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The cranial window (CW) technique provides a simple and low-cost method to assess tumor angiogenesis in the brain. The CW
combined with histology using selective markers for tumor and endothelial cells can allow a sensitive monitoring of novel
antiangiogenesis therapies in preclinical models. The CW was established in cyclosporine immunosuppressed rats that were
stereotactically grafted with fluorescent U87MG glioblastoma cells. One to 3 weeks after grafting, brain vasculature was
visualized in vivo and assessed by immunofluorescence microscopy using antibodies against endothelial and smooth-muscle
cells and blood brain barrier. At 1-2 weeks after grafting, the CW reliably detected the hypertrophy of venous-venous
anastomoses and cortical veins. These structures increased highly significantly their pregrafting diameter. Arterialized veins and
hemorrhages were seen by three weeks after grafting. Immunofluorescence microscopy showed significant branching and
dilation of microvessels, particularly those surrounded by tumor cells. Mechanistically, these changes lead to loss of vascular
resistance, increased venous outflow, and opening of venous-venous anastomoses on the cortical surface. Data from the present
study, namely, the hypertrophy of cortical venous-venous anastomoses, microvessel branching, and dilation of the microvessels
surrounded by tumor cells, indicate the power of this in vivo model for the sensitive monitoring of early tumor angiogenesis.

1. Introduction

Glioblastoma (GBM) is a highly vascularized malignancy
[1-4]. Studies on the early stages of angiogenesis as well
as preclinical trials for antiangiogenic treatments require
valuable in vivo models [5-8]. Xenografting onto the brain

of immunocompromised rodents [9] recapitulates the inter-
actions of human GBM with host endothelial cells [2] and
extracellular matrix [10]. However, intracranial models
need special tools to follow tumor evolution over time, such
as high-field magnetic resonance imaging (MRI) [11, 12],
microcomputed tomography [13, 14], or bioluminescence
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imaging [15, 16]. These techniques provide only indirect
data on tumor angiogenesis and share disadvantages in
terms of cost and technical expertise. In this report, we
aim to validate the use of the cranial window (CW) tech-
nique for the direct visualization of the angiogenesis pro-
cess in U87 brain tumor xenografts. Using this simple
and low-cost technique, we were able to timely quantify
the brain circulatory changes of tumor angiogenesis, in par-
ticular those involving the cortical venous-venous anasto-
moses, and to relate such changes with the histological
picture.

2. Materials and Methods

2.1. Culture of Tumor Cells and Lentiviral Infection. The
U87MG human GBM cell line was purchased from the
American Type Culture Collection (Manassas, VA) [17].
Cells were cultured and virally transduced either for the
green fluorescent protein (GFP) or for m-Cherry expression,
as described elsewhere [18]. Cells were grown at 37° C in a
humidified atmosphere of 5% CO2-95% air. Cells were regu-
larly controlled to exclude mycoplasma contamination
(Mycoalert Detection Kit, Lonza, Basel, Switzerland).

2.2. Intracranial Xenografting of Fluorescent US7MG Cells.
Experiments involving animals were approved by the Insti-
tutional Ethical Committee (Pr. No. FF22). Study protocol
was drawn in adherence with the International Association
for the Study of Pain Guidelines for the Use of Animals in
Research [19] and was fully compliant with the Directive
2010/63/EU on the protection of animals used for scientific
purposes. Adult male Wistar rats (200-250 g; Catholic Uni-
versity Breeding Laboratory) were used. The rats were
anesthetized with intraperitoneal injection of diazepam
(2mg/100 g) followed by intramuscular injection of ketamine
(4mg/100g). For CW surgery, a 5mm wide round craniect-
omy was made in the right fronto-parietal region under an
operating microscope (Zeiss, Oberkochen, Germany). The
dura mater was carefully opened. The craniectomy was cov-
ered with a round glass coverslip of 5mm diameter and
glued to the bone margins using cyanoacrylate. The skin
was closed with metallic clips. Animals were kept under
pathogen-free conditions and followed with daily measure-
ments of weight, food and water consumption, and overall
activity. Parenteral antibiotics were not given. Beginning 7
days before grafting, the rats were immunosuppressed with
subcutaneous injection of cyclosporine (30mg/kg, three
times per week) [20]. Under general anesthesia, the animal
skulls were immobilized in a stereotactic head frame and 2
x 10° either of GFP+ or of m-Cherry+ U87MG cells were
slowly injected using a 10 yL-Hamilton microsyringe along
a trajectory parallel to the cortex immediately below the
pia mater via a hole made in the temporal bone. For
in vivo brain imaging, the rats were anesthetized, body tem-
perature was maintained at 38°C with a heating pad [21],
and head fixed in the stereotaxic frame. The skin incision
was reopened, and images of the CW were acquired at 10x
magnification using the operating microscope equipped with
a D5100 Nikon camera (Nikon Europe, Moncalieri, Italy).
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After 1-3 weeks survival, the rats were deeply anesthetized
and transcardially perfused with 0.1M PBS (pH7.4) then
treated with 4% paraformaldehyde in 0.1 M PBS. The brain
was removed and stored in 30% sucrose buffer overnight
at 4°C.

2.3. Fluorescence Microscopy and Immunofluorescence of
Brain Tumor Xenografts. The brains were serially cryotomed
at 40 um on the coronal plane. Sections were collected in dis-
tilled water and mounted on slides with Vectashield mount-
ing medium (Bio-Optica, Milan, Italy). Images were acquired
with a laser scanning confocal microscope (LSM 500 META,
Zeiss, Milan, Italy). For immunofluorescence, sections were
blocked in PB with 10% BSA, 0.3% Triton X-100 for 45 min
and incubated overnight at 4°C with primary antibodies in
PB with 0.3% Triton X-100 and 0.1% normal donkey serum
(NDS). The monoclonal mouse anti-Glucose Transporter
GLUT1 antibody (1:100; Abcam, Cambridge, UK) was used.
Polyclonal antibodies used were as follows: rabbit anti-
Glucose Transporter GLUT1 antibody (1:200; NovusBio,
Centennial, CO, USA), rat antimouse CD31 (1:100) (BD
Bioscience, Franklin Lakes, NJ), and goat anti-a-smooth
muscle actin (aSMA) antibody (Abcam, Cambridge, UK).
For detecting brain microvessels, sections were incubated
overnight at 4°C in PB with 0.3% Triton X-100 and 0.1%
NDS with Lectin from Lycopersicon esculentum (tomato)
biotin conjugate (1:500; Sigma-Aldrich, St. Louis, MO)
together with primary antibodies. Secondary antibodies used
were as follows: Alexa Fluor 647 or 555 or 488 donkey anti-
mouse, Alexa Fluor 488 or 555 or 647, donkey antirabbit
secondary antibodies (1:500; Thermo Fisher Scientific,
Waltham, MA), Alexa Fluor 488 or 555 donkey antigoat anti-
bodies (1:400; Thermo Fisher Scientific, Waltham, MA), and
Cy3 donkey antirat (1:200, EMD Millipore, Billerica, MA).
For lectin immunostaining, sections were incubated for 2h
at room temperature in PB containing 0.3% Triton X-100
with streptavidin protein, DyLight 405 conjugate, or strepta-
vidin Alexa Fluor® 647 conjugate (1:200; Thermo Fisher
Scientific, Waltham, MA). To detect vascular permeability
in brain xenografts, sections were incubated with Alexa Fluor
555 donkey anti-rat IgG (1:100; Abcam, Cambridge, UK)
together with other primary antibodies. Before mounting,
slices were incubated with DAPI (1:4000; Sigma-Aldrich)
for 10 min.

As controls of fluorescence microscopy, we used rats
(n=9) treated for 1 to 3 weeks with subcutaneous injection
of cyclosporine (30 mg/kg, three times per week). The speci-
mens were observed with a laser confocal microscope (SP5;
Leica), and images were acquired. Image analysis was per-
formed with Leica Application Suite X software.

2.4. Statistical Analysis. Comparison of continuous variables
at different time points during the study was performed using
the paired Student’s t test. Other comparisons of continuous
variables were performed using the unpaired Student’s ¢ test.
A p value less than 0.05 was considered statistically signifi-
cant. Analyses were performed using the StatView v. 5.0
software (SAS Institute, Cary, NC).
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F1GuURrk 1: Microphotographs and computed image analysis of the CW performed before and 1 to 3 weeks after U87MG cell grafting. The first
vascular change was hypertrophy of the venous-venous anastomoses due to opening of preexisting vessels. At 3 weeks after grafting,
arterialized veins (purple) appeared on the cortical surface. Scale bar, 1 mm.

3. Results clots and scarring membranes were gently removed from

the glass coverslip using gelfoam and saline irrigation at
3.1. Cranial Window. The vascular changes were readily = body temperature. In the first week after grafting, the main
detected and observed over time by serial measurements  vascular change involved the cortical veins, particularly, the
after grafting (Figure 1). Upon surgical exposure, blood  venous-venous anastomoses, which became hypertrophic
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FIGURE 2: (a) Microphotographs of the CW performed before and 1 to 2 weeks after grafting of U87MG cells. Over this time frame,
hypertrophy of the venous-venous anastomoses can be assessed without intervening hemorrhages that may obscure the phenomenon. (b)
Graph showing the time course of diameter of arterial and venous vascular structures after grafting. One week after grafting, the diameter
of venous-venous anastomoses and cortical veins increased significantly compared to their pregrafting diameter (p < 0.0001 and p < 0.001,
respectively; paired Student’s ¢ test). Two weeks after grafting, the diameter of venous-venous anastomoses and cortical veins increased
significantly compared to their pregrafting diameter (p <0.001 and p < 0.0001, respectively; paired Student’s t test). Three weeks after
grafting, the vasculature was chaotic and heterogeneous with large-caliber vessels, arterialized veins, and hemorrhages.

(Figure 1). This phenomenon was not due to the formation
of new vessels on the cortical surface but to the opening
and hypertrophy of preexisting vessels. In the first week
after grafting, the venous-venous anastomoses and cortical
veins increased by 3.37 £ 0.13 (mean + sem) and 1.41 +0.03
times their pregrafting diameter (p <0.0001 and p < 0.001,
respectively; paired Student’s ¢ test) (Figures 1 and 2). In this
early phase, there were only minor and not significant changes
in diameter of the middle cerebral artery branches and of the
bridging veins to the superior sagittal sinus. At 2 weeks after
grafting, the venous-venous anastomoses and cortical veins
further increased their diameter by 4.46 + 0.20 (mean + sem
) and 2.14 + 0.10 fold their pregrafting diameter (p <0.001
and p<0.0001, respectively; paired Student’s t test)
(Figures 1 and 2). At this time, the arterial vessels still showed
minor changes. At 3 weeks after grafting, dramatic changes
occurred in the vascularity of brain cortex that included
extreme dilation of the veins, appearance of tortuous and
arterialized veins, and hemorrhages (Figure 1).

Overall, the first 2 weeks after grafting U87MG cells onto
the brains of cyclosporine immunosuppressed rats represent
the best time frame to detect the hypertrophy of venous-
venous anastomoses and cortical veins without intervening
hemorrhages, which may obscure the CW assessment
(Figure 2). The tortuous arterialized veins were first seen by
three weeks after grafting.

3.2. Fluorescence Microscopy of Brain Tumor Angiogenesis.
For the histological assessment of tumor angiogenesis, we
opted for lectin staining of the vascular structures. Both lectin
and CD31 are regarded as selective markers of the vascular
endothelium [10, 18, 22]. However, even in the brain of

control rats, lectin stained a substantially higher number
of microvascular structures than CD31 (Supplementary
Figure S1), including the cordons of endothelial cells without
central channeling. In control brains, the ratio between
lectin-positive microvascular structures and CD31-positive
microvessels was about 6-7:1.

At one week after grafting, the brain region within 500
microns from the grafting site (peritumor region) showed,
(i) dilation of microvessels, particularly those surrounded
by tumor cells, (ii) occurrence/increase of collateral branch-
ing by microvessels, and (iii) increase of the lectin-positive
microvascular structures (Figure 3). In this early phase of
tumor angiogenesis, one main vascular change involved the
small vessels, capillaries, and postcapillary venules, into and
around the tumor that appeared dilated and branched
(Figure 3(a)). The vessels with aSMA-positive coverings,
supposedly arterioles, contributed poorly to this early angio-
genesis. The parent vessels, from which collaterals sprouted,
were devoid of aSMA-positive coverings (Figure 3(b)). In
the peritumor area, the dilated vessels were surrounded by
tumor cells spreading along the perivascular space. Interest-
ingly, the diameter of capillaries that were surrounded by
tumor cells was significantly higher than that of the capil-
laries without perivascular tumor cells (p <0.00001, Stu-
dent’s t test). In the capillaries, even as few as 2 tumor cells
were capable to induce a 4-fold increase of the vessel diame-
ter (Figure 3(a), lower panel). Both vessel dilation and
branching could be readily assessed (Figure 3(d)). In the peri-
tumor area and within the tumor, microvessels diameter was
significantly greater than controls (p < 0.02 and p < 0.0001,
respectively; Student’s t test). In the peritumor region,
branching was significantly higher than control brains
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F1GURE 3: Fluorescence microscopy at 1 week after grafting mCherry+ U87MG cells onto the brain of cyclosporine immunosuppressed rats.
(a) Collateral branching (upper panel, arrows) of microvessels contributing to the tumor (red). Dilated vessels surrounded by tumor cells
(lower panel, arrowheads) that spread along perivascular spaces. Scale bars, 100 yum. (b) Vessels with aSMA expression do not sprout.
Scale bar, 25 ym. (c) Progressive increase of microvessel diameter and density from control brain (left) to peritumor (center) and tumor
(right) regions. Scale bar, 70 ym. (d) Quantification of microvessel diameter, branching, and density.
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F1GURE 4: Fluorescence and immunofluorescence microscopy at 1, 2, and 3 weeks after grafting mCherry+ U87MG cells (red) onto the brain
of cyclosporine immunosuppressed rats. (a) Microphotograph showing a tumor at 1 week after grafting (left panel). Dilation of vessels
surrounded by tumor cells (right panel). Scale bars, 150 um (left panel) and 40 ym (right panel). (b) The tumor at 2 weeks after grafting
(upper panel, left). At the brain-tumor interface, dilated venules surrounded by cuffs of multilayered tumor cells (upper panel, right).
Dilation of microvessels surrounded by tumor cells (arrowheads). The vessels within the tumor partly lose lectin staining (lower panel,
left). Scale bars, 150 um (upper panel, left), 70 um (upper panel, right), and 70 yum (lower panel, left). Graph showing the diameter of
microvessels in controls and in peritumor regions (lower panel, right). (c) The tumor at 3 weeks after grafting (left panel). Extreme dilation
and loss of lectin staining of microvessels within the tumor (right panel). Scale bars, 150 um (left panel) and 70 yum (right panel).

(p < 0.00001, Student’s ¢ test; Figure 3(d)). The density of lec-
tin positive microvascular structures was significantly higher
than control brains (p < 0.0001, Student’s ¢ test; Figure 3(d)).

By two weeks after grafting, the vessels within the tumor
were enlarged and partly lost their lectin staining
(Figures 4(a) and 4(b)). For these reasons, assessing the

diameter of individual vessels within the tumor was not easy.
At the brain-tumor interface, the venules became dilated at
the point where their wall was surrounded by tumor cells,
particularly when multilayered tumor cells arranged them-
selves to form cufts (Figure 4(b)). Vessel dilation and branch-
ing could be assessed in the peri-tumor area (Figure 4).
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FI1GURE 5: Immunofluorescence microscopy showing the expression of the BBB marker Glutl and IgG extravasation in GFP-expressing
U87MG brain xenografts. (a) At 2 weeks after grafting, the expression of Glutl (red) by peritumor vessels is still present (white arrow).
Scale bar, 70 um. (b) At 3 weeks after grafting, Glutl expression (white) by vessels within and around the tumor is heavily disrupted
(yellow arrow) with extravasation of IgG (red, yellow star). Scale bar, 100 ym.

At 3 weeks after grafting, assessment of lectin-positive
structures within the tumor did not provide reliable data
given the extreme vessel dilation and partial loss of specific
staining (Figure 4(c)). The vasculature within tumor showed
chaotic and heterogeneous angioarchitecure with large-
caliber vessels and discontinuous expression of lectin. One
major change at this time was the disruption of BBB with
IgG extravasation (Figure 5). The expression of Glut-1, a glu-
cose transporter across the mammalian BBB [10], was highly
decreased or lost in areas of reduced BBB integrity. Staining
with anti-rat IgG highlighted extravasated immunoglobulins.

4. Discussion

The CW method [23] of U87MG brain xenografts in cyclo-
sporine immunosuppressed rats offers a simple and rapid
technique for assessing early angiogenesis of GBM, which
correlates with tumor growth and vascular changes on histo-
logical analysis. By combining the CW technique with lectin
fluorescence microscopy, we related the macroscopic vascu-
lar changes with remodeling of brain microvasculature.
Novel findings of this study are the collateral branching of
pre- and/or postcapillary microvessels and the dilation of
microvessels surrounded by tumor cells. These phenomena
lead to loss of vascular resistance, increased venous outflow,
and opening of venous-venous anastomoses on the cortical
surface.

The CW technique in U87 brain xenografts has been
widely used to assess tumor angiogenesis under both light
or fluorescence microscopy (Table 1) [24-46]. Major find-
ings of these studies concerned the vessels within the tumor,
which were larger than normal brain and showed increased
permeability to serum borne proteins [24, 27, 35]. In the early
phase (days 6-12 after grafting), the tumor vasculature was
comprised mostly of preexisting brain capillaries undergoing
vascular remodeling with enlargement, while new vessel for-
mation occurred later [39]. Vascular remodelling with tortu-

ous, dense, and swollen vessels showing decreased red blood
cell velocity and rolling was also described [41, 43]. Then,
the dilation of capillaries and postcapillary venules has long
been recognized as an early event of tumor angiogenesis,
which has been ascribed to the vascular endothelial growth
factor (VEGF) and/or to other diffusible proangiogenic
factors [47, 48].

In our study, microvascular dilation was strongly related
to the spreading of tumor cells along the perivascular space.
The tumor cells are able to travel along the perivascular
spaces, where they cause dilation of the vessel wall [18, 49].
Previous studies that used clinically relevant models showed
that glioma cells populate the perivascular space of preexist-
ing vessels, displace astrocytic endfeet from endothelial or
vascular smooth muscle cells, and disrupt the astrocyte-
vascular coupling [49], a mechanism whereby the astrocytes
regulate vascular tone through Ca(2+)-dependent release of
K(+). Then, the dilation of microvessels may be due to the
loss of vessel tone directly caused by perivascular tumor cells.

Other than the dilation of capillaries surrounded by
tumor cells, another early event of GBM angiogenesis is the
collateral branching of microvessels. An angiogenic sprout-
ing was recognized as early as 3 days after C6 xenografts in
nude mice [30, 32]. More recently, a highly branched vessel
network was described to characterize the initial tumor
growth of a mouse glioma model [45]. In the later stages,
the branched pattern shifted to vessel expansion with loss
of branching complexity. Vessel sprouts are supposed to arise
from precapillary arterioles that contribute to the capillary
network. In our study, however, the sprouting vessels have
no aSMA coverings, suggesting that they may be aberrant
arterioles or even postcapillary venules [22, 50]. In the latter
instance, we would hypothesize a retrograde sprouting,
whereby postcapillary venules contribute to the capillary net-
work. We are well aware, however, that elucidating the mech-
anisms of vessel sprouting in early tumor angiogenesis
warrants deeper insights. The extravasation of serum borne
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TaBLE 1: Literature review on angiogenesis in glioma models using the cranial window method.

Author, year Model Microscopy Findings

U87: vessel diameter 13.8 + 2.4 um between days 12
U87 and HGL21 xenograft, Intravital fluorescence microsco and 18
SCID mice Py HGL21: vessel diameter 6.8 + 1.3 ym.
Vessel permeability high in U87, low in HGL21.

D-54 MG: vessel diameter 26.7 £+ 12.0 yum
D-317 MG: vascular proliferation; vessel diameter
51.9+11 ym

Yuan, [24]

Xenograft of human D-54
Foltz, [25] and D-317 anaplastic
astrocytoma, nude rats

HGL21 xenograft, SCID

Light microscopy with
epifluorescence

Average vessel diameter 10 ym at 2 weeks. No specific

Fukumura, [26] Intravital fluorescence microscopy

mice morphologic observations.
Yuan, [27] U87 xenografts, SCID mice Intravital fluorescence microscopy Tumor vascular permeability 1.11 x 1077 cm/s
Hobbs, [28] U87 xenografts, SCID mice Intravital fluorescence microscopy U87: significant vasculature by 14-20 days
Monsky, [29] HGL-21, SCID mice Intravital fluorescence microscopy Mti)crovascular permeability to albumirisranging
etween 3.2+ 0.9 and 6.4+ 1.8 X 10™° cm/s

Day 3: sprouting, chaotic and heterogeneous
Intravital epifluorescence video  neovasculature with large-caliber vessels and sluggish
Vajkoczy, [30]  C6 xenografts, nude mice microscopy and multiphoton laser blood flow vessel diameters: 12 ym (day 3), 20 ym (day
confocal microscopy 14).
Blood-brain barrier: lost

Dynamic multiphoton laser Tumor vessel diameter about 1.5 ym for 2-2.5 mm

Winkler, [31] U87 xenografts, nude mice . :
scanning microscopy tumors.

Day 3: microvascular sprouts from capillaries and

. . Intravital multifluorescence video venules, microvascular networks
Farhadi, [32] C6 xenograft, nude mice . o . .
microscopy Day 10: vascularization of glioma by vessels with
heterogeneous and chaotic angioarchitecture.
i i Day 15: vessels are larger than normal brain with
di Tomaso, [33] U87 xenograft, nude mice Multlphot.on laser scanning Y di 8
microscopy iameter > 25 ym
WinKler, [34] GL261 graft, nude mice Multlphotf)n laser scanning Formatlo{l of cap.1ll'f1ry structures (glomerulmd bodies)
microscopy in proximity to moving glioma cells
. . . 3 — .
Kamoun, [35]  U87 xenografts, nude mice Multlphotf)n laser scanning Vessel permeability 1.5 — 2 x 107~/ cm/s, vessel diameter
microscopy 14 ym

Neovascularization with dilated, tortuous capillaries in

Campos, [36] GSC xenografts, SCID mice Intravital fluorescence microscope the tumor periphery.

i - i Vessel diameter of 9.5 + 0.04 ym for tumors with

Farrar, [37] U87 xenograft, nude mice Multlphotf)n laser-scanning ! di “ 4 wi
microscopy iameter 1.8 — 3.5 mm
Rege, [38] 9L allograft rats Laser speckle contrast imaging Day 14 MVD values of 1.24 +0.13
von Days 6-12: vascular remodeling with enlargement of
. Multiphoton laser scanning preexisting brain capillaries
Baumgarten, U87, nude mice . .
[39] microscopy Day 12: tumor diameter of 0.9-1.2 mm, new vessel
formation diameter of 25 yum.

Zhang, [40] NA In vivo two-photon imaging No specific morphologic observations.

Vascular remodeling, tumor vessels dense, tortuous
Ricard, [41] U87, nude mice Two-photon microscopy and swollen, no correlation between tumor cell and
vascular density

Two-photon fluorescent

Ricard, [42] GL261 graft, syngenic mice .
microscopy

Vascular remodeling during tumor growth.

Day 7: tortuous vessels with decreased velocity,

Takano, [43] U87 xenografts, SCID mice Fluorescence microscopy leukocyte adhesion and rolling

Ricard, [44] GL261 graft, syngenic mice Two-photon microscopy Vascular remodeling in tumor core
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TaBLE 1: Continued.

Author, year Model

Microscopy

Findings

CT2A GL261 graft, C57BI6

Mathivet, [45] mouse

Uhl, [46] SF126 xenograft, nude mice

High-resolution two-photon
microscopy

Intravital microscopy

2 weeks: sprouting with normal caliber vessels and
branching
5 weeks: reduced branching with increased vessel
diameter
Recruitment of M1-like macrophages in the early stages
and M2-like macrophages producing VEGF-A in
perivascular areas

Days 12-16: total vessel density 150 cm/cm?, functional
vessel density 125 cm/cm?, vessel diameter 17 ym

molecules and hemorrhages occurs at a late stage of tumor
angiogenesis. Extravasation is clearly related to the disrup-
tion of the BBB, which does not occur in the early stages of
angiogenesis [10].

The main limitation of this model relies on the cell line
which has been chosen for the experiments, namely, the
serum-cultured U87MG. U87MG cells xenotransplanted in
immunocompromised rodents generate tumors which do
not display an infiltrative growth [18] and tend to cause a
wide disruption of the BBB [10]. Patient-derived glioma stem
cells allow to build up a more clinically relevant GBM model
[2, 9, 51]. On the other hand, U87MG is a highly angiogenic
cell line endowed with the ability to grow rapidly [18], and
it is thus very suitable for time-effectively assess GBM
angiogenesis.

5. Conclusion

To conclude, the CW technique combined with histology
using selective markers for tumor and endothelial cells can
allow precise quantification of the venous-venous anastomo-
ses on the brain cortex that are strongly linked to the dilation
of the microvessels surrounded by tumor cells. These param-
eters, ie., hypertrophy of venous-venous anastomoses,
microvessel branching, and dilation of the microvessels sur-
rounded tumor cells, can be readily assessed over two weeks
after brain grafting. Our data suggest the power of this in vivo
model for sensitive monitoring of novel antiangiogenesis
therapies.
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Supplementary Figure S1: Confocal microphotographs of
brain microvessels in a control rat immunostained with
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