709 45.81 44 333.3671 3.7989 98.86 

15 0.7826 0.3676 53.04 45 650.1111 5.8304 99.10 

16 1.7645 0.7276 58.76 46 45.6422 3.4909 92.35 

17 1.1950 0.5931 50.37 47 98.6533 4.2710 95.67 

18 2.4932 1.0311 58.64 48 296.3851 7.3489 97.52 

19 1.2564 0.4866 61.27 49 1242.2259 17.5062 98.59 

20 1.8639 0.6527 64.98 50 1291.4013 11.3853 99.12 

21 2.2242 0.6678 69.98 51 132.9453 7.2481 94.55 

22 2.8476 0.9895 65.25 52 101.9938 5.3167 94.79 

23 1.5190 0.4635 69.49 53 509.0894 10.1980 98.00 

24 4.1561 1.2782 69.24 54 819.4229 12.6210 98.46 

25 1.1941 0.2998 74.89 55 2225.5660 18.1268 99.19 

26 3.1824 0.8721 72.60 56 93.0159 4.1815 95.50 

27 1.6282 0.4519 72.25 57 231.8769 10.9855 95.26 

28 4.6395 1.1910 74.33 58 537.1396 13.1024 97.56 

29 3.7396 0.9733 73.97 59 1705.2297 21.4852 98.74 

30 4.3741 0.9687 77.85 60 2329.4400 20.7640 99.11 

Avg. 1.6424 0.6258 49.82 Avg. 472.2285 6.7735 96.66 

Std dev. 1.2561 0.2731 24.57 Std dev. 646.3344 6.2401 2.80 

N. best 1 29 N. best 0 30 

N. draw 0 N. draw 0 

p 2.3534E-06 p 1.7344E-06 
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t

omputational times obtained with Formulation 2 in comparison 

ith the ones of Formulation 1, and we consistently express the 

ercentage deviation between the computational times as �F1 
F2 

. 

The implementation of the exact algorithm based on Formu- 

ation 2 outperforms the one exploiting Formulation 1 in all in- 

tances with the only exception of instance 4, where Formulation 2 

s 32.67% worse than Formulation 1. However, the average compu- 

ational time of the former implementation on medium-scale in- 

tances 31–60 is two orders of magnitude lower than the average 

ime achieved by the latter, with a remarkable average percentage 

eviation equal to 96 . 66% . Moreover, the computational advantage 

f Formulation 2 with respect to Formulation 1 on the small-scale 

nstances, i.e., instances 1–30, is still noteworthy, with an average 

ercentage deviation of 49 . 82% . We observe that the small values 

f p denote the statistical significance of the numerical results. 

.4. Comparing EHS with the other heuristics 

This subsection first compares EHS, i.e., the novel heuristic 

roposed in this paper, with the state-of-the-art heuristic SGS- 

S. Tables 2–4 report the values of the performance metrics in- 

roduced in Section 6.2 , i.e., Hypervolume and IGD 

+ , and the com- 

utational times obtained by EHS and SGS-ES on instances 1–30, 

1–60 and 61–90, respectively. Each of the three tables adopts the 

ame conventions used for Table 1 . In particular, �SGS-ES 
EHS 

denotes 

he percentage deviation of the performance of EHS with respect 

o SGS-ES. For instance, a positive value of �SGS-ES 
EHS 

for the com- 

utational times indicates that EHS requires less time than SGS-ES. 
858 
n the other hand, a positive value of �SGS-ES 
EHS 

for the Hypervolume 

ighlights that EHS is able to compute a better Pareto front with 

espect to SGS-ES. Throughout the section, whenever the percent- 

ge deviation cannot be computed due to a division by zero, we 

rite a dash instead. Since both EHS and SGS-ES perform stochas- 

ic choices, we averaged the results obtained over 10 independent 

uns of the algorithms. 

The numerical results show that EHS achieves better results 

han SGS-ES in terms of Hypervolume and IGD 

+ for most of in- 

tances 1–30 and 31–60, and for all instances 61–90. The results 

btained in terms of Hypervolume are coherent with those ob- 

ained in terms of IGD 

+ . Furthermore, EHS outperforms SGS-ES in 

erms of computational times on 83 instances over 90, with the 

verage of 10.12%, 48.97%, and 63.04% improvements on instances 

–30, 31–60, and 61–90, as shown in Tables 2–4 , respectively. Such 

mprovements are significant also in the case of instances 1–30, 

here the CPU times are in the orders of few milliseconds, and 

here also the exact algorithm using Formulation 2 is able to find 

 solution always in less than 5 seconds (see Table 1 ). The small

alues of p support the relevance of these results, proving that the 

ifference between the series of data is statistically significant. This 

s more evident for instances 61–90, where the p-values are in the 

rder of 10 −6 or 10 −8 . Thus, we conclude that EHS proves to be 

ore computationally efficient with respect to SGS-ES while pre- 

erving the quality of the computed solutions. In more detail, EHS 

onsistently outperforms SGS-ES on all the large-scale instances 

1–90, as regards the values of Hypervolume, IGD 

+ , and computa- 

ional times. These results showcase the capability of EHS to gen- 
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Table 2 

Comparison of the results obtained by EHS and SGS-ES for instances 1–30. The table shows the values of the Hypervolume, IGD + , and computational times achieved by the 

two heuristics, along with the related percentage deviations. 

Instance Hypervolume IGD + CPU time (s) 

EHS SGS-ES �SGS-ES 
EHS 

(%) EHS SGS-ES �SGS-ES 
EHS 

(%) EHS SGS-ES �SGS-ES 
EHS 

(%) 

1 0.6976 0.6976 0.00 0.0000 0.0000 – 0.0042 0.0024 −71.26 

2 0.7683 0.7683 0.00 0.0000 0.0000 – 0.0060 0.0059 −1.03 

3 0.7425 0.7425 0.00 0.0000 0.0000 – 0.0034 0.0037 8.63 

4 0.7438 0.7438 0.00 0.0000 0.0000 – 0.0067 0.0091 25.89 

5 0.4531 0.4531 0.00 0.0000 0.0000 – 0.0043 0.0054 20.93 

6 0.7532 0.7532 0.00 0.0000 0.0000 – 0.0085 0.0116 26.73 

7 0.7460 0.7460 0.00 0.0000 0.0000 – 0.0035 0.0059 39.66 

8 0.7745 0.7745 0.00 0.0013 0.0014 0.79 0.0082 0.0098 16.12 

9 0.7336 0.7317 0.27 0.0205 0.0208 1.50 0.0045 0.0046 3.58 

10 0.7514 0.7514 0.00 0.0003 0.0004 20.00 0.0118 0.0137 14.24 

11 0.8013 0.8017 −0.05 0.0009 0.0004 −163.64 0.0055 0.0077 28.42 

12 0.8212 0.8212 0.00 0.0024 0.0025 2.41 0.0102 0.0148 30.89 

13 0.7259 0.7256 0.04 0.0000 0.0004 100.00 0.0032 0.0031 −2.97 

14 0.8139 0.8137 0.03 0.0009 0.0012 23.05 0.0095 0.0104 8.71 

15 0.7563 0.7559 0.05 0.0081 0.0087 7.39 0.0051 0.0054 6.28 

16 0.7722 0.7722 0.00 0.0013 0.0013 0.80 0.0106 0.0153 30.75 

17 0.8077 0.8077 0.00 0.0000 0.0000 – 0.0058 0.0079 26.62 

18 0.8485 0.8484 0.01 0.0027 0.0029 5.33 0.0135 0.0193 30.12 

19 0.6900 0.6900 0.00 0.0000 0.0000 – 0.0039 0.0038 −2.73 

20 0.7533 0.7533 0.00 0.0016 0.0016 2.93 0.0104 0.0104 0.30 

21 0.7508 0.7509 −0.01 0.0012 0.0011 −9.50 0.0063 0.0060 −5.09 

22 0.7989 0.7987 0.03 0.0005 0.0009 42.77 0.0164 0.0196 16.40 

23 0.7063 0.7064 −0.01 0.0006 0.0006 0.00 0.0072 0.0082 12.19 

24 0.8026 0.8022 0.05 0.0042 0.0048 12.39 0.0148 0.0185 20.12 

25 0.5789 0.5785 0.06 0.0006 0.0011 42.54 0.0051 0.0042 −19.62 

26 0.7294 0.7294 0.00 0.0000 0.0000 – 0.0080 0.0084 4.99 

27 0.7455 0.7455 0.00 0.0005 0.0005 3.45 0.0068 0.0070 3.36 

28 0.7967 0.7968 −0.01 0.0002 0.0001 −60.00 0.0125 0.0143 12.50 

29 0.7706 0.7703 0.04 0.0037 0.0038 1.63 0.0069 0.0075 7.60 

30 0.8402 0.8403 −0.01 0.0018 0.0016 −13.58 0.0192 0.0217 11.29 

Avg. 0.7491 0.7490 0.02 0.0018 0.0019 1.01 0.0081 0.0095 10.12 

Std dev. 0.0764 0.0764 0.05 0.0039 0.0040 48.92 0.0041 0.0054 20.36 

N. best 13 5 15 4 24 6 

N. draw 12 11 0 

p 0.0642 0.0442 0.0001 
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rate high-quality Pareto fronts while preserving uniformity in the 

istribution of non-dominated points. 

We now compare EHS with the previous heuristics proposed by 

ang et al. (2018) , i.e., the constructive heuristic named CH and 

SGA-III ( Deb & Jain, 2013 ), initialized with CH. In this case, the

omparison is not possible for all the instances 1–90. In fact, as 

lso pointed out in ( Anghinolfi et al., 2021 , pages 419 and 429), 

he original CH heuristic by Wang et al. (2018) may be unable to 

uild feasible schedules, even if a feasible schedule exists, when no 

ocation including only free adjacent slots is available for a job due 

o previous assignments. 

Table 5 reports the results in terms of Hypervolume and IGD 

+ 

nly for the instances such that CH is able to compute a fea- 

ible solution. The computational times of NSGA-III include the 

ime needed to perform initialization, i.e., to run CH. The per- 

entage deviation �best 
EHS 

is the deviation of the best heuristic be- 

ween CH and NSGA-III with respect to EHS. The p-values in 

he columns related to NSGA-III are obtained by comparing EHS 

ith NSGA-III, while the p-values in the columns for CH refer 

o the comparison between EHS and CH. The results highlight 

hat CH is unable to find a feasible solution for most of the 

arge instances 61–90. Overall, CH can find a feasible solution for 

nly 48 out of 90 instances. For such instances, the superiority 

f EHS with respect to the other heuristics is evident, both in 

erms of accuracy and computational times. In more detail, EHS 

chieves the best result on 47, 46, and 45 instances (out of 48 in-

tances) in terms of Hypervolume, IGD 

+ , and computational time, 

espectively. 
859 
.5. The exact algorithm and EHS 

This subsection first presents an evaluation of the computa- 

ional advantage introduced by the use of EHS to provide an initial 

olution for the MILP solver used by the implementation of the 

xact algorithm ( Algorithm 5.1 ) based on Formulation 2. Further- 

ore, this subsection compares the exact algorithm with EHS to 

easure the trade-off between the quality of solutions and com- 

utational requirements. 

Table 6 shows the values of the computational times obtained 

or instances 1–90 by the exact algorithm based on Formulation 2 

ith and without providing the solution computed by EHS as an 

nitial solution to the MILP solver. In the table, F2 denotes the re- 

ults obtained by using the exact algorithm using Formulation 2, 

hile F2-init denotes the results obtained with the exact algo- 

ithm based on Formulation 2 when performing initialization with 

HS. The table adopts the same conventions used for Tables 1–

 . In particular, �F2 
F2-init 

indicates the percentage deviation of the 

omputational times of the exact algorithm exploiting the initial 

olution provided by EHS with respect to the implementation of 

he exact algorithm without initialization. We observe that the 

imes reported for the latter implementation include the compu- 

ational overhead due to the execution of EHS for initialization. 

able 6 highlights that, differently from the implementation of the 

xact algorithm with Formulation 1, the memory requirements of 

ormulation 2 enable to solve the large-scale instances 61–90 as 

ell (we recall that Formulation 1 was able to find a solution only 

or the first 60 instances, as pointed out in Section 6.3 ). However, 
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Table 3 

Comparison of the results obtained by EHS and SGS-ES for instances 31–60. The table shows the values of the Hypervolume, IGD + , and computational times achieved by the 

two heuristics, along with the related percentage deviations. 

Instance Hypervolume IGD + CPU time (s) 

EHS SGS-ES �SGS-ES 
EHS 

(%) EHS SGS-ES �SGS-ES 
EHS 

(%) EHS SGS-ES �SGS-ES 
EHS 

(%) 

31 0.8816 0.8813 0.03 0.0017 0.0023 26.67 0.0243 0.0384 36.88 

32 0.8116 0.8109 0.09 0.0 0 07 0.0016 59.20 0.0383 0.0551 30.42 

33 0.7766 0.7769 −0.03 0.0012 0.0 0 09 −22.41 0.0563 0.0767 26.67 

34 0.6915 0.6916 −0.03 0.0103 0.0102 −1.17 0.0878 0.0946 7.17 

35 0.6011 0.6011 0.01 0.0 0 0 0 0.0 0 01 86.67 0.0510 0.0483 −5.72 

36 0.8545 0.8541 0.05 0.0021 0.0033 37.30 0.0299 0.0641 53.27 

37 0.8709 0.8710 −0.01 0.0033 0.0034 4.18 0.0477 0.0914 47.77 

38 0.8393 0.8397 −0.05 0.0071 0.0066 −6.42 0.0768 0.1351 43.15 

39 0.7702 0.7700 0.02 0.0026 0.0028 6.80 0.1072 0.2147 50.05 

40 0.7762 0.7730 0.42 0.0056 0.0083 32.88 0.1778 0.2913 38.96 

41 0.9259 0.9259 −0.01 0.0026 0.0024 −8.47 0.0319 0.0651 50.98 

42 0.8528 0.8529 0.00 0.0013 0.0012 −4.73 0.0474 0.1035 54.17 

43 0.8613 0.8614 −0.01 0.0016 0.0020 16.97 0.0814 0.1566 48.04 

44 0.8229 0.8223 0.07 0.0050 0.0056 10.51 0.1221 0.2399 49.10 

45 0.7904 0.7899 0.07 0.0034 0.0040 16.40 0.1993 0.4059 50.91 

46 0.8166 0.8162 0.05 0.0096 0.0093 −3.22 0.1764 0.3468 49.12 

47 0.8493 0.8494 0.00 0.0041 0.0044 6.57 0.2868 0.6161 53.46 

48 0.8742 0.8725 0.19 0.0026 0.0040 35.48 0.4227 0.8131 48.01 

49 0.8039 0.8020 0.23 0.0023 0.0034 33.22 0.6800 1.1943 43.06 

50 0.8222 0.8158 0.78 0.0063 0.0109 42.01 0.8537 1.5257 44.05 

51 0.8377 0.8370 0.09 0.0139 0.0152 8.88 0.2841 0.6305 54.94 

52 0.8667 0.8656 0.12 0.0038 0.0051 25.71 0.3933 0.9671 59.33 

53 0.8880 0.8875 0.06 0.0038 0.0045 15.90 0.5025 1.3249 62.07 

54 0.8836 0.8836 0.00 0.0024 0.0024 2.62 0.6990 1.8315 61.83 

55 0.8450 0.8445 0.07 0.0 0 04 0.0 0 09 51.02 0.9189 2.8734 68.02 

56 0.8831 0.8824 0.08 0.0042 0.0053 20.25 0.3502 0.9294 62.32 

57 0.7440 0.7432 0.11 0.0111 0.0122 9.14 0.4964 1.4716 66.27 

58 0.9058 0.9057 0.01 0.0 0 08 0.0012 27.27 0.6180 2.0238 69.46 

59 0.8893 0.8880 0.14 0.0033 0.0040 16.45 0.9788 3.8813 74.78 

60 0.8173 0.8169 0.04 0.0029 0.0034 13.13 1.0671 3.6342 70.64 

Avg. 0.8285 0.8277 0.09 0.0040 0.0047 18.63 0.3302 0.8715 48.97 

Std dev. 0.0668 0.0668 0.16 0.0034 0.0037 22.46 0.3223 1.0614 17.49 

N. best 22 8 24 6 29 1 

N. draw 0 0 0 

p 0.0 0 04 0.0 0 01 1.9209E-06 

Table 4 

Comparison of the results obtained by EHS and SGS-ES for instances 61–90. The table shows the values of the Hypervolume, IGD + , and computational times achieved by the 

two heuristics, along with the related percentage deviations. 

Instance Hypervolume IGD + CPU time (s) 

EHS SGS-ES �SGS-ES 
EHS 

(%) EHS SGS-ES �SGS-ES 
EHS 

(%) EHS SGS-ES �SGS-ES 
EHS 

(%) 

61 0.8178 0.8162 0.19 0.0039 0.0050 21.31 8.0704 18.6766 56.79 

62 0.8272 0.8262 0.13 0.0034 0.0040 16.76 16.0995 53.8304 70.09 

63 0.7660 0.7645 0.20 0.0036 0.0046 21.43 10.9416 22.1941 50.70 

64 0.7842 0.7827 0.19 0.0035 0.0044 19.77 17.9779 49.0354 63.34 

65 0.7221 0.7205 0.22 0.0064 0.0072 11.37 13.6809 25.6876 46.74 

66 0.8008 0.7984 0.30 0.0045 0.0060 24.54 22.1340 65.3891 66.15 

67 0.7558 0.7549 0.12 0.0028 0.0033 15.12 11.7066 22.0816 46.98 

68 0.7388 0.7372 0.22 0.0045 0.0054 16.19 28.1576 72.8456 61.35 

69 0.7369 0.7356 0.17 0.0043 0.0047 9.62 14.0772 22.0728 36.22 

70 0.7481 0.7450 0.41 0.0065 0.0087 24.61 37.2852 77.6561 51.99 

71 0.7997 0.7980 0.21 0.0046 0.0055 16.53 8.1154 21.7973 62.77 

72 0.8724 0.8703 0.24 0.0031 0.0044 29.50 14.4530 56.3769 74.36 

73 0.7929 0.7913 0.20 0.0042 0.0051 16.68 10.9099 26.4831 58.80 

74 0.8486 0.8471 0.17 0.0030 0.0039 23.90 18.1652 67.1380 72.94 

75 0.7850 0.7835 0.19 0.0033 0.0042 20.50 11.5784 30.1399 61.58 

76 0.8503 0.8488 0.18 0.0037 0.0047 20.53 20.8766 79.8189 73.85 

77 0.7453 0.7442 0.14 0.0049 0.0056 12.48 14.0398 31.9174 56.01 

78 0.7884 0.7866 0.23 0.0041 0.0051 20.47 31.7094 92.9936 65.90 

79 0.7472 0.7451 0.28 0.0039 0.0052 25.92 20.5086 40.2177 49.01 

80 0.8133 0.8117 0.19 0.0031 0.0041 23.92 30.8912 86.7287 64.38 

81 0.8158 0.8140 0.23 0.0047 0.0058 19.43 9.2991 32.5687 71.45 

82 0.8630 0.8615 0.18 0.0043 0.0055 22.14 17.8626 79.0559 77.41 

83 0.8174 0.8159 0.18 0.0038 0.0048 21.92 13.1299 36.6585 64.18 

84 0.8270 0.8261 0.11 0.0032 0.0039 16.53 21.7891 97.6430 77.68 

85 0.8210 0.8200 0.12 0.0035 0.0040 12.59 14.7378 42.2191 65.09 

86 0.8283 0.8272 0.14 0.0039 0.0045 14.18 24.7579 111.6060 77.82 

87 0.8054 0.8040 0.17 0.0042 0.0049 13.36 16.2661 45.2810 64.08 

88 0.8364 0.8351 0.16 0.0032 0.0041 21.61 33.0019 128.1692 74.25 

89 0.7622 0.7588 0.44 0.0051 0.0076 32.06 23.8458 63.2728 62.31 

90 0.8080 0.8068 0.15 0.0042 0.0049 14.24 45.2837 136.8648 66.91 

Avg. 0.7975 0.7959 0.20 0.0040 0.0050 19.31 19.3784 57.8807 63.04 

Std dev. 0.0401 0.0402 0.08 0.0 0 09 0.0011 5.36 9.1422 32.9438 10.33 

N. best 30 0 30 0 30 0 

N. draw 0 0 0 

p 1.7344E-06 1.7344E-06 1.7344E-06 

860 
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Table 5 

Comparison of the results obtained by EHS and NSGA-III and CH for all the instances such that CH returns a feasible solution. The table shows the values of the Hypervolume, 

IGD + , and computational times achieved by the three approaches, along with the related percentage deviations computed with respect to the best competitor of EHS. 

Instance Hypervolume IGD + CPU time (s) 

EHS NSGA-III CH �best 
EHS 

(%) EHS NSGA-III CH �best 
EHS 

(%) EHS NSGA-III CH �best 
EHS 

(%) 

1 0.6976 0.6962 0.6906 0.21 0.0000 0.0023 0.0066 100.00 0.0042 10.9688 0.0206 79.77 

2 0.7683 0.7683 0.7671 0.01 0.0000 0.0001 0.0020 100.00 0.0060 10.9884 0.0215 72.13 

3 0.7425 0.7425 0.7425 0.00 0.0000 0.0000 0.0000 – 0.0034 10.8791 0.0099 65.75 

7 0.7460 0.7452 0.7449 0.11 0.0000 0.0007 0.0011 100.00 0.0035 10.6625 0.0082 56.87 

10 0.7514 0.7510 0.7506 0.05 0.0003 0.0005 0.0010 40.00 0.0118 10.9952 0.0312 62.27 

12 0.8212 0.8208 0.8208 0.05 0.0024 0.0023 0.0032 −8.00 0.0102 10.8785 0.0435 76.56 

13 0.7259 0.7243 0.7243 0.22 0.0000 0.0020 0.0020 100.00 0.0032 10.8018 0.0067 51.33 

14 0.8139 0.8121 0.8121 0.22 0.0009 0.0034 0.0035 72.40 0.0095 10.6095 0.0213 55.16 

16 0.7722 0.7688 0.7687 0.43 0.0013 0.0057 0.0058 76.47 0.0106 10.9737 0.0396 73.26 

17 0.8077 0.8063 0.8063 0.17 0.0000 0.0017 0.0017 100.00 0.0058 10.8916 0.0182 68.05 

18 0.8485 0.8461 0.8461 0.28 0.0027 0.0052 0.0052 48.43 0.0135 10.8807 0.0504 73.30 

19 0.6900 0.6862 0.6852 0.56 0.0000 0.0035 0.0045 100.00 0.0039 10.8885 0.0079 51.06 

21 0.7508 0.7452 0.7451 0.74 0.0012 0.0064 0.0064 81.08 0.0063 10.6952 0.0122 48.31 

22 0.7989 0.7931 0.7930 0.73 0.0005 0.0062 0.0063 91.95 0.0164 10.7534 0.0747 78.08 

23 0.7063 0.7021 0.7021 0.60 0.0006 0.0057 0.0057 90.32 0.0072 10.9184 0.0103 29.93 

25 0.5789 0.5725 0.5723 1.11 0.0006 0.0065 0.0067 90.55 0.0051 10.8099 0.0074 30.92 

26 0.7294 0.7198 0.7170 1.32 0.0000 0.0060 0.0086 100.00 0.0080 10.8309 0.0700 88.56 

27 0.7455 0.7440 0.7440 0.21 0.0005 0.0028 0.0028 83.53 0.0068 10.7334 0.0075 9.65 

28 0.7967 0.7943 0.7943 0.31 0.0002 0.0027 0.0027 91.62 0.0125 10.8425 0.0764 83.57 

31 0.8816 0.8715 0.8715 1.15 0.0017 0.0106 0.0106 84.02 0.0243 11.0500 0.1584 84.68 

32 0.8116 0.7980 0.7980 1.68 0.0007 0.0118 0.0118 94.34 0.0383 11.3557 0.1010 62.05 

33 0.7766 0.7733 0.7733 0.43 0.0012 0.0044 0.0044 73.68 0.0563 11.7489 0.0634 11.30 

34 0.6915 0.6794 0.6793 1.75 0.0103 0.0212 0.0213 51.40 0.0878 12.3398 0.0622 −41.16 

35 0.6011 0.5875 0.5875 2.27 0.0000 0.0150 0.0150 99.95 0.0510 13.1657 0.0578 11.62 

36 0.8545 0.8437 0.8434 1.26 0.0021 0.0072 0.0074 70.85 0.0299 11.4679 0.1026 70.81 

37 0.8709 0.8658 0.8658 0.58 0.0033 0.0075 0.0075 56.02 0.0477 11.6202 0.1056 54.79 

38 0.8393 0.8372 0.8372 0.25 0.0071 0.0087 0.0087 19.31 0.0768 12.2492 0.2738 71.96 

39 0.7702 0.7651 0.7651 0.66 0.0026 0.0071 0.0071 62.80 0.1072 12.9709 0.1297 17.30 

40 0.7762 0.7592 0.7592 2.19 0.0056 0.0194 0.0194 71.30 0.1778 13.8076 0.1656 −7.39 

41 0.9259 0.9253 0.9253 0.06 0.0026 0.0036 0.0036 28.84 0.0319 11.5631 0.1355 76.46 

42 0.8528 0.8505 0.8505 0.28 0.0013 0.0039 0.0039 67.44 0.0474 12.0115 0.1300 63.52 

44 0.8229 0.8197 0.8196 0.39 0.0050 0.0077 0.0077 35.46 0.1221 13.1930 0.1538 20.61 

45 0.7904 0.7800 0.7800 1.32 0.0034 0.0113 0.0113 70.19 0.1993 14.5432 0.1684 −18.35 

46 0.8166 0.8088 0.8084 0.95 0.0096 0.0149 0.0152 35.45 0.1764 13.1718 2.0441 91.37 

47 0.8493 0.8463 0.8463 0.36 0.0041 0.0062 0.0062 33.48 0.2868 13.2982 2.1061 86.38 

48 0.8742 0.8654 0.8654 1.01 0.0026 0.0092 0.0092 71.98 0.4227 13.7993 2.1209 80.07 

50 0.8222 0.8003 0.8003 2.66 0.0063 0.0233 0.0233 72.89 0.8537 15.1520 2.3195 63.20 

51 0.8377 0.8281 0.8280 1.15 0.0139 0.0163 0.0174 15.04 0.2841 15.2817 3.9061 92.73 

52 0.8667 0.8636 0.8635 0.35 0.0038 0.0071 0.0071 45.93 0.3933 15.8807 3.9766 90.11 

53 0.8880 0.8847 0.8847 0.38 0.0038 0.0072 0.0072 47.72 0.5025 16.2283 4.0585 87.62 

55 0.8450 0.8411 0.8411 0.47 0.0004 0.0034 0.0034 87.32 0.9189 17.6802 4.1856 78.05 

56 0.8831 0.8794 0.8788 0.42 0.0042 0.0079 0.0086 46.15 0.3502 17.8474 6.1874 94.34 

57 0.7440 0.7363 0.7353 1.03 0.0111 0.0152 0.0161 27.05 0.4964 18.0846 6.1088 91.87 

58 0.9058 0.9046 0.9046 0.13 0.0008 0.0030 0.0030 72.03 0.6180 18.9285 6.1696 89.98 

60 0.8173 0.8148 0.8148 0.31 0.0029 0.0054 0.0054 45.76 1.0671 20.9968 6.3643 83.23 

66 0.8008 0.7805 0.7805 2.53 0.0045 0.0195 0.0195 76.84 22.1340 223.5118 206.0299 89.26 

74 0.8486 0.8379 0.8379 1.26 0.0030 0.0105 0.0105 71.87 18.1652 149.1959 132.1338 86.25 

86 0.8283 0.8157 0.8157 1.52 0.0039 0.0123 0.0123 68.47 24.7579 149.0026 129.1161 80.83 

Avg. 0.7955 0.7896 0.7893 0.75 0.0028 0.0076 0.0079 67.28 1.5140 22.8568 10.8161 60.79 

Std dev. 0.0724 0.0730 0.0733 0.69 0.0032 0.0057 0.0057 26.90 5.3139 40.4773 38.9220 32.12 

N. best 47 0 1 46 1 0 45 0 3 

N. draw 0 1 0 

p 2.3968E-09 1.7378E-09 2.7281E-09 2.3968E-09 1.6310E-09 3.4284E-08 
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he maximum time limit of 4 hours for the MILP solver was not 

ufficient to compute the optimal Pareto fronts for instances 62, 

9, 83, 85, 86, 88, and 89. On the contrary, the initialization of the 

xact algorithm through EHS allows solving instances 62, 83, 85, 

6, and 89 within the time limit. Moreover, such an initialization 

nables large time savings in 88 instances over 90, with the excep- 

ion of instances 79 and 88, where the time limit is again reached. 

With a little abuse of notation, in the remainder of this subsec- 

ion, we simply refer to the implementation of Algorithm 5.1 based 

n Formulation 2 with the initialization provided by EHS as “ex- 

ct algorithm with initialization”. Tables 7–9 report the results 

f the comparison between the exact algorithm with initializa- 

ion and EHS in terms of the performance metrics introduced in 

ection 6.2 and computational times for instances 1–30, 31–60 and 
861 
1–90 respectively. We remark that both tables adopt the conven- 

ions introduced in the previous subsections. 

We first focus on Tables 7 and 8 . It is interesting to observe

hat EHS is able to compute the optimal Pareto front for instances 

, 2, 4, 5, 6, 7, 10, 13, 17, 19, and 26. In fact, EHS and the exact al-

orithm achieved the same values of Hypervolume and IGD 

+ . For 

he other instances, the quality of results provided by the exact 

lgorithm is always larger than the one given by EHS. The compu- 

ational times of EHS are always less than the ones of the exact 

lgorithm with initialization, with the minimum percentage devi- 

tion being equal to 71 . 14% , and an average of 97 . 28% and 89 . 47%

eviation for instances 1–30 and 31–60, respectively. Similar argu- 

ents can be reported as regards the results for the large-scale 

nstances 61–90 shown in Table 9 , where the percentage deviation 
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Table 6 

Comparison of the computational times obtained by the exact algorithm when using Formulation 2 (F2) and Formulation 2 with initialization provided by EHS (F2-init) for 

instances 1–30, 31–60, and 61–90. 

Instance 

CPU time (s) 

Instance 

CPU time (s) 

Instance 

CPU time (s) 

F2 F2-init �F2 
F2-init 

(%) F2 F2-init �F2 
F2-init 

(%) F2 F2-init �F2 
F2-init 

(%) 

1 0.3525 0.2150 39.01 31 0.9499 0.7694 19.01 61 827.0859 611.6478 26.05 

2 0.4799 0.1387 71.10 32 1.1458 0.8805 23.15 62 14400.0000 1151.5676 92.00 

3 0.3041 0.0892 70.68 33 1.5192 1.0644 29.94 63 1376.1149 1081.9362 21.38 

4 0.5265 0.1154 78.09 34 2.2330 1.8488 17.21 64 2019.4856 1603.4638 20.60 

5 0.4288 0.0789 81.60 35 2.5779 1.5583 39.55 65 1165.4502 1013.6229 13.03 

6 0.4466 0.1060 76.26 36 0.9013 0.4714 47.70 66 2180.1869 1778.8279 18.41 

7 0.3865 0.3000 22.40 37 1.3302 0.8897 33.12 67 1426.0655 1117.5993 21.63 

8 0.5586 0.4035 27.77 38 2.5866 2.1766 15.85 68 5291.3348 4939.7465 6.64 

9 0.2809 0.2154 23.31 39 2.7987 1.9215 31.34 69 2543.0730 2165.1171 14.86 

10 0.7209 0.2146 70.23 40 4.1294 3.2607 21.04 70 2690.2322 2357.9327 12.35 

11 0.4399 0.1624 63.09 41 0.9398 0.3561 62.11 71 1017.8704 815.0992 19.92 

12 0.7382 0.3179 56.94 42 1.7630 0.6580 62.68 72 906.8871 717.3885 20.90 

13 0.4236 0.2772 34.56 43 2.6687 1.9790 25.84 73 1201.6998 965.8806 19.62 

14 0.6709 0.4220 37.10 44 3.7989 2.9698 21.83 74 1340.3735 1178.4611 12.08 

15 0.3676 0.2575 29.95 45 5.8304 4.2192 27.63 75 1299.6371 1065.3111 18.03 

16 0.7276 0.3325 54.30 46 3.4909 1.0783 69.11 76 1348.7682 1142.3735 15.30 

17 0.5931 0.3609 39.15 47 4.2710 2.7043 36.68 77 1860.7451 1612.8176 13.32 

18 1.0311 0.5939 42.40 48 7.3489 4.9430 32.74 78 2998.1649 2592.9869 13.51 

19 0.4866 0.2932 39.73 49 17.5062 13.3570 23.70 79 14400.0000 14400.0000 0.00 

20 0.6527 0.4862 25.52 50 11.3853 8.9311 21.56 80 2741.5972 2290.5488 16.45 

21 0.6678 0.4605 31.04 51 7.2481 0.9845 86.42 81 828.6165 667.3496 19.46 

22 0.9895 0.7531 23.89 52 5.3167 1.2420 76.64 82 2708.3709 1344.9350 50.34 

23 0.4635 0.2670 42.40 53 10.1980 4.1180 59.62 83 14400.0000 1096.4566 92.39 

24 1.2782 1.1608 9.19 54 12.6210 4.6798 62.92 84 2891.7570 1755.8605 39.28 

25 0.2998 0.1972 34.23 55 18.1268 10.7669 40.60 85 14400.0000 1236.8127 91.41 

26 0.8721 0.4775 45.25 56 4.1815 1.5448 63.06 86 14400.0000 1775.3635 87.67 

27 0.4519 0.2971 34.25 57 10.9855 1.7778 83.82 87 1402.1250 1157.3959 17.45 

28 1.1910 0.7695 35.39 58 13.1024 2.7290 79.17 88 14400.0000 14400.0000 0.00 

29 0.9733 0.7052 27.55 59 21.4852 15.7179 26.84 89 14400.0000 8863.0899 38.45 

30 0.9687 0.8249 14.85 60 20.7640 7.7110 62.86 90 3606.3123 3108.4430 13.81 

Avg. 0.6258 0.3764 42.71 Avg. 6.7735 3.5770 43.46 Avg. 4882.3985 2666.9345 28.21 

Std dev. 0.2731 0.2550 19.84 Std dev. 6.2401 3.9109 22.29 Std dev. 5422.8772 3563.0504 26.98 

N. best 0 30 N. best 0 30 N. best 0 28 

N. draw 0 N. draw 0 N. draw 2 

p 1.7344E-06 p 1.7344E-06 p 3.7896E-06 

Fig. 6. Box-and-whiskers plots for the values of Hypervolume (a), IGD + (b), and computational times (c) of the solutions computed by the exact algorithm exploiting 

Formulation 2 with initialization provided by EHS (F2-init), EHS itself, and SGS-ES on instances 61–90. In (c), we also show the computational times of the exact algorithm 

exploiting Formulation 2 (F2), and we provide an enlargement of the box-and-whiskers plot of EHS and SGS-ES at a finer scale. We enhanced the readability of all the plots 

by omitting the outliers. 
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f EHS with respect to the exact algorithm with initialization is 

qual to 98.85% on the average and never lower than 97%. In this 

ase, the quality of the solutions of the exact algorithm is always 

etter than the one of EHS, except for instances 79 and 88. In fact, 

he exact algorithm could not compute the optimal Pareto front for 

uch two instances within the 4 hours time limit. This motivates 

lso the better average values of EHS with respect to F2-init, even 

f the remaining 28 instances are characterized by the superiority 

f F2-init. However, for the other instances, the values of Hyper- 

olume and IGD 

+ are equal up to the second decimal place, hence 

roving the effectiveness of EHS in finding a solution. 

Overall, we can conclude that EHS constitutes an excellent 

rade-off between the quality of solutions and computational ef- 
862 
ort. Furthermore, the solutions computed by EHS provide a sig- 

ificant speed-up to the exact algorithm, which is able to compute 

he optimal solution to the considered instances within a time that 

s only two orders of magnitude greater than the one required by 

HS. Finally, we observe that all the aforementioned considera- 

ions are always supported by the small p-values, which confirm 

he statistical difference between the results provided by the two 

pproaches. 

Figs. 6 and 7 provide visual support to our discussion. The fig- 

res also display the results achieved by SGS-ES so as to provide a 

ore comprehensive evaluation of the novel solution approaches. 

pecifically, Fig. 6 provides the box-and-whiskers plots for Hyper- 

olume (a), IGD 

+ (b), and computational times (c) of the solu- 
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Table 7 

Comparison of the results obtained by the exact algorithm when using Formulation 2 with initialization provided by EHS (denoted by F2-init) and EHS itself for instances 

1–30. The table shows the values of the Hypervolume, IGD + , and computational times achieved by the two approaches, along with the related percentage deviations. 

Instance Hypervolume IGD + CPU time (s) 

F2-init EHS �EHS 
F2-init 

(%) F2-init EHS �EHS 
F2-init 

(%) F2-init EHS �F2-init 
EHS 

(%) 

1 0.6976 0.6976 0.00 0.0 0 0 0 0.0 0 0 0 – 0.2150 0.0042 98.06 

2 0.7683 0.7683 0.00 0.0 0 0 0 0.0 0 0 0 – 0.1387 0.0060 95.68 

3 0.7425 0.7425 0.00 0.0 0 0 0 0.0 0 0 0 – 0.0892 0.0034 96.19 

4 0.7438 0.7438 0.00 0.0 0 0 0 0.0 0 0 0 – 0.1154 0.0067 94.16 

5 0.4531 0.4531 0.00 0.0 0 0 0 0.0 0 0 0 – 0.0789 0.0043 94.56 

6 0.7532 0.7532 0.00 0.0 0 0 0 0.0 0 0 0 – 0.1060 0.0085 91.99 

7 0.7460 0.7460 0.00 0.0 0 0 0 0.0 0 0 0 – 0.30 0 0 0.0035 98.82 

8 0.7756 0.7745 0.14 0.0 0 0 0 0.0013 10 0.0 0 0.4035 0.0082 97.96 

9 0.7507 0.7336 2.27 0.0 0 0 0 0.0205 10 0.0 0 0.2154 0.0045 97.93 

10 0.7514 0.7514 0.00 0.0 0 0 0 0.0 0 03 10 0.0 0 0.2146 0.0118 94.52 

11 0.8019 0.8013 0.08 0.0 0 0 0 0.0 0 09 10 0.0 0 0.1624 0.0055 96.62 

12 0.8220 0.8212 0.10 0.0 0 0 0 0.0024 10 0.0 0 0.3179 0.0102 96.79 

13 0.7259 0.7259 0.00 0.0 0 0 0 0.0 0 0 0 – 0.2772 0.0032 98.83 

14 0.8153 0.8139 0.17 0.0 0 0 0 0.0 0 09 10 0.0 0 0.4220 0.0095 97.74 

15 0.7687 0.7563 1.61 0.0 0 0 0 0.0081 10 0.0 0 0.2575 0.0051 98.04 

16 0.7732 0.7722 0.13 0.0 0 0 0 0.0013 10 0.0 0 0.3325 0.0106 96.82 

17 0.8077 0.8077 0.00 0.0 0 0 0 0.0 0 0 0 – 0.3609 0.0058 98.39 

18 0.8506 0.8485 0.25 0.0 0 0 0 0.0027 10 0.0 0 0.5939 0.0135 97.73 

19 0.6900 0.6900 0.00 0.0 0 0 0 0.0 0 0 0 – 0.2932 0.0039 98.68 

20 0.7548 0.7533 0.19 0.0 0 0 0 0.0016 10 0.0 0 0.4862 0.0104 97.86 

21 0.7520 0.7508 0.16 0.0 0 0 0 0.0012 10 0.0 0 0.4605 0.0063 98.64 

22 0.7993 0.7989 0.05 0.0 0 0 0 0.0 0 05 10 0.0 0 0.7531 0.0164 97.83 

23 0.7067 0.7063 0.05 0.0 0 0 0 0.0 0 06 10 0.0 0 0.2670 0.0072 97.30 

24 0.8067 0.8026 0.52 0.0 0 0 0 0.0042 10 0.0 0 1.1608 0.0148 98.73 

25 0.5794 0.5789 0.08 0.0 0 0 0 0.0 0 06 10 0.0 0 0.1972 0.0051 97.42 

26 0.7294 0.7294 0.00 0.0 0 0 0 0.0 0 0 0 – 0.4775 0.0080 98.32 

27 0.7458 0.7455 0.04 0.0 0 0 0 0.0 0 05 10 0.0 0 0.2971 0.0068 97.72 

28 0.7970 0.7967 0.03 0.0 0 0 0 0.0 0 02 10 0.0 0 0.7695 0.0125 98.37 

29 0.7743 0.7706 0.48 0.0 0 0 0 0.0037 10 0.0 0 0.7052 0.0069 99.02 

30 0.8413 0.8402 0.13 0.0 0 0 0 0.0018 10 0.0 0 0.8249 0.0192 97.67 

Avg. 0.7508 0.7503 0.22 0.0 0 0 0 0.0018 10 0.0 0 0.3764 0.0081 97.28 

Std dev. 0.0768 0.0767 0.49 0.0 0 0 0 0.0039 0.00 0.2550 0.0041 1.64 

N. best 19 0 19 0 0 30 

N. draw 11 11 0 

p 1.3183E-04 1.3183E-04 1.7344E-06 

Table 8 

Comparison of the results obtained by the exact algorithm when using Formulation 2 with initialization provided by EHS (denoted by F2-init) and EHS itself for instances 

31–60. The table shows the values of the Hypervolume, IGD + , and computational times achieved by the two approaches, along with the related percentage deviations. 

Instance Hypervolume IGD + CPU time (s) 

F2-init EHS �EHS 
F2-init 

(%) F2-init EHS �EHS 
F2-init 

(%) F2-init EHS �F2-init 
EHS 

(%) 

31 0.8829 0.8816 0.15 0.0 0 0 0 0.0017 10 0.0 0 0.7694 0.0243 96.85 

32 0.8122 0.8116 0.08 0.0 0 0 0 0.0 0 07 10 0.0 0 0.8805 0.0383 95.65 

33 0.7783 0.7766 0.21 0.0 0 0 0 0.0012 10 0.0 0 1.0644 0.0563 94.71 

34 0.7021 0.6915 1.52 0.0 0 0 0 0.0103 10 0.0 0 1.8488 0.0878 95.25 

35 0.6012 0.6011 0.00 0.0 0 0 0 0.0 0 0 0 10 0.0 0 1.5583 0.0510 96.72 

36 0.8563 0.8545 0.21 0.0 0 0 0 0.0021 10 0.0 0 0.4714 0.0299 93.65 

37 0.8731 0.8709 0.26 0.0 0 0 0 0.0033 10 0.0 0 0.8897 0.0477 94.64 

38 0.8464 0.8393 0.84 0.0 0 0 0 0.0071 10 0.0 0 2.1766 0.0768 96.47 

39 0.7733 0.7702 0.40 0.0 0 0 0 0.0026 10 0.0 0 1.9215 0.1072 94.42 

40 0.7823 0.7762 0.77 0.0 0 0 0 0.0056 10 0.0 0 3.2607 0.1778 94.55 

41 0.9267 0.9259 0.08 0.0 0 0 0 0.0026 10 0.0 0 0.3561 0.0319 91.04 

42 0.8535 0.8528 0.08 0.0 0 0 0 0.0013 10 0.0 0 0.6580 0.0474 92.79 

43 0.8630 0.8613 0.19 0.0 0 0 0 0.0016 10 0.0 0 1.9790 0.0814 95.89 

44 0.8279 0.8229 0.61 0.0 0 0 0 0.0050 10 0.0 0 2.9698 0.1221 95.89 

45 0.7936 0.7904 0.40 0.0 0 0 0 0.0034 10 0.0 0 4.2192 0.1993 95.28 

46 0.8266 0.8166 1.21 0.0 0 0 0 0.0096 10 0.0 0 1.0783 0.1764 83.64 

47 0.8523 0.8493 0.34 0.0 0 0 0 0.0041 10 0.0 0 2.7043 0.2868 89.40 

48 0.8760 0.8742 0.21 0.0 0 0 0 0.0026 10 0.0 0 4.9430 0.4227 91.45 

49 0.8064 0.8039 0.31 0.0 0 0 0 0.0023 10 0.0 0 13.3570 0.6800 94.91 

50 0.8320 0.8222 1.19 0.0 0 0 0 0.0063 10 0.0 0 8.9311 0.8537 90.44 

51 0.8459 0.8377 0.97 0.0 0 0 0 0.0139 10 0.0 0 0.9845 0.2841 71.14 

52 0.8681 0.8667 0.17 0.0 0 0 0 0.0038 10 0.0 0 1.2420 0.3933 68.33 

53 0.8903 0.8880 0.25 0.0 0 0 0 0.0038 10 0.0 0 4.1180 0.5025 87.80 

54 0.8848 0.8836 0.14 0.0 0 0 0 0.0024 10 0.0 0 4.6798 0.6990 85.06 

55 0.8454 0.8450 0.04 0.0 0 0 0 0.0 0 04 10 0.0 0 10.7669 0.9189 91.47 

56 0.8852 0.8831 0.23 0.0 0 0 0 0.0042 10 0.0 0 1.5448 0.3502 77.33 

57 0.7517 0.7440 1.02 0.0 0 0 0 0.0111 10 0.0 0 1.7778 0.4964 72.08 

58 0.9060 0.9058 0.02 0.0 0 0 0 0.0 0 08 10 0.0 0 2.7290 0.6180 77.35 

59 0.8921 0.8893 0.31 0.0 0 0 0 0.0033 10 0.0 0 15.7179 0.9788 93.77 

60 0.8198 0.8173 0.31 0.0 0 0 0 0.0029 10 0.0 0 7.7110 1.0671 86.16 

Avg. 0.8318 0.7503 0.42 0.0 0 0 0 0.0040 10 0.0 0 3.5770 0.3302 89.47 

Std dev. 0.0658 0.0767 0.41 0.0 0 0 0 0.0034 0.00 3.9109 0.3223 8.27 

N. best 30 0 30 0 0 30 

N. draw 0 0 0 

p 1.7344E-06 1.7344E-06 1.7344E-06 

863 
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Table 9 

Comparison of the results obtained by the exact algorithm when using Formulation 2 with initialization provided by EHS (denoted by F2-init) and EHS itself for instances 

61–90. The table shows the values of the Hypervolume, IGD + , and computational times achieved by the two approaches, along with the related percentage deviations. 

Instance Hypervolume IGD + CPU time (s) 

F2-init EHS �EHS 
F2-init 

(%) F2-init EHS �EHS 
F2-init 

(%) F2-init EHS �F2-init 
EHS 

(%) 

61 0.8223 0.8178 0.55 0.0 0 0 0 0.0039 10 0.0 0 611.6478 8.0704 98.68 

62 0.8313 0.8272 0.50 0.0 0 0 0 0.0034 10 0.0 0 1151.5676 16.0995 98.60 

63 0.7704 0.7660 0.57 0.0 0 0 0 0.0036 10 0.0 0 1081.9362 10.9416 98.99 

64 0.7886 0.7842 0.56 0.0 0 0 0 0.0035 10 0.0 0 1603.4638 17.9779 98.88 

65 0.7299 0.7221 1.06 0.0 0 0 0 0.0064 10 0.0 0 1013.6229 13.6809 98.65 

66 0.8064 0.8008 0.70 0.0 0 0 0 0.0045 10 0.0 0 1778.8279 22.1340 98.76 

67 0.7590 0.7558 0.41 0.0 0 0 0 0.0028 10 0.0 0 1117.5993 11.7066 98.95 

68 0.7446 0.7388 0.77 0.0 0 0 0 0.0045 10 0.0 0 4939.7465 28.1576 99.43 

69 0.7418 0.7369 0.66 0.0 0 0 0 0.0043 10 0.0 0 2165.1171 14.0772 99.35 

70 0.7563 0.7481 1.09 0.0 0 0 0 0.0065 10 0.0 0 2357.9327 37.2852 98.42 

71 0.8052 0.7997 0.69 0.0 0 0 0 0.0046 10 0.0 0 815.0992 8.1154 99.00 

72 0.8762 0.8724 0.43 0.0 0 0 0 0.0031 10 0.0 0 717.3885 14.4530 97.99 

73 0.7982 0.7929 0.66 0.0 0 0 0 0.0042 10 0.0 0 965.8806 10.9099 98.87 

74 0.8522 0.8486 0.42 0.0 0 0 0 0.0030 10 0.0 0 1178.4611 18.1652 98.46 

75 0.7890 0.7850 0.50 0.0 0 0 0 0.0033 10 0.0 0 1065.3111 11.5784 98.91 

76 0.8550 0.8503 0.55 0.0 0 0 0 0.0037 10 0.0 0 1142.3735 20.8766 98.17 

77 0.7514 0.7453 0.81 0.0 0 0 0 0.0049 10 0.0 0 1612.8176 14.0398 99.13 

78 0.7935 0.7884 0.64 0.0 0 0 0 0.0041 10 0.0 0 2592.9869 31.7094 98.78 

79 0.3657 0.7472 −104.34 0.1910 0.0039 −4849.50 1440 0.0 0 0 0 20.5086 99.86 

80 0.8171 0.8133 0.47 0.0 0 0 0 0.0031 10 0.0 0 2290.5488 30.8912 98.65 

81 0.8217 0.8158 0.72 0.0 0 0 0 0.0047 10 0.0 0 667.3496 9.2991 98.61 

82 0.8683 0.8630 0.61 0.0 0 0 0 0.0043 10 0.0 0 1344.9350 17.8626 98.67 

83 0.8221 0.8174 0.57 0.0 0 0 0 0.0038 10 0.0 0 1096.4566 13.1299 98.80 

84 0.8314 0.8270 0.53 0.0 0 0 0 0.0032 10 0.0 0 1755.8605 21.7891 98.76 

85 0.8250 0.8210 0.49 0.0 0 0 0 0.0035 10 0.0 0 1236.8127 14.7378 98.81 

86 0.8333 0.8283 0.60 0.0 0 0 0 0.0039 10 0.0 0 1775.3635 24.7579 98.61 

87 0.8106 0.8054 0.64 0.0 0 0 0 0.0042 10 0.0 0 1157.3959 16.2661 98.59 

88 0.7039 0.8364 −18.82 0.0375 0.0032 −1062.61 1440 0.0 0 0 0 33.0019 99.77 

89 0.7683 0.7622 0.80 0.0 0 0 0 0.0051 10 0.0 0 8863.0899 23.8458 99.73 

90 0.8131 0.8080 0.63 0.0 0 0 0 0.0042 10 0.0 0 3108.4430 45.2837 98.54 

Avg. 0.7851 0.7503 −3.52 0.0076 0.0040 −103.74 2666.9345 45.2837 98.85 

Std dev. 0.0896 0.0767 19.37 0.0353 0.0 0 09 921.09 3563.0504 9.1422 0.43 

N. best 28 2 28 2 0 30 

N. draw 0 0 0 

p 3.5888E-04 3.5888E-04 1.7344E-06 

Fig. 7. Pareto fronts of instance 40 (a) and instance 90 (b) computed by the exact algorithm exploiting Formulation 2 with initialization provided by EHS (F2-init), EHS itself, 

and SGS-ES. Enlargements of two different parts of the fronts are also reported to appreciate the difference between the various algorithms at a finer scale. 
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ions computed by the exact algorithm with initialization, EHS it- 

elf and SGS-ES on the large-scale instances, i.e., 61–90. In partic- 

lar, Fig. 6 (c) also displays the computational times obtained by 

he exact algorithm. The plots are consistent with the conclusions 

rawn in this section on the comparisons between the exact al- 

orithm exploiting Formulation 2 (with and without initialization) 

nd EHS, as well as EHS itself and SGS-ES (see Subsection 6.4 ), ac-

ording to the numerical results presented in the tables. Fig. 6 (c) 

agnifies the box-and-whiskers plots related to EHS and SGS-ES so 

s to provide a more accurate comparison of their computational 

imes on a different scale. Finally, Fig. 7 provides a graphical rep- 

esentation of the Pareto fronts computed by the exact algorithm 

ith initialization and EHS for instances 40 (a) and 90 (b). Enlarge- 

ents of different portions of the figure allow the reader to appre- 
p

864 
iate the differences between the displayed Pareto fronts with a 

ner level of detail. 

. Conclusions 

Energy-efficient manufacturing has become a compelling mat- 

er in the latest years, owing to the pressing environmental issues 

nd the consequent desire to shift toward sustainable production. 

n this context, the development of suitable scheduling models and 

fficient solution approaches plays an essential role in the defini- 

ion of a new paradigm that encompasses both productivity goals 

nd environmental awareness. 

In this paper, we have considered the bi-objective scheduling 

roblem of simultaneously minimizing the makespan and the TEC 
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f a set of independent jobs on parallel identical machines, called 

he Bi-objective scheduling on parallel identical machines with 

ime-of-use costs problem (BPMSTP). We have introduced a combi- 

atorial property that has provided a novel description of the solu- 

ion space of the BPMSTP. This characterizing property has enabled 

he development of a compact formulation that constitutes the 

oundation of an exact algorithm for the problem. Such an algo- 

ithm significantly improves upon the previous exact approaches, 

s it has reduced the computational times by two orders of mag- 

itude for several instances in the test dataset. We have also pre- 

ented a novel heuristic for the BPMSTP, called Enhanced heuris- 

ic scheduler (EHS). Such a heuristic is based on several ideas that 

nable an accurate and fast resolution of both small and large in- 

tances. We have shown that EHS outperforms the previous state- 

f-the-art heuristic for the BPMSTP, called Split-greedy scheduler 

ith exchange search (SGS-ES). Furthermore, EHS has also proved 

ble to speed up the exact algorithm, by further reducing its com- 

utational burden. 

Summarizing, the novelty of this paper constitutes a significant 

tep in the development of effective solution approaches, both ex- 

ct and heuristic, for the BPMSTP. This work will hopefully en- 

ble additional research on identical parallel machine scheduling 

nder TOU costs in the future, by encouraging the design of sim- 

ler and/or faster approaches. In this respect, as future research 

irections, we plan to address the generalization of the combina- 

orial properties of the BPMSTP to similar problems. For instance, 

lassical objectives in scheduling, such as the total weighted tar- 

iness or the maximum lateness, could be considered along with 

he makespan or the TEC in order to increase the capability of 

he problem to model real manufacturing systems. From a math- 

matical standpoint, we will consider different representations 

f the time horizon, so as to possibly develop continuous-time 

r sequence-based formulations that are ubiquitous in classical 

cheduling. From the computational viewpoint, we will investigate 

he possibility of speeding up the exact algorithm by tackling the 

equential single-objective problems through parallel computing, 

o as to fully exploit the available CPU and memory resources. Fi- 

ally, we will focus on extending the local search used by EHS to 

onsider larger sets of improving moves, which may further en- 

ance the quality of solutions at the expense of slightly increasing 

omputational times. 
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ppendix A. Test instances 

In this Appendix, we report the details of the set of test in- 

tances used in Section 6 . For each instance, the number of jobs 

, the number of machines M, and the number of time slots K is 

iven by an element (N, M, K) of the Cartesian product between 

• { 6 , 10 , 15 , 20 , 25 } , { 3 , 5 , 7 } , and { 50 , 80 } for instances 1–30; 
• { 30 , 60 , 100 , 150 , 200 } , { 8 , 16 , 25 } , and { 100 , 300 } for in-

stances 31–60, except for instances 41–44, where the num- 

ber of machines is equal to 20 instead of 25; 
• { 250 , 300 , 350 , 400 , 500 } , { 25 , 30 , 40 } , and { 350 , 500 } for in-

stances 61–90. 

The processing times p j ∈ Z + , for each j in the set of jobs

 , were randomly drawn from the uniform distributions U[1 , 4] , 

 [1 , 4] , and U [1 , 12] for instances 1–30, 31–60, and 61–90, respec-

ively. Similarly, the consumption rates u ∈ Z + , for each h in the
h 

865 
et of machines H, were drawn from U [1 , 3] , U [1 , 3] , and U [1 , 6] for

nstances 1–30, 31–60, and 61–90, respectively. Furthermore, the 

ime slot costs c t ∈ Z + , for each t in the set of time slots T , belong

o the sets { 1 , 2 , 3 , 4 } , { 1 , 2 , 3 , 4 } , and { 1 , 2 , . . . , 8 } for instances 1–

0, 31–60, and 61–90, respectively. The number |P| of distinct pro- 

essing times is in { 3 , 4 , 5 } for instances 1–30 and { 3 , 4 } for in-

tances 31–60, while it is equal to 12 for instances 61–90. Finally, 

he maximum processing time is equal to |P| for all the instances, 

xcept for instances 1, 3, 4, 6, 9, 12, and 15, where it is equal to 5.

The whole set of instances is available at “https://github.com/ 

Rresearcher/Exact- and- Heuristic- Solution- Approaches- for- Ene 

gy- Efficient- Identical- Parallel- Machine- Scheduling ”. 
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