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Abstract

Wereveal a class of universal phase transitions to synchronization in Kuramoto-like models with both
in- and out-coupling heterogeneity. By analogy with metastable states, an oscillatory state occurs as a
high-order coherent phase accompanying explosive synchronization in the system. The critical points
of synchronization transition and the stationary solutions are obtained analytically, by the use of
mean-field theory. In particular, the stable conditions for the emergence of phase-locked states are
determined analytically, consistently with the analysis based on the Ott—Antonsen manifold. We
demonstrate that the in- or out-coupling heterogeneity have influence on both the dynamical
properties (eigen’spectrum) and the synchronizability of the system.

1. Introduction

Synchronization of interacting units is a macroscopic self-organized behavior, and is ubiquitous in nature and
human society. Examples range from physics, chemistry, engineering to social science [1], such as the flashing of
fireflies, power grids, Josephon junction arrays, and neurons in human brain, etc [2, 3]. Synchronous evolutions
are furthermore at the basis of cooperative functioning of many biological and man’made systems, and therefore
revealing the mechanisms behind the setting and maintenance of synchronization is a very important issue [4].

The first prototypic model for investigating synchronization in coupled-phase oscillator was proposed by
Winfree [5]. Later, Kuramoto refined the model, and made it mathematically tractable [6]. The classical
Kuramoto model describes an ensemble of phase oscillators interacting via a sinusoidal function of the phase
differences, and shows that a large population of oscillators can in fact synchronize despite the diversity in the
individuals’ natural frequencies. Such a pioneering work has inspired extensive studies on synchronization in
the following four decades [7, 8]. Typically, synchronization in Kuramoto-like models turns out tobe a
continuous process, i.e. it follows a second-order phase transition. Recently, however, first-order-like
synchronization transitions (the so called explosive synchronization) has also been revealed [9].

Besides the diversity in natural frequencies, heterogeneity in the coupling strength is also an important
characteristic that may dominate in many real systems [10, 11], inducing the emergence of various coherent
states in the route to synchronization, such as cardio-respiratory synchronization [12, 13] and network
physiology studying networks between different organ systems [14—16]. Furthermore, non-local coupling is
known as relevant for the formation of chimera states [17], and Kuramoto models with both positive and
negative coupling can exhibit 7 states, travelling-wave states, standing-wave states, and glass states, among
others[18, 19]. On the other hand, network structure leads to nontrivial phase transition, such as explosive
synchronization [9] and cluster synchronization [20]. Recently, [21] shows that a metastable state appears in the
route to the travelling-wave state near the hybrid phase transition, which has potential applications in the
recover of human consciousness.
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In this paper, we provide a comprehensive analysis for a system of coupled-phase oscillators by considering
both in- and out-coupling heterogeneity. We characterize the dynamical behaviors in the system, and obtain the
critical points of synchronization transition analytically. Remarkably, we show that the in- and out-coupling
schemes have no influence on the critical point where the incoherent state becomes unstable, whereas
synchronization ability is changed dramatically. A rigorous stability analysis for the phase-locked state is
provided from different levels. We give a general condition for the stability of the phase-locked state based on the
properties of eigen spectrum and the associated eigenvectors which are clarified. We reveal a universal route
toward synchronization, i.e. from the incoherent state to the oscillatory state, then from the oscillatory state to
the phase-locked state. Such route occurs even for purely attractive coupling, which is a signature that is different
from the metastable state appearing near the hybrid phase transition.

The paper is organized as follow: in section 2 we introduce the dynamical model and the mean-field theory.
In section 3 we focus on the stability analysis of the phase-locked state and its eigen-spectrum properties in
detail. Section 4 provides a discussion about the tiered phase transition to the oscillatory state. Finally,
conclusions are drawn in the last section.

2. Dynamical model and mean-field theory

Let us consider an ensemble of N intercating pase oscillators. The model we consider here has the form

N
91' = w; + ZK,] sin(Qj —6), i=1,--,N, (D)
j=1

where 6; is the instantaneous phase of the ith oscillator, dot denotes temporal derivative, and wj is the natural
frequency of the ith oscillator, which is taken from a specific distribution g(w). N is the number of oscillators, and
Kjjis the coupling value between the pair of oscillators iand j. In particular, Kj; = /N (x > 0) stands for the
global and uniform coupling that is typically used in the Kuramoto model. In order to account for heterogeneity
in the coupling, we set Kj; = r|wi|/N or Kj; = k|wj| /N, which leads to a frequency-weighted Kuramoto model
with k > 0[22, 23]. In the present study, we consider a uniform distribution

ywziquA, ®)

where A is the half-width of the distribution [24].

For the sake of convenience, we pay attention to the case of heterogeneity in the out-coupling, where
Kjj = K|wj| /N, i.e. the weighted factor is inside the summation in equation (1). To characterize the collective
behavior in the model

N
Zy(t) = R(t)e® = LZ i) )
N e

is defined as the order parameter of the system, and
i 1 Y .
£ =DM = 53 Jwlet, )
j=1

which denotes the mean-field coupling of the system. The two complex vectors Re'¥ and De'® correspond to the
centroid of the configurations {e%, |wj|ei91‘ }.D(t) = 0[R(t) = 0]denotes the incoherent state, where all
oscillators are desynchronized and distribute uniformly on the unit circle. By applying the mean-field theory or
linear stability analysis, one can obtain the critical coupling «..; for the onset of synchronization as

2

-—= 5)
m|€21g (€2) (

Kfc, 1
where (), is the critical mean-field frequency (the imaginary part of the eigenvalue), which satisfies the balanced
principal-value integral equation [25]

P [ ez - 0o =0, ©

For the uniform distribution in equation (2), one has ), = +A/+/2 and k.| = 4+/2 /7. Thus, the result is the
same as the in-coupling case where Kj; = x|w;|/N. This suggests that the critical points for the emergence of
synchronization in both out-coupling and in-coupling are the same [22].

Next, we seek for solutions of the coherent state. The dynamical equation (1) can be rewritten in the mean-
field form as
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Figure 1. (a) Schematic plot of the self-consistent equation (13), (4., f(q.)) is the maximum point of f(q). (b) Schematic plot of the
perturbation. 6, and 6, are a pair of symmetrical phase-locked oscillators with positive natural frequency, arrows stand for the
perturbation directions. Red arrow is the even perturbation, and orange arrow is the odd perturbation.

0; = w; — kD sin(® — 6)). (7)

In the long time limit (f — 00) the stationary solution of equation (7) indicates that D is independent of time
and © = Q. Considering the symmetry of the system, we assume a rotating frequency {2 = 0. Hence, the steady
state for equation (7) is

sinf; = 21, |wil < kD, (€)
wD
and
2
w
cost; = +,[1 — —') 9
; (HD 9

for the phase-locked oscillators. The drifting oscillators (with |w;| > kD) cannot be entrained by the mean-field
and they rotate non-uniformly on the unit circle. It has been proved that the drifting oscillators have no
contribution to the order parameter

1
D=

— > |wilcos b (10)
N |wi|<kD
Letting N, be the number of phase-locked oscillators, there are 2™ possibilities of configuration {cos 6;} except
for those D < 0inequation (10). However, if we perform an independent perturbation 6¢; for each locked phase
0, while keeping the others invariant, the corresponding eigenvalue equation is 66; = A\d6;. The eigenvalue
A = 2%, which yields
A = —kDcos0; + Msinzﬂ,'. (11)
N
The necessary condition for stable coherent state D > 0 requires all cos §; > 0.
As N — 00, the order parameter D should be re-defined in its integral form

2
w
D = IOCk gW)|wl, 1 — (E) dw. (12)

Throughout the paper, weset A = 1for x D < 1.Thesolutionsare D = 3k 2(k > 3)and R = 37/(4k) which
correspond to partial synchronization. For kD > 1, all oscillators become phase-locked. Setting kD = g,
equation (12) is transformed into

%:f(q), q>1 (13)
where f(q) = J(; V gx+'1 — x?dx. Figure 1(a) plots the schematic function f(g) (g > 1), and one can easily see
that there is no intersection between 1/ and f(q) when « is small enough. As x increases, the line 1/ is tangent
to the curve f(q) at (4., f(q.)) and there are two solutions in the interval £ € (f(g.)"", f (1)"']. When
k > f(1)~" = 3, there s only one solution that corresponds to a partial synchronization state. The critical point
corresponding to the maximum of f(q) is ¢, = (2/+/3)"/2, and the coupling strength that characterizes the

emergence of completely phase-locked states is k0% = 7 (lq) =2,/1+ %

The situation for the in-coupling is relatively simple due to the symmetry. The system splits into two groups
once kR > 1,where cos; = /1 — (kR)"? and sin §; = 4=(xR)~', and the choice of ‘+’ is consistent with the

3
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sign of the natural frequency. The coherent solutions are Ry = g 1+ ,/1— % .k > K" = 2,and theyare

independent on N and g(w).

3. Stability of the phase-locked states

The above analysis shows that there are multi-branch solutions of the coherent state. Therefore, determining
their stability becomes an important theoretical task. As we know, the incoherent state is neutrally stable due to
the absence of eigenvalues for the linear operator in the region k£ < k., while its stability is further determined
by the resonant pole calculated through analytical continuation [25]. The natural question is how the eigen-
spectrum for the phase-locked state appears. In the following, we provide a detailed stability analysis of the
coherent state for finite size N. We emphasize that the results can be straightforwardly extended to the
case N — oo.
Choosing a pair of symmetric oscillators 6,,, with opposite natural frequencies wj, ,, the governing equation

of 0, , is

Opn = wpn — £(Dy + Dy)sin G, (14)
where D, represents the local order parameter formed by 6, ,, D; = (2|w,| cos 6,) /N,and Dy = D — D, stands
for the order parameter formed by the other N — 2 oscillators. Considering a special perturbation 66, ,, that
makes D, invariant, the linearized equation for 66, , is governed by

[‘5%] _ (a -b b )(60},)’ (15)
80, b a—bJ]\,
where a = —kD cosf,and b = —(k|w,|sin?6,) /N.

The first eigenvalue of the Jacobian matrixis \; = — kD cos 0, which is always negative. The corresponding
eigenvector satisfies 60, = 00, representing identical perturbations, and it is stable. The second eigenvalue is
X = —./(kD)? — wf, + 2/{|wp|3 (kD)2/N, and the associated eigenvector satisfies 66, = —00, characterizing
the perturbations in the reverse direction. As we will see, the two eigenvectors are the basis of the eigen-
directions for general perturbations. When x D < 1, A, > 0inthe limit |wpl — KD, and this implies that
oscillators 6, , near the phase-locked boundary (Jw,| — xD)would first lose their stabilities under reverse
perturbation (see figure 1(b)). Hence, one can conclude that the configuration where synchronous and drifting
oscillators coexist is unstable.

A rigorous analysis needs to account for all perturbations 60; (i = 1,2, ..., N) [26], then the linearized
equation for phase-locked state is governed by

50 = J60, (16)
where 66 isavector (601, 60, ..., 60n) and J is the Jacobian matrix with entries J; = 2—?. For the out-coupling
gl
case

Ji = %lelcos(ei — 0;) — KD cos 0;6;;, (17)

and kD > 1. Note that Zji Jij = 0, whichimplies that (1, 1, ...,1) is a trivial eigenvector corresponding to the
eigenvalue \; = 0. This property is associated with the rotation invariance of the Kuramoto model equation (1).
Since J is a real and symmetric matrix, the stability condition for the phase-locked state is to have all other N — 1
eigenvalues \; < 0(i = 2,3,...,N).

All detailed information about the eigen-spectrum comes from the characteristic equation of J. To compute
the characteristic polynomial, we express

K
J = —kDC + —MW, 18
N (18)

where C and W are the diagonal matrix with entries cos 6; and |w;| along the diagonal, respectively, and M is a
real-symmetric matrix with elements M;; = cos(6; — ;). Supposing |w;| > 0, ¥, then

A —J =M + kDC — MW = E(I - EE*IM)W, (19)
N N

andE = (M + k DC)W . Defining ¢ = (cos )}, cos f,...,cos ) and s = (sin @), sin b,,...,sin Oy), the two
vectors are linearly independent, i.e. ¢ - s = 0. Since the rank of M is only 2, forx € RY

Mx = (c-x)c + (s - X)s. (20)
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Figure 2. The eigen-spectrum of the Jacobian matrix J (see equation (17)). Panels (a) and (c) refer toqg = 1.01 (g < q,), for which the
largest eigenvalue A is positive; panels (b) and (d) refer tog = 2.0 (g > q,), for which the largest eigenvalue A vanishes. The frequencies
are evenly spaced: w; = —1 + 2(i — 1) /(N — 1), i = 1,...,N.

Hence, the span of c and s together with the kernel of M account for the whole eigen-space of M. The matrix
E~'M s conjugate to ME ™, then the linear transformation xME ™" /N restricted to two-dimensional subspace
formed by cand s takes the form

B () QY
NME ‘(Qam QS(A))’ @)

where the functions Q.(\) = %Zfil A'i}'ﬂ; , Qs (\) = 21 . /\Irl; and Q,(\) = Zl . 1\1 lh;sc =0

Therefore, the characteristic polynomial for J is

N
p(A) = det(E)det (I — %E_lM) det(W) = H A+ EDc)(1 — Q:(N)(A — Qs(A)). (22)
i=1
Apart from the poles —xDc;, the functions Q /() and Q () are strictly decreasing, and so the polynomial p
(A) = 0 must have exactly two roots (Q(\) = 1and Q,(\) = 1) between any two consecutive poles. Obviously,
Q0) = 1 corresponds to the rotation invariance and the only remaining eigenvalue Q,(\) = 1 determines the
stability of the phase-locked state, so the stable condition (A < 0)is Q(0) < 1 whichyields

1 X s}
— > Jwil= < D. (23)

N Ci
In the continuous limit, equation (23) is equivalent to the following inequality

2
g(w)lwIwidw < i, (24)
lock q qz — wz K

which requires /(q) < 0. Therefore, the eigen-spectrum of J is made up of three pieces (see figures 2 and 3). The
first part, widely distributed in the interval of poles, merges into the continuous spectrum (—4/g*> — w?, g > 1)
as N — oo. The second part is a trivial eigenvalue A = 0 due to the rational symmetry of the Kuramoto model,
and the third part is a separated eigenvalue located in between those two, which turns out to be the nontrivial
part of the discrete spectrumas N — oo. Forg€[1,4.], f'(g) > 0, thebranch of solution D(x) is unstable, while
itisstableforg € (g, +00).

To better understand the property of the eigen-spectrum, we concentrate on the continuous limit N — oo.
In this way, the state of the system is described by a real density function p(6, w, t) which satisfies the

5
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Figure 3. The eigen-spectrum of the Jacobian matrix J (see equation (30)). Panels (a) and (c) refertoq = 1.1(g < q,), the largest
eigenvalue being A > 0. Panels (b) and (d) refer instead tog = 3.0 (q > q.), the largest eigenvalue being A = 0. The frequencies are
evenly spaced: w; = —1 + 2(i — 1)/(N — 1), i = 1,...,N.

normalization condition. Meanwhile, p(6, w, t) is 27-periodic with respect to  and can be expanded into Fourier
series as

o0

Y an(w, e, (25)

n=-—00

pO, w, t) = M

where the Fourier coefficients oy = 1and a._,, = «. Considering the Ott—Antonsen ansatz, p(f, w, t) takes the
form of Poisson kernel v, = ' [27-30]. Equation (2) is equivalent to the continuous equation

da +iwa + Ea? — D¥ =0 (26)
dt 2
with D(t) = flock g (W) |w|a*(w, t)dw.

Apart from the incoherent state a(w) = 0, the phase-locked state vy (w) = e ?(“) (see equations (8) and (9))
is another fixed point of equation (26). Linearizing equation (26) around this steady state, one gets

@ = —iwba — kDagyba + %5D = Ma. (27)
dt D
Combining the expression of D with equation (27), the self-consistent equation for A is
1= [ g@lol—2a0/D g, (28)
lock A+ iw + kDay

Substituting oy into equation (28), the imaginary part vanishes automatically, provided an even g(w), and one
obtains the eigen-equation for A

*/(kD?)
1= ) =
'f;ock hd |W|/\ + '(RD)Z _ UJ2

which is consistent with Q(\) = 1in the finite dimensional case. Note that A = —/(kD)? — w? just
corresponds to continuous spectrum of the linear operator, and the discrete eigenvalue is only determined by
equation (29). On the one hand, when kD is large enough, A must be negative to balance equation (29) (stable
solution). On the other hand, when kD is small (<D — max{w}), A should be positive to avoid singularity of
equation (29) (unstable solution). As A is a continuous function of kD, the critical point k. and D, for the
emergence of phase-locked state can be obtained by imposing A — 0*.

dw, (29)

6
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The stability analysis for in-coupling case follows a similar procedure, where the Jacobian matrix J’ has the
following elements

]é = Hy:;il cos(0; — 0;) — KR|wj| cos 0;0;. (30)

The eigenvalues of J' are the roots of Q/(\) = land Q;(\) = 1,where Q/()\) = Z _coslleil ang

=1 X\ kRcosO | w|

Q/(\) = Zl . % The structure of the eigen-spectrum has the same form as equation (22). There

are N — 2 distinct eigenvalues in the interval (— &R cos 0|wi|, — <R cos f]w;_1]), Q/(0) = 1and the remaining
one is determined by Q! (\) = 1 that yields stable condition Q! (0) < 1,i.e. tan?# < 1.Itis easily checked that
the stable condition holds for (R, ) < 7/4,and itis violated since O(R_ ) > m/4. We emphasize that in contrast
to the out-coupling case, the discrete eigenvalue for R, isemptyas N — oo. Since the existence interval

(— KR cos Blw], 0) for A(R, ) gets shorter and shorter, |w;| = min{w;}. Once |w;| — 0, the interval vanishes
and \is absent.

Let us move now to describe the eigenvectors associated to the eigenvalues. The natural frequencies are
reordered as |wy| > |w,| > ... > |wy]and wyi = —ws;_ 1. Foran even N, RY can be splitinto two subspace Viyen
and V44, suchthatXx € Veyen, % = %;_1(i = 1, 2,.. ,N/2)and X € V44, %; = —%;_,1(i = 1, 2,...,N/2).
Thus, dim(Veyen) = dim(Voqq) = N/2,and Viyen, L Voaq, consequently, the vector € € Vyep and's € Vgq.

IfX € Veyen, then for the out-coupling case

Jx = —kDCx + %MWX = \x (1)

Ifone definesy = Wxandy € Viyp, then ysatisfies

K K
Ey = —My=—(c-y)c 32
V=M N( y) (32)

Setc - y = N/k,theny = E~'cand the entry of the eigenvector x; = . Considering the self-consistent

A+ kDe
condition, the eigenvalue A for x € Vi, corresponds to Q(A) = 1. FurtJ}rlermore, ifx € V,qq1s the eigenvector
ofJ, then x; = X +S Do which implies Q(A) = 1. Dueto] preserves Vi, and V,qq, the eigenvectors of J can be
understood clearly. The even eigenvector x corresponds to a purely vertical perturbation to the order parameter.
Since the first-order deviation caused by x, V(D cos ©) - x = 0and V(D sin ©) - x = 0. On the other hand,
the odd eigenvector x corresponds to a purely horizonal perturbation to the order parameter because the first-
order derivative along this directionis V(D cos ©) - x = 0and V(D sin ©) - x = 0. Similar results occur for
the in-coupling case.

4. Tiered phase transition

Figure 4 illustrates the phase diagram of the system by direct numerical simulation with N = 100 000. The blue
solid lines are the theoretical predictions indicating stability (g > q.). The green dashed lines represent a branch
of unstable solution (g < q.). Both the in- and out-coupling schemes exhibit a similar route to synchronization,
namely, a tiered phase transition appears from the incoherent state to the oscillatory state, then to the phase-
locked state. For the incoherent state, all oscillators are disordered and distribute uniformly on the unit circle,
and two coupling schemes show the same critical point x| = 4+/2 /7. Interestingly, these two coupling
schemes reveal different properties of the coherent state in spite of N — oco. The critical point «,., for the
emergence of phase-locked state is postponed for the out-coupling case. In this sense, we can say that the whole
synchronization ability in the out-coupling case is weaker than the in-coupling case (see figure 4(d)). The
differences of synchronization ability between these two cases may provide significant strategies for
synchronization optimization in real system.

Figure 5 plots several typical features of the oscillatory state for both cases. In contrast to the metastable state
reported in [21], where the system (the order parameter) experiences a long-lasting fluctuation near the critical
point of the travelling-wave state (a signature of a hybrid phase transition), here we find that the oscillatory state
behaves as a stable periodic- T vibration of the order parameters Z; , without any fluctuation (figures 5(e) and
(£)). In addition, the oscillatory state takes place in a particular regime (k.1 < k < K,) [31-35], where the
incoherent state loses its stability and phase-locked state is empty. As a type of time-dependent clustering state, a
number of phases appear locked according to their natural frequencies (see figures 5(a) and (b)). Consequently,
the effective frequencies averaged in long time limit correlate in a way that they converge to a common value
(w;) = £27/T [36] (figures 5(c) and (d)). It should be pointed out that the instantaneous velocities of all
oscillators within each group are distinct, which leads to the oscillation of the order parameters [37]. We argue
that the onset of such state is related to the Hopf bifurcation in the phase space characterized by nonzero §2,, and
it disappears at k., accompanying saddle-node bifurcation of the phase-locked state.

7
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Figure 4. Phase diagrams of the order parameters R, D versus the coupling strength «. Panels (a) and (b) refer to the out-coupling case,
panel (c) refers to the in-coupling case, and panel (d) reports the difference of the order parameters between (a) and (c). The red circles
are the results of numerical simulations for N = 100 000, At = 0.01 with a fourth-order Runge—Kutta integration scheme, and the
distribution of the natural frequency is uniform (equation (2), A = 1). The total running time is t = 500 and the order parameters are
averaged over the last At = 50. The blue solid lines are the theoretical predictions from self-consistent equations for g > ¢, and the
green dashed lines refer to the case g < g.. The colourful shadows in (a)—(c) are the regions where the oscillatory state exists.
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Figure 5. Typical features of the oscillatory state. The left panels refer to the out-coupling case (x = 2.5) and the right panels refer to
the in-coupling case (x = 1.9). Panels (a) and (b) report the instantaneous phases ; versus w;, while panels (c) and (d) report the
effective frequencies (w;) versus w;. Panels () and (f) are time series of the order parameters Z; ,, where Z; , are purely real. Pink

5. Conclusion

In summary, we extended the Kuramoto model, and accounted for both in- and out-coupling heterogeneity. We

reveal a type of universal phase transition from the incoherent state to the phase-locked state via an oscillatory
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state without any repulsive coupling. The critical points for the occurrence of the coherent states and stable
solutions of the phase-locked states are obtained analytically, and the predictions have been perfectly supported
by numerical simulations. A simple stable condition for the formation of the phase-locked state is provided in
terms of matrix analysis theory, and in full consistency with the Ott—Antonsen analysis in the limit N — oo.
This work not only enhances our understanding of dynamical phase transitions in coupled oscillators with
general heterogenous coupling, but also sheds light on synchronization control and optimization.
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