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Combinatorial optimization problems are crucial for widespread applications but remain difficult to solve on a large
scale with conventional hardware. Novel optical platforms, known as coherent or photonic Ising machines, are attracting
considerable attention as accelerators on optimization tasks formulable as Ising models. Annealing is a well-known
technique based on adiabatic evolution for finding optimal solutions in classical and quantum systems made by atoms,
electrons, or photons. Although various Ising machines employ annealing in some form, adiabatic computing on optical
settings has been only partially investigated. Here, we realize the adiabatic evolution of frustrated Ising models with 100
spins programmed by spatial light modulation. We use holographic and optical control to change the spin couplings
adiabatically, and exploit experimental noise to explore the energy landscape. Annealing enhances the convergence to
the Ising ground state and allows to find the problem solution with probability close to unity. Our results demonstrate a
photonic scheme for combinatorial optimization in analogy with adiabatic quantum algorithms and classical annealing

methods but enforced by optical vector-matrix multiplications and scalable photonic technology.
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1. INTRODUCTION

Ising machines are physical devices aimed to accelerate the mini-
mization of Ising Hamiltonians. Scalable implementations of Ising
machines are of paramount importance because many of the most
challenging combinatorial optimization problems in science, engi-
neering, and social life can be cast in terms of an Ising model [1,2].
Finding the ground state of the Ising spin system gives the solution
to the optimization, but requires resources growing exponentially
with the problem size. For this reason, intense research focuses on
unconventional architectures that use computational units such as
light pulses [3], superconducting [4] and magnetic junctions [5],
electromechanical modes [6], lasers and nonlinear waves [7—12],
or polariton and photon condensates [13,14].

Adiabatic computing is a valuable technique to solve combina-
torial optimizations by slowly evolving an easy-to-prepare initial
configuration towards the ground state of a target Hamiltonian,
which encodes the combinatorial problem [15,16]. Examples are
adiabatic quantum computing using nuclear magnetic resonance
[17] and superconducting gates [18], as well as quantum anneal-
ing with superconducting circuits [19], and simulated annealing
(SA) on CMOS networks [20]. Annealing is a form of adiabatic
computing at non-zero temperatures in which classical, quantum,
or nonlinear perturbations enable the exploration of the complex
energy landscape [21-24]. As a heuristic (probabilistic) algorithm,
itis used widely for quickly obtaining an approximate ground-state
solution of a general spin problem. The method harnesses system
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fluctuations to promote in-depth exploration of the problem phase
space, while preventing trapping in local minima. However, its
effectiveness comes at an ever increasing cost for large problems, a
fact that strongly motivates implementations of annealing schemes
on non-conventional hardware. Quantum annealers designed to
solve classical Ising problems succeed in optimization tasks ranging
from protein folding [25] to prime factorization [26]. Whether
there are advantages from entanglement and quantum tunneling is
still debated [27-29]. Therefore, recently broad interest is centered
also on the realization of non-electronic annealing devices that can
exploit classical nonlinear and photonic properties.

Optical Ising machines use multiple frequency or spatial
channels to process data at high speed and in parallel. Coherent
Ising machines (CIMs) employ optical parametric oscillators
[30-32], fiber lasers [33], or opto-electronic oscillators [34] to
solve optimization problems with remarkable performance for
hundreds of spins [35]. These machines exploit a gain-dissipative
principle [36—41]: the search for the minimum energy configu-
ration is conducted upward by gradually raising the gain. Other
platforms based on integrated nanophotonic circuits [42-47]
operate as optical recurrent neural networks that converge to Ising
ground states. Recurrent feedback also has a key role in the recently
demonstrated large-scale photonic Ising machine by spatial light
modulation [48-50]. In all these optical settings, the relaxation
into a local, instead of global, energy minimum is a relevant prob-
lem. An appealing solution leverages environmental noise as a
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Fig.1. Annealing Ising models on a spatial-photonic device. (a) Illustration of the adiabatic computing principle. The energetic landscape with several
minima varies as the Hamiltonian evolves from the initial H; to Hp, corresponding to the target combinatorial problem. When the dynamics is slow
enough (adiabatic condition), the system remains in the low-energy state towards the final state, which gives the optimal solution. (b) Realization of the
adiabatic evolution on a spatial-photonic Ising machine. In the experimental setup, the spins o; are encoded by SLM2 into binary optical phases (the inset
shows a representative configuration), whereas SLM1 modulates the beam amplitudes £; to control spin interaction (top panels). Adiabatic evolution is
implemented by the controlled variation of the couplings via the amplitude-modulated light, as illustrated by the random intensity matrices in the top

panels (M1-M2, mirrors; L1, lens; CCD, camera).

resource [43,49], and annealing by varying external noise on a
photonic Ising machine has been recently proposed [43]. On
the other hand, the possibility of performing an evolution of the
machine’s parameters to improve the computation remains largely
unexplored.

In this paper, we demonstrate adiabatic evolution on a spatial-
photonic Ising machine (SPIM). We exploit the SPIM features
that encode the spins and their couplings via spatial light mod-
ulators (SLMs). Starting from the energy minimum of a simple
Hamiltonian, and changing the system on a time scale much larger
than the machine relaxation time, we find the low-energy state
of a target model. For the adiabatic transformation of the Ising
Hamiltonian, we vary the spin couplings at a fixed experimental
noise level [Fig. 1(a)]. The annealing protocol occurs optically
by amplitude modulation. We also test a different holographic
annealing scheme, which uses the image formed during light
propagation to control the instantaneous Hamiltonian. We con-
sider Mattis spin glasses with 100 spins initially prepared in a
uniform ferromagnetic state. For a sufficiently slow evolution of
the Hamiltonian, the success probability approaches unity. Good
performances are found also when the evolution is performed at a
fixed Hamiltonian by decreasing the noise level. The effectiveness
of the optical adiabatic computation is maintained as the number
of spins is increased. Our findings demonstrate a novel and scalable
approach that allows applying adiabatic computing principles on
photonic devices.

2. RESULTS
A. Spin Dynamics on a Spatial-Photonic Ising Machine

In a SPIM, a coherent wavefront encodes binary spin variables
by spatial light modulation [48]. The device takes advantage of

optical vector-matrix multiplications and of the large pixel den-
sity of SLMs, properties that enable implementing large-scale
photonic computing and machine learning [51-57]. Figure 1(b)
shows the SPIM with an optical path with two SLMs: SLM1 fixes
the couplings of the Hamiltonian by amplitude modulation,
and SLM2 controls the spin variables (see Methods). Ising spins
0; = %1 are imprinted on a continuous beam by 0-7 phase-delay
values (SLM2). The spin interaction occurs by interference on the
detection plane. Spatial modulation of the input intensity (SLM1)
fixes the interaction strength. Minimizing the difference between
the image detected on the camera and a chosen target image 77 is
equivalent to minimizing an Ising Hamiltonian with couplings
determined by SLM1 and 77 [48].

Classical annealing is a well-known strategy to minimize prob-
lems having many local minima. A time-dependent Hamiltonian
H(z) is made evolving adiabatically from a simple H(0) = H, to
the target problem H(7) = H)p [Fig. 1(a)], with 7 the annealing
time. If the evolution is slow enough, the system remains trapped
in the ground state of H(z), and a final measurement provides
the spin configuration minimizing Hp. In our implementation,
we first perform a state preparation phase in which the system
reaches the minimum of a Hamiltonian A, with homogeneous
couplings; then we have the adiabatic evolution, during which the
Hamiltonian reaches the target model Hp.

State preparation. The optical machine works in a measure-
ment and feedback loop. Once initialized to a random spin state,
recurrent feedback from the detected intensity allows the phase
distribution on SLM2 to converge towards the ground state of
an Ising Hamiltonian Hy=— Zij Jijoio;, with couplings
Jij=§i&; I7(i, j) [48]. The quenched variable & is the optical
amplitude impinging on the 7th spin; I is the Fourier transform of
a pre-determined target image. The difference between /7 and the
image detected on the CCD is the cost function. The optimization
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is performed with a measurement and feedback method. For each
machine iteration, we flip a spin, measure the resulting intensity
pattern, and keep the update if the difference from the target image
decreases. Due to experimental noise, a spin changes its state with
a certain probability also when this variation increases the cost
function (see Methods).

Adiabatic evolution. To realize annealing, we vary the
Hamiltonian with time, and the evolution is discretized in M
steps [17]. We implement the time-dependent Ising Hamiltonian

H(t)y==Y" J;(®)oio;, (1)

1y

with € [0, ..., nM] and H(0) = Hy. The parameter M deter-
mines the speed of the adiabatic trajectory. For each step, the Ising
machine performs a fixed number of iterations 7, until the final
Hamiltonian H(nM) = Hp is reached (see also Methods). The
spin couplings /;; can be changed by the target image 77 (“holo-
graphicannealing”), and also by varying the modulated amplitudes
&; (“optical annealing”). This feature enables different and versatile
adiabatic evolution protocols. We remark that, due to the exper-
imental noise, the spin system is coupled to an effective thermal

bath [49].

B. Holographic Annealing

A random spin state is prepared in a low-temperature homo-
geneous ferromagnetic configuration (/;; = 1) and evolves toward
a Mattis spin glass [58,59]. This target Hp belongs to a class of
frustrated Ising models whose zero-temperature ground states are
characterized by ferromagnetic and anti-ferromagnetic domain
blocks. In the holographic annealing scheme, we vary the target
image /7 to perform the temporal evolution in Eq. (1), as shown
in Fig. 2(a). The graphs for an initial and final problem are inset in
Fig. 2(b), where we report the time evolution of the magnetization
m = (0;) for M =20. The results correspond to 32 realizations
with V=064 spins evolving under a specific time-dependent
Mattis instance. We set the number of local machine iterations to
n = 6N, a condition ensuring that the SPIM equilibrates in each
annealing step for all the investigated sizes. We observe that the
final ground state always has zero mean magnetization, as expected
for a spin glass with vanishing mean interaction. Fluctuations
around the average trajectory [thick purple line in Fig. 2(b)] unveil
the influence of experimental noise, which helps the exploration of
the various energy configurations during annealing,.

The considered Mattis models enable direct testing of the min-
imization trajectory, as Ising Hamiltonians with such symmetry
admit exact zero-temperature ground states [59]. Therefore, we
can verify the obtained probabilistic solutions by inspecting the
spin configurations. Figure 2(c) shows an example of the dynamics
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Fig. 2.

Optical computing of Mattis spin glasses by holographic annealing. (a) Evolution of the target image, corresponding to an Ising Hamiltonian that

starts from Hj (state preparation) and evolves towards the problem Hp in M discrete steps. (b) Magnetization dynamics for 32 independent realizations
of the annealing process. The thick purple line gives the average evolution (/N = 64, M = 20). Insets show the graphs of H and Hp; for clarity, only posi-
tive/negative (orange/blue) edges that start from the black nodes are shown. (c) Spin configuration as a function of time for a representative Mattis instance.
(d) Example of a ground state measured at equilibrium and exact combinatorial solution of the realized problem.
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of the spins. The computation occurs successfully when the final
state is strongly correlated with the expected solution. We quantify
the success probability p, i.e., the probability of obtaining an
approximate solution, as the fraction of independent runs con-
verging to the correct ground state (see Methods). For example,
Figure 2(d) reports one of the best ground state configurations and
its comparison with the corresponding exact solution. Remarkably,
the two spin states have the same energy and differ only for two
spin flips. This discrepancy is due to the effective thermal fluctu-
ations. The result indicates that the performed evolution allows
finding the global minimum of the problem instance. As we show
hereafter, the probability p, of finding an approximate solution
depends crucially on the number of evolution steps M.

C. Optical Annealing

We implement Eq. (1) by varying the Ising machine parameters
optically. Adiabatic evolution is performed by evolving the spa-
tially modulated intensity inside the photonic machine while
keeping constant the target image /7. In each of the M steps, the
machine operates with a different amplitude mask &; (see also
Methods). The instantaneous Hamiltonian H(#) is specified by
Jij(#) =&;(1)§;(2), within some multiplicative constant. The
initial Hamiltonian Hj corresponds to a homogeneous amplitude

distribution [Fig. 3(a)]. We choose a random set of amplitudes
&, and gradually decrease their values towards zero. The corre-
sponding system is an instance of a target Mattis model Hp with
randomly coupled clusters of spin, as represented by the graph inset
in Fig. 3(b). Figure 3(b) shows the time-evolving magnetization
when approaching the Mattis ground state during the optical
annealing. Each trajectory is affected by noise-driven fluctuations,
and, at the end of the annealing, the expected mean magnetiza-
tion m = =£0.5 is reached. This value arises from the fact that
half of the spins have /;; =0 in Hp. Figure 3(c) shows the evo-
lution of a configuration with N = 64 spins for a representative
case. The final ground state averaged over thermal fluctuations
coincides with the minimum energy state of the programmed
Hamiltonian Hp. Figure 3(d) shows an example of the remarkable
agreement between the obtained ground state and the correspond-
ing theoretical zero-temperature solution. Specifically, in both
configurations, the interacting spins are in the same state, while
the non-interacting ones point randomly and fluctuate under
the effect of noise. This demonstrates that the spins maintain
their state at the lowest energy during the optical change of the
Hamiltonian. As reported below, adiabatic evolution of the Ising
machine improves the search for the global solution to the encoded
optimization problem.
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Fig. 3. Adiabatic evolution by optical control of the spin couplings. (a) Variation of the spatially modulated intensity during the trajectory. The initial
model Hy has uniform couplings; after M steps, H(z) is equal to the target Hp with random interactions. (b) Dynamics of the magnetization for replicated
experiments with V= 64 and M = 10. The thick purple line gives the average behavior. Insets show the graphs for Hj and Hp; for clarity, only positive
(orange) edges that start from the black nodes are shown. (c) Spin dynamics for a representative realization of couplings. The initial uniform state forms clus-
ters when evolving towards the ground state of Hp. (d) Best experimental ground state compared with the exact solution of the corresponding Mattis model.
The orange box indicates the set of interacting spins, while the other part corresponds to those with zero-couplings that fluctuate thermally.
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Fig.4. Optical computing performance and scaling properties. Success probability as a function of the annealing time for (a) holographic and (b) optical
annealing of Ising models with Mattis-type interaction. Blue and magenta bars indicate mean values obtained by measures at a fixed time and averaging over
configurations at different times (see Methods). (c), (d) Success probability varying the spin number at different A/. Empty and filled dots are for data from

single-shot and noise-averaged measurements.

To test the holographic and optical annealing performances, we
vary the number of discretization steps M, i.e., the annealing time.
The number of machine iterations in each step is kept constant
to 7 =6N. Figure 4(a) shows the success probability p; versus
M for the holographic annealing; results refer to the problems in
Fig. 2 (N = 64). At a small M, when the evolution occurs rapidly,
the excitation of high-energy states reduces the effectiveness of
the minimization. The probability of converging to the optimal
solution increases with the annealing time. The adiabatic condi-
tion is identified by p, reaching a plateau with values exceeding
90% when averaging over thermal fluctuations [magenta bars in
Fig. 4(a)]. This occurs for M & 307, , being 7, the measured relax-
ation time of the Ising machine (see Methods). Figure 4(b) shows
the results for the optical annealing scheme. The adiabatic con-
dition is reached on a much shorter annealing time (M~ 177,)
with respect to the holographic case in Fig. 4(a), i.e., the ground
state is also found for rapid processes. This fact can be explained
considering that, in the holographic case, during its evolution, the
system passes through various instantaneous Hamiltonians giving
a phase space very different from that of Hp.

The quality of each solution is given by its Hamming dis-
tance, i.e., the number of spins that should be changed to obtain
the known zero-temperature ground state [19]. The mean
Hamming distance we measure in adiabatic conditionis h =8 £ 1
(h=7.5=%0.8) for the optical (holographic) annealing. In both

methods, we found that adiabatic evolution provides a substantial

enhancement of the success probability with respect to a “no-
annealing” strategy, in which the Hamiltonian H(z) = Hp is kept
constant since the initial instant [dashed lines in Figs. 4(a) and
4(b)]. Experiments at a fixed Hamiltonian are performed at the
same noise level and number of machine iterations. However, in
the no-annealing case, the spins reach a stationary state in a time
M= 4n,. A longer computation does not improve the ground-
state search, as it occurs for a system stuck in a local minimum.
Moreover, Figs. 4(a) and 4(b) show that—in all the considered
cases—the problem ground state can be found more efficiently if
the spin fluctuations at equilibrium are observed and averaged out.
This circumstance indicates that a large part of the SPIM error can
be ascribed to effective thermal noise.

We also investigate the scaling properties of the photonic setting
by varying the number of spins. In Figs. 4(c) and 4(d), we report
the scaling of the success probability for holographic and optical
annealing, respectively. The annealing time is kept proportional
to the system size; the total machine iterations are 7 x N x M.
For a fast evolution protocol [M = 10, Fig. 4(b)], a degrading
effect when increasing the size is observed in the holographic case.
However, as the adiabatic condition is reached, we find a remark-
able property: the ability of finding an approximate solution is
maintained as the problem size grows. For N = 100, values of p,
close to unity correspond to a measured mean Hamming fraction
(h/N) of 0.11. The results suggest that, on these specific problems,
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optical adiabatic computing can be extended to larger scales with
comparable performance.

D. Noise-Driven Annealing

Annealing algorithms in classical systems generally operate by
varying the noise or temperature instead of the Hamiltonian [21].
The transfer of this concept into the optical domain has been
recently modeled for a photonic recurrent Ising machine (PRIS)
architecture [43]. However, in many experimental cases, noise is a
parameter difficult to access and control. To compare the various
annealing schemes, we realize also noise-driven evolutions in our
SPIM. We can control the noise level by using a noisy-feedback
method [49] (see Methods). In fact, the noise level depends on the
fluctuations of the detected intensity, which can be enhanced by
decreasing the camera exposure time. We map the exposure time
onanormalized noise level p € [0, 1] thatindicates the probability
of erroneously flipping a spin.

We evolve the Mattis spin-glass problems in Fig. 2 by decreasing
the noise in M steps from the maximum value p,, to zero. The
Hamiltonian Hp is kept constant during the noise-driven evo-
lution comprising 7 x M iterations. Figure 5 shows the p; as a
function of the annealing time for V= 64. The probability of
finding the ground state increases with the annealing time, and
the adiabatic condition is reached for M =~ 10, a behavior sim-
ilar to optical annealing. The results can be benchmarked with
numerical simulations of SA [60] on the same graphs. A ground
state that coincides with the Mattis optimal solution is found by SA
independently of the annealing trajectory. As shown in Fig. 5, the
comparison indicates that our annealing platform can operate with
an accuracy comparable to a robust optimization algorithm. The
generality of the device functioning suggests this effectiveness can
be extended also to more complex problems.

E. Time Scales Analysis

The basic time step in the SPIM architecture is the iteration time
7, which includes the time necessary to send N spins to the SLM2,
measure and process the intensity on the camera, and generate the
next spin configuration. In our optical annealing schemes, this
operation is performed 7 & NNV times in each evolution step, and
the total annealing time is 7'= nM7. The actual iteration time we

simulated annealing |
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S

success probability p

Fig.5. Noise-driven annealing. Success probability varying the anneal-
ing time for noise-driven evolutions on the SPIM. Blue and magenta bars
indicate results for trajectories starting from p,, = 0.4 and 0.2, respec-
tively. The same evolutions are numerically implemented with a simulated

annealing (SA) algorithm (dashed line).
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Fig. 6. Scaling of the iteration time. Measurements of the SPIM unit
time (dots) versus the problem size. T values are normalized to the itera-
tion time for 64 spins (0.085 s). The inset scheme illustrates the single iter-
ation. The scaling ratio 7/ (line) shows that the iteration time is nearly
constant as the size grows.

measure in our setup is T = 0.085 s for V= 64, i.c., each anneal-
ing step takes ~ 30 s. This value is not a fundamental scale but a
quantity that depends solely on the setup components. As shown in
Fig. 6, where we report measurements of T versus /V, we have only
a weak increase in the iteration time with the problem size. The
scaling ratio T/N indicates that the single computing operation
becomes increasingly convenient for large-scale systems. On the
contrary, an iteration time that grows quadratically with the prob-
lem size is expected for basic annealing algorithms implemented
on conventional electronic devices. This optical advantage at large
scales is a general property that does not depend on the machine
speed.

The main speed limitation of our optical computing approach
is related to the frame rate of the SLM. Therefore, to compare the
computation times with other optical platforms that do not rely
on annealing, we consider various cutting-edge SLM technolo-
gies at present available. For example, a microelectromechanical
grating light valve that can modulate 1088 modes at 350 kHz has
been recently reported [61]. Optical annealing of 10? spins with a
similar device would take a total time on the order of 10 ms, which
is comparable with the few milliseconds taken by a CIM to run
problems of the same size [35]. However, novel modulators that
exploit electro-optic microcavity arrays to achieve gigahertz speeds
are under development [62]. This suggests that optical annealing
approaches on a dedicated high-speed setup are also promising
in terms of time performance. On the other hand, a commercial
high-speed digital micromirror device (DMD) can control up to
1024 x 768 pixels at more than 20 kHz switching rate in binary
mode. A device with these features, in principle, allows to anneal
a large-scale system with 10° spins in a few hundred seconds, a
time scale currently achievable only with high-performance com-
puting [40]. In fact, similar problem sizes would be several orders
of magnitude larger than those accessible on other optical Ising
machines.

3. DISCUSSION

Adiabatic evolution or annealing is one of the most general and
consolidated heuristic approaches to solve combinatorial opti-
mization problems and complex physical models. Its experimental
implementation on unconventional physical systems operating
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at room temperature can impact future computing architectures.
We have shown how to realize the method using a versatile optical
setup. In particular, we demonstrated that an optical artificial spin
system can avoid high-energy excitations during its evolution,
i.e., that the adiabatic theorem has implications for classical exper-
iments. A central aspect that remains open is how the approach
can be generalized to any Ising Hamiltonian. In fact, for adiabatic
computing to be effective it is necessary to find an initial state
whose energy space morphs into that of the target problem. A
strategy can be starting with an initial condition that retains some
statistical properties of the problem graph. However, in many
cases, this preparation can be as hard as solving the problem itself.
For example, this can occur in the case of Ising spin-glass problems
with fully random interaction, which can be encoded in our SPIM
by using multiple light scattering [63,64]. For similar problems, we
expect noise-driven annealing as the more practical method to find
the ground state.

In conclusion, we have realized adiabatic computing schemes
on a SPIM showing that ground states are found with enhanced
success probability. Computing devices based on spatial light
modulation are scalable to larger sizes and can potentially host
systems consisting of millions of spins. Other developments
may include the use of nonlinear elements [50], scattering media
[63,64], or metasurfaces, to implement a larger class of combina-
torial optimization problems, beyond Mattis instances of the Ising
model, and for realizing compact devices without free-space propa-
gation. Moreover, by encoding different replicas of the spin system
on separate wavelengths (wavelength multiplexing), our scheme
can allow us to run several problems fully in parallel, opening to the
optical realization of multiple annealing algorithms such as parallel
tempering. Exploiting optical vector-matrix multiplications,
which can be performed easily and efficiently for large sizes, our
SPIM represents a route to tackle hard optimization problems at
an unprecedented scale, and opens the route to the experimental
demonstration of various minimization strategies.

4. METHODS
A. Experimental Setup and Feedback Method

Light from a continuous-wave laser source with wavelength
A =532 nm (max. power 1.5 W) is expanded, polarization con-
trolled, and spatially filtered. The beam is thus spatially modulated
inamplitude by a first SLM (SLM1) and then independently phase
modulated by the second modulator (SLM2). The optical path
shown in Fig. 1(b) is realized by a single nematic liquid crystal
reflective modulator (Holoeye LC-R 720, 1280 x 768 pixels,
pixel pitch 20 x 20 pm, 180 Hz maximum frame rate). A section
of the modulator is employed in amplitude mode to generate
controlled intensity distributions &;, which are imaged by a 4-f
system [not shown in Fig. 1(b)] and mirrors M1-M2 on the second
section, which perform binary phase modulation. By a combi-
nation of incident and analyzed polarizations, phase modulation
occurs with less than 10% residual intensity variations. To main-
tain the setting optically stable, an active area of approximatively
200 x 200 SLM pixels is divided into /V optical spins by grouping
several pixels. Modulated light is separated using a holographic
grating and focused by a lens L1 ( /=500 mm) on a CCD cam-
era. The intensity is detected on a region of interest composed of
n X m = 18 x 18 spatial modes, where the signal in each mode is
obtained averaging over 10 x 10 camera pixels.
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The measured intensity pattern determines the feedback signal.
Ateach iteration, a spin is randomly flipped, the recorded pattern is
compared with a reference image /7 on the same number of modes
[see Fig. 2(a)], and the spin configuration on the SLM2 is updated
to minimize the difference between the two images. Due to inten-
sity fluctuations, and the grouping procedure at the readout, there
is a finite probability to update the spin configuration in any case.
These are the classical fluctuations through which various energy
configurations are explored. The rate at which readout errors occur
determines the noise level, which depends on the magnitude of the
intensity fluctuations on the detection plane. To control the noise
level, we tune the camera exposure time, where a shorter exposure
corresponds to larger error amplitudes. With this technique, we
avoid applying an additional post-processing step to the recorded
intensity. Fixing the CCD settings and analyzing the probability
a spin erroneously changes its state during the dynamics, we map
the exposure time into a normalized noise level p, which indicates
the probability at each iteration to measure a false decrease in the
cost function [49]. The minimum noise level p = 0 corresponds to
spontaneous errors in the feedback loop. Optical annealing is per-
formed at p = 0.1, alevel close to the optimal noise level [49]. This
value is kept fixed in all the presented results, with the exception of
noise-driven experiments.

Another practical quantity characterizing the setting is the
relaxation time 7, of the Ising machine. This time scale indicates
the number of iterations needed, given the feedback scheme, for
the system to geta steady state. Since it may depend on the encoded
problem class, we measure it directly by preparing the homo-
geneous system (/;; = 1), setting the Hamiltonian to a Mattis
instance via /7, and observing how the spin state equilibrates.
From the decay of the magnetization, we estimate the equilibration
time, 7, = 220 iterations for N = 64 spins.

B. Adiabatic Evolution Schemes

Holographic annealing. The machine starts from a random configu-
ration of /V spins, and it is prepared on a uniform ferromagnetic
state. Specifically, the initial Hamiltonian is By =—)_; ;] 0i0;,
which is implemented using a plane wave of constant ampli-
tude & = Ey and a target image that is composed of a single
spot [Fig. 2(a)], so that Ir=c, ¢ being an arbitrary constant,
and / =cE2. By varying in time the target image Ir, being
Jij(0) =§&; I1(2), we implement a linear evolution protocol of
the form H(t)= (1 —1¢/T)Hy+ (¢/T)Hp, with Hp an Ising
problem where each spin—spin interaction can have only a posi-
tive or a negative value (frustrated Mattis model). Therefore, the
time-dependent Hamiltonian is

t t
H(t)=<1—?> ]‘10—6‘557_,%:61]‘010]'1 (2)

where G is a block matrix with elementvalues £1. For example, a
four-block matrix G = [Gll, G12; G21, Gzz], where Gll = Gzz
is an all-ones matrix, and G, = G, = — G\, corresponds to a
target image /7 with two horizontal intensity spots [Fig. 2(a)]. In
this case, pairs of negatively coupled spins correspond to points
of the optical field resulting in destructive interference on the
central mode of the detection plane. To discretize the evolution,
we divide the total time interval [0, 7] in M equal intervals. For a
fixed system size, we choose to keep constant the number of iter-
ations 7 performed by the machine in each step. We use 7 =61,
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a condition ensuring that the time spent in each annealing step
is much larger than the relaxation time of the machine for all the
investigated sizes (7> #,). The annealing time thus increases
with M. In Figs. 2 and 3, we normalize the evolving time (machine
iterations) with respect to .

Optical annealing. Starting from a random spin state, a uniform
ferromagnetic configuration is prepared by implementing Hj as
in the holographic protocol. However, in the optical evolution
method, the target image is maintained fixed to the initial single-
spot profile, and the whole dynamics is performed by varying the
amplitude distribution &; via intensity modulation on SLMI.
This corresponds to individually changing the spin—spin coupling
values. The evolution protocol we implement s thus

H(t)=—c ) &(0)E;(1)oio;, 3)

1]

where ¢ is an arbitrary constant. Since the interaction matrix
is given in any case as a product of two variables /;; oc§;&;, the
problem Hamiltonian H)p still maintains the form of a Mattis
model. In this case, each instance corresponds to a random set of
positively interacting spins [Fig. 3(b)]. The time dependence of
the optical amplitudes &;(#) can also be selected arbitrarily. We
choose to implement couplings that change linearly in time, that
is, to variate the optical intensity with a constant rate. This linear
schedule corresponds to &;(2) =/ Eo — (¢/ T) Ep, and it is shown
in Fig. 3(a) for a random set of evolving &;. The total run time 7°
is divided into M equal intervals. Experimentally, the dynamics is
implemented by applying an amplitude mask varied in each step.
Digital modulation over 256 gray values (8-bit) corresponds to a
maximum intensity modulation depth on the order of 10%.

Noise-driven annealing. A time-independent Hamiltonian
H(t) = Hp encoding a frustrated Mattis instance is implemented
by means of the target image /7. The dynamics starts from a
random spin configuration at maximum noise level p,,, which cor-
responds to a high-temperature spin state. To perform an evolution
varying the noise level, we divide the noise level interval [p,,, 0]
into M equal intervals. In analogy with the optical adiabatic evo-
lutions, 7 = 6N iterations at noise level p(#) occur in each step.
The final state has p(nM) = 0, that is, the spins are close to zero
temperature.

Simulated annealing. We have implemented a custom opti-
mized SA algorithm on MATLAB following Ref. [60]. The code
exploits various techniques including sequential updating, forward
energy computation, and fast pre-computed random numbers.
It has been benchmarked on various standard non-deterministic
polynomial-time (NP) hard problems.

C. Ground States Analysis

To quantify the ground-state probability at finite temperature,
we compute the correlation coefficients between the measured
spin configuration and the known optimal solutions of the pro-
grammed instance, which for a Mattis graph is identical to the
interaction configuration ;, or to its sign reversal [59]. The corre-
lation reads as C =) ; 0;&;/|&;|, being C = %1 for the ideal spin
system in the lowest energy state. It is a successful evolution whose
final equilibrium state gives |C| > 0.75; the success probability
25 is the fraction of runs converging to the correct ground state
over a set of experiments with different random initial conditions.
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Instantaneous values of p, are obtained from a single measure-
ment at a fixed time (machine iteration) during the equilibrium
stage; values averaged over thermal fluctuations [magenta bars in
Figs. 4(a) and 4(b)] result from averaging on a time interval the
spin configuration measured at equilibrium and identifying the
spin with the local magnetization sign. The Hamming distance 4 is
the number of spins that need to be flipped to reach the minimum
energy configuration. The Hamming fraction is the Hamming
distance normalized to the total number of spins, 4/ N.
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