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ABSTRACT

The MRF-based approach to the solution of visual
reconstruction problems, even if extremely flexible in describing
the local behaviour of the image intensity and its discontinuities,
generally needs stochastic relaxation algorithms to compute the
MAP estimate. These algorithms, despite their asymptotic
convergence  properties, often present insurmountable
computational costs.

Different methods, which consider the discontinuities
implicitly rather than explicitly, have been recently proposed. In
these methods, a general image reconstruction problem is
formulated as the minimization of a regularized energy F(f) of the
only intensity process f. Geman and Reynolds showed that, if the
stabilizer employed has the attributes of concavity and finite
asymptotic behaviour, the solution to this problem permits the
recovery of discontinuities without introducing auxiliary
variables. While this problem is equivalent to one involving an
explicit line process, its complexity is greatly reduced. They
minimized the non-convex energy F by using an optimization
method based on simulated annealing.

In this paper, we investigate the possibility of solving the
same problem through the Graduated Non-Convexity algorithm,
that is by constructing a sequence of approximating energies and




using gradient descent techniques to minimize them. This
deterministic method is compared with the direct minimization of
the energy through stochastic relaxation, in terms of quality of the
reconstructed images and of computational costs.



1. Introduction

Accounting for discontinuities in visual reconstruction
problems is nowadays recognized to be fundamental, as it allows
the regularizing smoothness constraint to be broken where it has
no physical meaning. The most popular approach to deal with
discontinuities makes use of Bayesian techniques, based on
Markov Random Fields (MRF) models for describing the local
behaviour of the image intensity and its discontinuities (the line
process) [1], [6]. The solution to the reconstruction problem is the
maximizer of the posterior probability, which is a function of both
the intensity process and the line process. The computation of this
solution employs stochastic relaxation algorithms, that, despite
their asymptotic convergence properties, often present
insurmountable computational costs.

Less expensive methods, both stochastic and deterministic,
have been recently proposed (3], [4], (5], [7]. These methods
consider the discontinuities implicitly rather than explicitly, and
are based on designing a cost functional F(f) on the only intensity
process f, which is a weighted sum of a prior constraint
(regularization term) and a consistency constraint (data term). The
reconstruction is the image f which minimizes F. If the
regularization term satisfies certain conditions, the solution to this
problem permits the recovery of discontinuities without
introducing auxiliary variables and indeed this problem is
equivalent to one involving an explicit line process.

Geman and Reynolds formalized the statement above
developing a duality theory that relates a class of primal energies
F(f), in which the discontinuities are implicitly referred through
appropriate regularization terms, with a class of dual energies
E(f,]), in which discontinuities 1 are explicitly marked and suitably
constrained [5]. The primal and dual energies are equivalent in
the sense that, if (f*,I*) is the global minimizer of E(f,l), then f* is
the global minimizer of F(f). The dual theory states that the
conditions under which this equivalence exists are the concavity
and the finite asymptotic behaviour of the regularization term,
and gives a tool to derive the dual energy function from the
primal one, in the general case of a continuous positive-valued
line process. In particular, Geman and Reynolds analyzed the




performance of regularization terms that are locally of the form
o(DXf), where ¢(t)=-(1+1t)"! and DX, the k-th order derivative
operator, k=1,2,3, determines the degree of smoothness assumed
for the image. They minimize the still non-convex primal energy F
by using an optimization method based on simulated annealing,
that is coarse-to-fine in the order of the derivative.

Blake and Zisserman derived the cost functional F(f)
eliminating the binary line process from the energy associated to
a Weak Membrane system, for the reconstruction of a piecewise
continuous image [12]. Since function F is still non-convex, they
constructed a family of approximations F( depending upon a
parameter p, pe [0,1], such that FO=F and F" is convex. Starting
from p=1, a gradient descent algorithm is successively applied to
the various approximations, for a prescribed decreasing sequence
of values of p. This is the essence of the deterministic Graduated
Non-Convexity algorithm (GNC). In general, such a procedure is
not guaranteed to give the global minimum, but, since the energy
function for image reconstruction problems does not have too
many minima, the results are usually satisfactory even if not
optimal. Moreover, Blake and Zisserman proved the convergence
of the GNC algorithm for a particular class of data [3]. From the
duality theory point of view, their function F can be seen as a
particular primal energy and the Weak Membrane energy is the
corresponding dual energy.

Geiger and Girosi proposed the mean field approximation
theory to average out the binary line process from the Weak
Membrane energy [4], [13]. In this way they obtained a set of
deterministic equations, from which it is possible to estimate the
statistic mean values of the intensity and the discontinuity fields.
They provided a family of energy functions depending on
temperature, and showed that the GNC, when applied to this
family, can be seen as a deterministic annealing.

In this paper, we formulate the problem of the reconstruction
of piecewise smooth images from sparse and noisy samples,
relating the MRF approach with line process to the duality theory
proposed by Geman and Reynolds. For simplicity, we consider a
first order model for the image, i.e. we adopt the first derivative
in the regularization term. We propose to minimize the primal




energy F(f) through the GNC algorithm, and construct a family of
approximating function F® each minimized by a gradient descent
technique. This deterministic algorithm is compared with the
direct minimization of the primal energy through stochastic
relaxation. With respect to the quality of the reconstructed images
and the computational costs, the comparison evidences that both
the two algorithms give satisfactory results in the limits imposed
by the underlying image model. We observed that stochastic
relaxation goes closer to the global minimum of energy F than
GNC; this is paid with a significant increase in the computation
time.

2. MRF formulation of the problem

Following the MRF-based approach, the original piecewise
smooth image is modelled using three coupled first-order
neighbourhood MRF's: a continuous-valued intensity field f, whose
generic element corresponds to the intensity value fj; of the pixel
at location (i,j), and two line fields, h and v, whose variables are
ideally associated to sites placed midway between each vertical or
horizontal pair of pixels ([14]. While traditionally these line
elements were considered binary, here we let them assume
continuous non-negative values in [0,M]. The role of the line
variables is to weight the strength of the continuity constraint
associated with each pair of adjacent pixels [5]. The local
dependence among the elements of the fields is expressed by the
Gibbsian joint probability distribution

UERY = 2 Velhhy) (2.1)
c

where Z 1is the normalizing constant, B 1is a positive constant,
U(f,h,v) is the energy function and the potentials V_(f,h,v) are
functions supported on the cliques associated to the
neighbourhood system. As we refer to a first order neighbourhood
system, we only associate non-zero potentials to the mixed cliques




of the types {fj;, fi.;;, hj;} and {fj;, fi;.; , v;;}, and to the line
cliques constituted of single line elements, i.e. {h;;} and {v;;}.
The general form for U(f,h,v) is given by:

U(fhv>~x22 (£ £ 0% ECY, ,J>+x22 (10 )2 E(h) +

+Z b))+ 2 vy, (2.2)

where &(b) is an increasing function such that £(0)=0 and w(b) is a
decreasing function. The first two terms express the interaction
between the intensity process and the line process, and are
conceived to make more likely as solution images which present
decreasing line values where the absolute value of the horizontal
or vertical gradient is high, and are smoothly varying where the
line variables assume high values. In other words, a line element
of low value weakens the smoothness constraint between the two
pixels across it; the two pixels can thus assume very different
values, that is a discontinuity in the image is created. Vice versa, a
high value of the line element enforces the smoothness constraint.
In the third and fourth terms the decreasing function y prevents
the line elements to assume low values everywhere.

It is to note that this model for the image can be extended to
higher order derivative models, to describe images that are locally
smooth in the first or second derivative, away from visual
boundaries and textured areas. In these cases, higher order
neighbourhood systems must be adopted [5].

In the assumption of a noise process whose components are
independent, white and Gaussian, with zero mean and variance ©2,
for the Bayes theorem the posterior probability of the image
(f,h,v) given the data g is:

(2.3)

2 llg-HflIZ U(f,h,
P(f,hvlg) = Z(2n62)'N 2 exp ( 2 ( V))

262 B

where f and g are the lexicographic notations for matrices f and g,
N2 is the dimension of the problem and H is a matrix that models
the physical relationship between the data and the true image.




The Maximum A Posteriori (MAP) estimate maximizes
P(f,h,vlg) and thus coincides with the minimum of the posterior
energy function

llg-HflI? L Uthv)

E(fhy) = = 5 ;

(2.4)

that, in consideration of (2.2) becomes:

lig-HflI?
E(f,h,v) = “%‘;i‘”““ XZZ (f;5-f5 5102 EQvip) +
i

PR D (PR + D i D, w(vi)  (25)
1] 1.} 1.}

where [ has been set to 1. In this context, the positive parameter
A2 determines a compromise between data fitting and smoothness
constraints satisfaction in the reconstructed image. The Weak
Membrane energy, as derived euristically by Blake and Zisserman
[3], and in the MRF context by Geiger and Girosi [4], is given by eq.
(2.5) when H=I, the line process is assumed binary, & and y are
linear functions. The presence of the line process in E makes it a
non-convex function whose minimization cannot be performed
through ordinary gradient descent algorithms. In [1] D. Geman and
S. Geman, for binary line elements, proposed the use of Monte
Carlo techniques based on a Gibbs sampler coupled with simulated
annealing. They proved the asymptotic convergence of this
stochastic relaxation algorithm when the temperature is decreased
according to a logarithmic schedule, and suggested a parallel
implementation. Nevertheless, despite proposals of possible
implementations on parallel general purpose or dedicated
hardware [2], [10], stochastic relaxation algorithms often present
prohibitive computational costs.

More recently, some authors have evidenced that the
preliminary minimization of the energy E with respect to h and v,
if it can be performed analytically, would eliminate the line
process from E, thus reducing the computational complexity of the
MAP problem. Moreover, this would make possible the design of
ad hoc deterministic algorithms to solve it [3], [4].
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3. Elimination of the line process

The possibility of eliminating the line process from the
energy E(f,h,v) of eq. (2.5) is based on the following
considerations: if we define a function F(f) such that

F(f) = inf E(f,h,v) (3.1)
h,v
and it is
(f*,h*,v*) = arg min E(f,h,v) (3.2)
f.h,v
then
arg min  F(f) = f* (3.3)

f

In other words, the search for the global minimum of the energy
function E(f,h,v) can be restricted to the set ({f, h*(f), v*(f)},
where, for each f, (h*(f), v*(f)) is the minimizer of the energy
function with respect to (h,v).

The computation of F(f) as in (3.1) is straightforward if the
model adopted for the image does not include self-interactions of
the line process. In our case this computation leads to:

Hﬂ]“’
R = " 2¢<fufu1> +Z o(fy 11 ) (3.4)

where ¢, called neighbour interacting function, does not depend on
the particular site (i,j). If interaction terms between two or more
discontinuities are to be included in the image model, for example
to describe local smoothness constraints on discontinuities, the
minimization of the energy E(f,h,v) with respect to h and v is still
possible, adopting preliminary minor approximations for the
energy E itself. In [17], [22] an extension of the Weak Membrane
model has been proposed to take into account for interacting
discontinuities and a GNC-type deterministic algorithm has been
developed with application to image reconstruction from sparse
and noisy samples.
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The energy F(f) of eq. (3.4) is a function of the only intensity
variables f, and has the particularity that it addresses
discontinuities implicitly rather than explicitly. Indeed, function ¢
retains all information about the local interaction between the
intensity process and its discontinuities.

Geman and Reynolds in [5] reversed the problem and, using a
regularization approach, derived the energy (3.4) as a cost
functional which is a weighted sum of the data fitting term and a
regularization term or stabilizer whose form express the a priori
knowledge on the desired solution. They derived a general duality
theory and proved that, from particular forms of function ¢, it is
possible to uniquely recover an energy E(f,h,v), in the form given
by eq. (2.5) and such that (3.1) holds. In this sense, the problems
of minimizing F and E are equivalent. They call F primal energy,
while E is named dual energy, and proved the following

Theorem (existence of a dual)
Given a function ¢(t) with the following properties on [0, oo):

1. ¢(0)=0
2. q)(\/B is concave
3. lim ¢o(t)=a

L= oo

then there exist two functions £(b) and y(b) defined on an interval
[0O,M] such that

o(t) = inf  (A**E(b) + y(b)) (3.5)
0<bsM

and satisfying the following properties

1. w(b) is decreasing
2. y0)=a
3. y(M)=0
4. &(b) is increasing
5. &(0)=0

The geometric proof of the theorem is based on the fact that
¢(\/t_) is seen as the lower envelope of a one-parameter family of
straight lines y=mt+q, where mzkzé(b) and q=y(b). Thus, if ¢(\/t) 18
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strictly concave, then wy(b) results strictly decreasing, &(b) strictly
increasing and MA? is the right-hand derivative of (D(\/T) at the
origin. In [5], Geman and Reynolds proposed the two following
neighbour interacting functions:

A2t2
¢G)==Xa——*""‘* (3.6)
2
tc + 1
(04
A2 It
o(t) = 2z (3.7)
— Itl + 1
(04

whose graphical representations are reported in Figures 1 and 2,
respectively, for given A and o. The use of (3.6) has been reported
in the literature, with application to single photon emission
tomography [15], [16]. When used in (3.4), both (3.6) and (3.7)
encourage neighbouring pixels to be of similar value until their
differences are lower than a certain threshold. Beyond this value,
further increase in these differences is allowed, at a relatively
small increase in the penalty. The differences between
neighbouring pixels within uniform regions are thus penalized
without excessively penalizing the larger differences occurring at
the boundaries between different regions of the image. Geman
and Reynolds evidenced that this effect is actually due to the fact
that such neighbour interacting functions somehow implicitly
refer to a line process, which can be made explicit by deriving the
forms of & and y. In particular they found that, for (3.6), the
corresponding & and y are given by

&(b)=b (3.8)
v(b)=a (1-24b + 1), 0<b<l (3.9)

from which b*  the minimizer of (3.5), results

1
b* = 12 2
(mtz + 1)
o

For (3.7), they computed

(3.10)




7\.2b3/2

&(b)= m (3.11)

w(b)= a2 3\2/—5 L (3.12)
and

bt = (3.13)

A 2
(‘* el + 1)
(04

The details of the derivations of these formulas can be found
in [5] and [17]. Here, it is to be noted that the quantity a/A% can be
interpreted as a sort of threshold on the difference t between two
adjacent pixels, above which the value of the line element b
rapidly decreases, thus permitting a discontinuity in the image to
be created.

When 6(t) is given as the truncated quadratic

22 2 if 1l <\ a/
o) = (3.14)

o otherwise

whose graphical representation is given in Figure 3, for given
values of A and o, Geman and Reynolds showed that (3.5) is
satisfied with

&(b)=b (3.15)
y(b)= a(l-b), 0<b<l (3.16)

The infimum in (3.5) is achieved at b=1 whenever Itl < \/;/k
and at b=0 whenever It/ > \/a/k, that is

1 if 1< A o/

b* (3.17)

0 it It > A an
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The line process is thus here binary. If b is either (l—vi,j) or
(1-h;;), then the corresponding dual energy of eq. (2.5) results to
be:

llg-HfII?
E(f’h,v) = 20_2 + XZZ (fi,rfi,j-l)z (I—Vi’j) -+
1,)

+ A2 Z (fi-Ti1 )2 (1-hy)) + @ Z hij+ o 2 Vi (3.18)
iJ ] iJ

that exactly corresponds to the Weak Membrane energy of Blake
and Zisserman, if H=I [3].

For the three neighbour interacting functions analyzed above
(eqs. (3.6), (3.7) and (3.14)), the primal energy function of eq.
(3.4) is still non-convex, so that adequate algorithms must be
devised to obtain satisfactory reconstructions. In this paper, with
reference to the neighbour interacting function (3.7), we compare
the performance of two different algorithms for the MAP estimate:
a stochastic relaxation algorithm, based on simulated annealing,
and a deterministic, GNC-type, algorithm, based on the
construction of a family of functions that approximate the primal
energy F(f).

4. Stochastic Relaxation

In [5], Geman and Reynolds studied the performance of the
neighbour interacting function of eq. (3.7) with application to the
restoration of images from blurred and noisy data. For a first
order image model, the primal energy F of eq. (3.4), in
consideration of (3.7), takes the form:

llg-HflI? If . -f. . .l
F(f) — ___g;.____i____i_z a 1.} 1.] 1

+
2 i o
lfi,j_fi,j-l] + 7\‘2
o If: o-f ]
Dy b1l — (4.1)
1] lfi,j_fi~],jl + -7:'2"
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To obtain the MAP estimate, they employed an optimization
technique based on simulated annealing that is coarse-to-fine in
the order of the model. Starting at data and using the first order
model, reliable discontinuities are reconstructed even if the fine
geometric structure of the smooth regions is missing; this first
solution provides a better starting point for the second-order
model than the data itself, in such a way that the existing
discontinuities are preserved and planar and quadratic patches
are recovered from the higher order models.

Stochastic relaxation algorithms with simulated annealing
have the desirable feature of converging to a global minimum of
any non-convex function [1]. However this is an asymptotic
behaviour, so that there is no guarantee to escape from local
minima with a finite amount of computation. Despite these
recognized limitations, Geman and Reynolds still claim the
superiority of stochastic relaxation over other existing methods,
and propose a simplifying linear decay for the temperature,
coupled with an approximated Gibbs sampler algorithm [1]. In
practice, when updating the value of f at site s, instead of
sampling from the actual conditional distribution of f, they
reduce the support of the distribution to the values obtained by
taking the union of small intervals around the current value at
site s, the current values at the neighbours of s, and the data
value g,. They affirm that this approximation yields an order of
magnitude decrease in the number of operations performed, thus
giving considerable speed-up, with little apparent degradation in
the quality of the reconstructed images.

With reference to the primal energy of eq. (4.1), we adopted
a stochastic relaxation algorithm similar to that described by
Geman and Reynolds, but employing a Metropolis algorithm [8] to
update the single pixels [18]. For any temperature T, of the
annealing schedule, starting from an initial estimate (90 of the
image, at each step j the new estimate fU) is computed from f0-1
randomly updating the value of a single, predetermined pixel.
Given AF = F@#U-Dy . F(f9), the configuration change is accepted if
AF>0 or, when AF<0, if exp(AF/Tk) > m, where n is a value

randomly selected in the interval (0,1]. If this operation is
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repeated indefinitely, visiting the entire set of pixels in some
predetermined manner, the algorithm generates a Markov chain
£ j=0,1,.. that converges to an equilibrium state, whose
probability is given by nk(f):exp(-F(f)/Tk). As Ty » 0 the
stationary probability distribution of the Markov chain converges
to the uniform probability measure over the set of global minima

for F.

In order to define the annealing schedule we need to choose:
(1) an initial value T, for the temperature;

(i1) the number of steps of the Metropolis algorithm, performed
for each fixed temperature, that is the length of the Markov
chains;

(iii) a decay function for the temperature;

(iv) a stop criterion.

We adopted an annealing schedule that makes reference to
the one proposed by Aarts and Van Laarhoven [19], with regard
to points (i) and (ii), and to the one proposed by Kirkpatrick et al.
[9], with regard to points (iii) and (iv).

Let us analyze point (i). The initial temperature value T, must
be high enough to permit the configuration changes to be accepted
with high probability. If we define:

number of accepted transitions
number of proposed transitions

X(T) = (4.2)
it must be X(Ty)=1. Let us assume to execute a sequence of
configuration changes for a given temperature T. Let x; be the
number of transitions that decrease the energy and x, the number
of transitions that increase the energy; moreover, let <AF>" be the
mean value of AF for these latter transitions. It is:

<AF>T
X1+X2 €Xp |- T

X1 + X»o

X(T) = (4.3)

from which:
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<ARST
T= v (4.4)

X2
In
sz - x,(1-X )}

A sequence of configuration changes is then executed for

evaluating x; , x, and <AF>". The value of Ty is computed from eq.
(4.4), with X fixed to a constant close to 1.

Let us now analyze point (ii). If the successive decrements of
the temperature are small enough, a small number of transitions
are sufficient to restore the quasi equilibrium. On this basis, we
assume that, for each temperature, a small number of complete
sweeps of the image are sufficient.

With regard to point (iii), we adopt a linear decay schedule
for the temperature, that is:

Ty =v Ty (4.5)

where v is a constant, typically chosen between 0.88 and 0.9 [19].

We consider the algorithm ended (point (iv)) when the value
of the cost function at the end of each Markov chain remains
almost constant for a number of consecutive times.

5. Graduated Non-Convexity

A different, fully deterministic approach for the minimization
of function (4.1) is to construct a family of approximating
functions F® 1o be iteratively minimized according to the GNC
strategy [3], [12]. Letting parameter p to vary in the interval
[0,p*], these functions must satisfy the conditions that F(9=F and
F®" is convex. The construction of the F(®s is usually performed
by approximating the neighbour interacting function ¢. For
function ¢(t) of eq. (3.7) we adopted the following approximations:

(A2 _
I if Itl > p

oMM = o 't (5.1)

T 7 + q otherwise
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with
B oA’ . _ Ap -1 pz(K2p+a)
te 2p(M*p+a)? 4= A2p+o

(5.2)

In Figure 4, a graphical representation of function (5.1) is
reported, for given values of o, A and p. It is straightforward to
verify that, for p=0, eq. (5.1) reduces to eq. (3.7), so that condition
FO=F is verified. An important issue in the GNC algorithm is the
search for a value p* such that the resulting F®®) is convex. In [3]
when H=I, this is done "balancing" the positive second derivative
of llg-flI?/(262) against the negative second derivative of ¢®™). If
oP") is designed to satisfy:

b4

32¢(p*)(t)

2 2-c* VYt (5.3)

where 0< c*< 1/(8c2), then the Hessian of F(P*) is positive definite.
In practice, the value c¢* can be chosen so that cp(P*) is as close as
possible to ¢, which leads to c*=1/(8c2). The application of this
criterion to the neighbour interacting functions (5.1) leads to the
condition [17]
}LZ
2 oS¢ (5.4)

If A and o can be chosen in such a way to verify this
condition, then all the approximations F® are convex, V p > 0. For
generic values of A and o, it is possible to show that a value p*
exists such that

p* = 5 (5.5)

and for which the approximations FP) are convex, for pe [p*,+o0]
[17]. The GNC algorithm begins by minimizing F®*). Then p is
decreased from p* to 0, which makes ¢ change steadily from
0" to ¢. For every p we minimize F(® starting with the local
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minimum obtained for the previous approximation. While in
theory p should decrease continuously from p* to 0, in practice,
successive reductions p—> p/2 have been found to be quite
acceptable. There are numerous ways to minimize each F®) Blake
and Zisserman proposed a direct descent algorithm, called
Successive Over-Relaxation (SOR), while other authors propose the
use of the optimal step conjugate gradient algorithm [11]. The
results shown in this paper are obtained by means of a standard
conjugate gradient algorithm.

6. Experimental results

The performance of the neighbour interacting function of eq.
(3.7) was tested by minimizing the resulting primal energy of eq.
(4.1) both via the stochastic relaxation algorithm and the GNC-
type algorithm described in Section 4 and 5, respectively. As
original images we considered both real and synthetic piecewise
smooth images. The degraded images were obtained randomly
selecting a percentage of the original images and adding an
uncorrelated Gaussian noise of zero mean and variance o2. The
intensity process was considered continuous for the GNC algorithm
and quantized in 256 gray levels for the stochastic relaxation
algorithm.

The value of the regularization parameter A was chosen so as
to balance the degree of smoothness and the consistency with the
data in the reconstructed image. The most popular mathematical
methods for estimating A are the generalized cross validation
method introduced by Wahba [20] and the standard regularization
method described by Tikhonov [21]. The value of o should be
chosen on the basis of the effective minimum value of the
horizontal and vertical gradients, corresponding to the
discontinuities across the true images. In general, an exact value
of o is not available for real images; an approximate estimate can
however be obtained on the basis of a priori information on the
class of images to be reconstructed. It is to be noted that the best
choice for o should be to consider it as a dynamic parameter,
whose value changes over the different regions of the image.

The set of parameters that define the annealing schedule in
the stochastic relaxation algorithm has been derived
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experimentally, on the basis of the images treated. In particular,
for all the trials, the initial temperature Ty was chosen according
to formula (4.4), with X = 0.85 and x; + x, = N2, where N2 is the
dimension of the problem; the length of the Markov chains has
been fixed to 30N2; the temperature has been decreased according
to eq. (4.5), with v = 0.9 and, finally, as stop criterion it has been
assumed that the difference in cost between the last images of
two consecutive Markov chains must remain lower than 5000 for
20 consecutive times.

In the GNC algorithm, the starting value p* of parameter p
has been chosen according to inequality (5.5), in order to make
the corresponding approximation of F convex. The schedule
adopted for decreasing p was the following:

px= p* - K- k=1,2,....knax (6.1)
ma

where k is the current iteration and k., is the maximum number
of iterations. In particular, we set kp,=[p*].

For each degraded image, the two algorithms have been
applied with the same regularization parameters A and o. The
quality of the reconstructed images was evaluated by computing
the root mean squared error (MSE) between the reconstruction
itself and the original image; the value of the cost function in the
reconstructed images has also been computed, as a measure of
convergence for the algorithms.

The results of the trials performed are reported in a set of
figures organized as follows: the top-left image is the original
image, the top-right is the degraded image, the bottom-left is the
stochastic relaxation reconstruction and the bottom-right is the
GNC reconstruction. We considered three different images and
four kinds of degradations. The first image is a synthetic
piecewise smooth image of size 128x128, that we will refer as
"Line”; the second image is a real image of printed characters, still
of size 128x128, which can be roughly considered piecewise
smooth and will be referred to as "Letters"; the third image is a
face image (of the painter Caravaggio) of size 200x200, referred to
as "Face"; this last image is hardly modellable as a piecewise
smooth image, so that it serves to test the performance of the
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adopted stabilizer when applied to images of general type. As first
kind of degradation we considered the addition to the image of
uncorrelated Gaussian noise of standard deviation o=12; in the
second kind of degradation o is increased to 25; in the third and
fourth kind of degradation we randomly select 50% of the original
image and add uncorrelated Gaussian noise, first with =12 and
then with 6=25. In Table I, to each degraded image is associated
the corresponding figure. The values of the regularization
parameters adopted for reconstructing a given image are reported
in the caption of the corresponding figure, togheter with the
obtained root mean squared errors.

This set of experiments allows to make some comparison
between the two algorithms. In the most part of the cases, we
found that the value of the cost functional in the reconstructed
image is lower for stochastic relaxation than for GNC. From a
theoretical point of view, this could mean that stochastic
relaxation approaches closer the effective global minimum of the
energy. A confirmation of this hypothesis can be found in the
qualitative analysis of the results. Indeed, it is possible to note
that the images reconstructed with stochastic relaxation are
generally more “stylized" than those produced by the GNC, that is
they fit more closely the a priori information of piecewise
smoothness expressed by the adopted stabilizer. This effect is
particularly evident in the "Face" image. Indeed, as already said,
this image cannot be adequately described through local
smoothness constraints on its intensity values, and would require
higher order derivative models. With regard to the values
obtained for the root mean squared errors, we can summarize
that, for both the two algorithms, they increase with the level of
degradation and with the level of misfit between the a priori
model adopted and the actual underlying image model. Thus, for
the "Line" image, the root mean squared errors are lower than for
the "Face" image. According to what observed about the closer
fitting of the stochastic relaxation reconstructions with the a priori
information, it can happen that, especially for the "Letters" and
"Face" images, the root mean squared error results lower with the
GNC. With regard to the computational time, for all the trials
performed, and for the chosen annealing schedule, the stochastic
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relaxation algorithm takes about 1000 CPU seconds to run on an
IBM-3081, for a 128x128 image. The computational time of the
GNC algorithm is dependent on the number of iterations executed,
other than on the image size; for a 128x128 image and 10
iterations the algorithm stops after about 400 seconds of CPU.

7. Final remarks

It should be observed that both the two algorithms are
naturally suitable for a parallel implementation that would
greatly decrease the computation time. A parallel version of the
GNC has been proposed by Blake and Zisserman [3], when the
various approximations F® of the primal energy F are minimized
according to the Successive Over-Relaxation (SOR) algorithm. This
is a gradient descent algorithm that uses local quadratic
approximations to determine optimal step sizes. In our case, for
the iterative minimization of F®) the n'" iteration is:

(D) _ () oF P
1,] -

1
i TOT;; of (7.1)

i,j

where ® is the "SOR parameter”, governing convergence speed,
and T;; is an upper bound on the second derivative.

From the form of F(®) it is straightforward to observe that its
derivative with respect to f;; only depends on four neighbouring
pixels, so that a parallel version of the iterative scheme (7.1)
could be easily obtained; Blake and Zisserman propose a "chequer-
board” updating scheme and prove that both successive and
simultaneous schemes are convergent for w e (0,2).

With regard to a possible parallel implementation of
stochastic relaxation it can be observed that, at each step, for each
pixel, the computation of AF only depends on interactions between
the pixel itself to be updated and its four adjacent pixels; a
parallel implementation can thus be obtained simultaneously
executing configuration changes for those pixels that are not
adjacent.
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Table 1

List of Figures

c=12 =25
complete data|sparse data complete data|sparse data
"Line" Fig. 5 Fig. 6 Fig.7 Fig. 8
"Letters" Fig. 9 Fig.10 Fig. 11 Fig. 12
"Face" Fig.13
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Figure 1 Graphical representation of the neighbour interacting
function of eq.(3.6) (A=1, a=0.2).
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Figure 2 Graphical representation of the neighbour interacting
function of eq.(3.7) (A=1, a=0.2).
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Figure 3 Graphical representation of the neighbour interacting
function of eq.(3.14) (A=1, a=0.2).
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Figure 4 Graphical representation of the neighbour interacting
function of eq.(5.1) (A=1, a=0.2, p=0.2).
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Figure §: 128x128 "Line" image. Top-left: original image; top-right:
image degraded adding noise (0=12); bottom-left: stochastic relaxation

reconstruction

(A=5.5, a=2300, MSE=2.2);

reconstruction (A=5.5, a=2300, MSE=2.2).
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Figure 6: 128x128 "Line" image. Top-left: original image; top-right:
image degraded adding noise (6=25); bottom-left: stochastic relaxation
reconstruction (A=15, a=6000, MSE=5.9); bottom-right: GNC
reconstruction (A=15, a=6000, MSE=5.4).
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Figure 7: 128x128 "Line" image. Top-left: original image; top-right:
randomly selected 50% of the original image plus noise (o=12) - for
display purposes the remaining 50% is filled with white dots; bottom-
left: stochastic relaxation reconstruction (A=20, o=2200, MSE=12.5);
bottom-right: GNC reconstruction (A=20, «=2200, MSE=12.5).
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Figure 8: 128x128 "Line" image. Top-left: original image; top-right:
randomly selected 50% of the original image plus noise (0=25) - for
display purposes the remaining 50% is filled with white dots;
bottom-left: stochastic relaxation reconstruction (A=15, a=2200,

MSE=13.5); bottom-right: GNC reconstruction (A=15, a=2200,
MSE=14.8).
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Figure 9: 128x128 "Letters" image. Top-left: original image; top-right:
image degraded adding noise (0=12); bottom-left: stochastic relaxation
reconstruction (A=15, «=4000, MSE=8.0); bottom-right: GNC
reconstruction (A=15, a=4000, MSE=6.1).
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Figure 13: 200x200 "Face" image. Top-left: original image; top-right:
randomly selected 50% of the original image plus noise (c=12) - for
display purposes the remaining 50% is filled with white dots; bottom-
left: stochastic relaxation reconstruction (A=10, a=1000, MSE=12.9);
bottom-right: GNC reconstruction (A=10, a=1000, MSE=11.5).
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