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Abstract
Transcription factors are proteins able to selectively bind DNA short traits, namely transcription factors binding sites, in order
to regulate gene expression in terms of both repression and activation. Despite plenty of studies focusing on transcription
factors and on the role they play in specific biological tasks or diseases, is available in the literature, to our knowledge there
is no tool able to automatically provide a list of transcription factors involved in this task and the associated interaction
network through a solid computational analysis. TRANScriPtion fActor REgulatory NeTwork (TRANSPARENT) is a user-
friendly Python tool designed to help researchers in studying given biological tasks or given diseases in human, by identifying
transcription factors controlling and regulating the expression of genes associated with that task or disease. The tool takes in
input a list of gene IDs and provides (1) a set of transcription factors that are significantly associated with the input genes, (2)
the correspondent P values (i.e., the probability that this observed association was driven by chance) and (3) a transcription
factor network that can be directly visualized through STRING database. The effectiveness and reliability of the tool were
assessed by applying it to two different test cases: schizophrenia and autism disorders. The obtained results clearly show
that identified TFs, for both datasets, are significantly associated with those disorders, in terms of both gene enrichment and
coherence with the literature. The proposed tool TRANSPARENT can be a useful instrument to investigate transcription
factor networks and unveil the role that TFs play in given biological tasks and diseases.

Keywords Transcription factors · Transcription factors binding sites · Protein networks ·Gene regulation ·Disease-associated
genes

1 Introduction

Transcription factors (TFs) are proteins involved in the reg-
ulation of gene expression. They are able to selectively bind
DNA short traits, namely transcription factors binding sites
(TFBSs), often located in the promoter regions of genes, to
regulate gene expression in terms of both repression and acti-
vation. A large collection of experimental datasets related
to TFBSs (Zhang et al. 2020; Yevshin et al. 2017)—mainly
coming fromChip-seq experiments—are available as well as
a large amount of prediction data coming fromcomputational
tools designed and trained on experimental data (Tan and
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Lenhard 2016; Jayaram et al. 2016). TFs often act together
and their binding to DNA sites of given promoters is tightly
orchestrated in order to facilitate or impede gene expression
depending on the need of the cell at a given time (Cumboo
et al. 2018). The design of TF regulatory networks is a key
point to understand the complex mechanisms underlying the
regulation of gene expression in biological tasks and path-
ways (Wilkinson et al. 2017; Neph et al. 2012).

The study of TFs networks can also play a crucial role in
designing therapeutic intervention to identify specific targets
as shown by Karamouzis and Papavassiliou in the context of
Breast cancer (Karamouzis and Papavassiliou 2011).

Chen and colleagues studied how TFs coordinate gene
expression in a combinatorial fashion, through cliques of
self-regulated core TFs controlling cell identity and cell state.
They also studied the complex and interconnected feed-
forward transcriptional loops building core transcriptional
regulatory circuitry in cancer (Chen et al. 2020).
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Lots of studies focused on identifying TFs and their
interaction networks in different contexts such as self-
renewability and pluripotency of embryonic stem cells
(Nakai-Futatsugi and Niwa 2013), hematopoiesis (Wilson
et al. 2011), environmental stress response (Song et al. 2016),
T-cell development and differentiation (Collins et al. 2009)
among the others.

Cui et al. (2010) developed a software package to iden-
tify TFs involved in biological processes using both gene
expression data and existing knowledge base.

Despite a large number of studies, focusing on TFs and
on the role they play in specific biological tasks or diseases,
is available in the literature, to our knowledge there is no
tool able to automatically provide a list of TFs involved
in those tasks, through a solid computational analysis and
the corresponding interaction networks exclusively basing
on promoter TFBS enrichment.

IndeedMEME suite (Bailey et al. 2015) faces up a similar
task but from a different point of view and so far it was not
thought and focused on TFs and promoter sequences. Given
a set of sequences (promoter sequences of given genes in
this case), it is able to provide, if any, common consensus
sequences occurring more than expected. The user can also
provide his own consensus to look for in the sequences, but
the software is not structured so that one can provide a posi-
tion weight matrix (PWM) commonly used to characterize
the TFBSs of a given TF (we recall that a position weight
matrix reports, for a collection of sequences, the frequency
of each nucleotide occurring in each position). Thus MEME
does not use ad hoc algorithm designed to find similarity
based on PWMs like the software we used (matchPWM of
the Biostring R library, see Sect. 2).

Anyway to useMEME to this aim the user should provide
any single consensus for each known TF (TRANSPARENT
analyzes 626 different TFs) to identify significant TFs.

TRANSPARENT is implemented so that all available
PWMs related to known and reliable TFs are considered and
automatically included in the analysis; moreover, the tool
also includes and manages the different transcripts associ-
ated to the genes in the considered list. The user has just
to upload his own gene list and the computational analysis
is completely transparent providing final results in textual
mode and with a link to furtherly customize transcription
factor network analysis through STRING web site.1

TRANSPARENT is a user-friendly Python tool, designed
to help researchers to analyze TFs involved in the regulation
of specific genes associated to a given task or a given disease
in human. The tool was successfully applied to two different
test cases: schizophrenia and autism disorders, identifying
a set of TFs involved in the considered diseases and their
interaction networks.

1 https://string-db.org/.

Fig. 1 TRANSPARENT pipeline. Red boxes represent precomputed
steps, green boxes represent core steps of the tool computed through
Python scripts (cyan boxes). Yellow boxes represent input data provided
by users and instruments for the visualization (STRING database)

2 Materials andmethods

TRANSPARENT (TRANScriPtion fActor REgulatory NeT-
work) is a Python tool designed to identify TFs associated to
a pool of genes responsible for a given task or associated to a
given disease and to build an interaction network of selected
TFs. The pipeline of the tool is depicted in Fig 1. Steps 1–3
(red boxes) are precomputed and data are already included
in the package in order to minimize computational time and
resources. Step 4–6 are computed on sample instance provid-
ing as a result a list of TFs associated to the uploaded gene
list and an interaction network that can be directly visualized
and managed through STRING site.

The six steps TRANSPARENT pipeline are reported in
the following:

• Step 1—Extracting human promoter sequences
A complete list of human genes and related tran-
scripts, linked to the different isoforms of gene prod-
ucts, are selected. A number of 23,459 genes and
73,432 transcripts are collected. Promoter sequences
(2000 base pairs upstream the transcription start site
are considered according to Cumboo et al. 2018) of
those gene/transcripts were retrieved through the pack-
age “TxDb Hsapiens UCSC.hg19.KnownGene” version
3.2.2 of R software.

• Step 2—Collecting human TFs and related PWMs
The set of available 626 human TFs is selected and
the related consensus pattern sequences, expressed in
terms of position weight matrices (PWMs), are retrieved
through JASPAR database (Fornes et al. 2020).

• Step 3—Computing TFBSs
TFBSs associated to each considered human TF are com-
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puted through the matchPWM() function, integrated into
the Biostrings R library,2 setting a threshold of 0.90.

• Step 4—TFBS enrichment for each TF and hypergeomet-
ric test
Statistical tests are performed to assess the association
between a given TF and the input gene set. Input file must
contain a list of Entrez gene IDs, one ID for each line;
an input file sample is included in the directory testset
of the package. A hypergeometric test is performed for
each considered TF, by comparing the number of genes
in the pool set showing at least one TFBS in the promoter
region (over all the transcripts) and the expected number,
computed on the whole gene set. Obtained P values are
then adjusted using Bonferroni’s correction. A complete
list of TFs, their associated P value and adjusted P value
is made available in the output directory.

• Step 5—Identification of significant TFs
TFs providing low P values (according to a threshold set
by the user) are identified as potential regulatory factors
of genes of the pool since they show a significant TFBS
enrichment in the promoter sequences of those genes.
A list of significant TFs is made available in the output
directory together with the list of genes showing TFBSs
related to a given TF.

• Step 6—Designing TF network
A link to STRINGdatabase (Szklarczyk et al. 2021) visu-
alizing the network of significant TFs is provided in the
output directory. Default view is designed with a strin-
gent interaction threshold but can be changed by the user
in the STRING database. STRING visualization allows
an at-a-glance view of connected significant TFs asso-
ciated to the considered gene pool. The network of TFs
and linked genes, initially submitted by the user, is also
available through STRING database (when the -l flag is
set).

3 Results

Several gene sets associated to given diseases were consid-
ered as test cases to assess the effectiveness and reliability
of the tool. In this section, results associated to two sample
gene lists are reported: the former is made of genes associ-
ated to schizophrenia disorder, and the latter is made of genes
associated to autism disorder.

Gene lists were obtained throughDisGeNET (Piñero et al.
2017), setting a threshold of 0.3 on the score associated to
the likelihood of the link between gene and disease.

2 https://bioconductor.org/packages/release/bioc/html/Biostrings.
html.

Fig. 2 TF network associated to schizophrenia

3.1 First case study: schizophrenia disorder

A list of 1026 genes associated to schizophrenia disorder
was downloaded from Disgenet (likelihood score higher
than 0.3). The software identified 76 TFs (80 PWM mod-
els) showing a significant TFBS enrichment—adjusted P
value smaller than 10−2—in the promoter sequences of the
1026 schizophrenia-associated genes (101 TFs-107 PWM
models—when considering an adjusted P value smaller than
5 × 10−2). Potential interactions among the 76 identified
TFs were analysed through STRING database (Szklarczyk
et al. 2021). 28 TFs, out of the initial 76 ones, were found
to be connected considering a stringent threshold on interac-
tion likelihood (T = 0.9). The network, made available by
TRANSPARENT software through STRING, is reported in
Fig. 2. The number of connected TFs considering a smaller
threshold on interaction likelihood is 38 for T = 0.7 and
66 for T = 0.4. The extended network, considering first (or
second) neighbor nodes can be analyzed through STRING
database in terms of both biological composition and clusters
of the networks and can be customized setting the interaction
likelihood threshold.

Enrichment disease analysis of identified TFs (adjusted P-
value smaller than (5× 10−2)was performed throughDAVID
tool (Jiao et al. 2012). Several classes, coming from GAD
Disease database (Becker et al. 2004), were found to be sig-
nificantly enriched; among them:
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Table 1 Identified TFs associated to schizophrenia in GAD disease
database

Gene symbol Gene name

ASCl1 Achaete-scute family bHLH transcription factor 1

FOXP2 Forkhead box P2

KLF5 Kruppel-like factor 5

RUNX2 Runt-related transcription factor 2

TBX3 T-box 3

TCF4 Transcription factor 4

TFAP2A Transcription factor AP-2 alpha

TFAP2B Transcription factor AP-2 beta

• Schizophrenia disorder (8 TFs—P value 6.9 × 10−2

considering best 76 TFs)
• Parkinson’s disease (6 TFs P value 2× 10−3)
• Depression (5 TFs—P value 1.7× 10−2)
• Neurological Disease Class (27 TFs—P value 3.1 ×
10−2)

• Antisocial behavioral traits (2 TFs—P value 6.1× 10−2)
• PSYCH disease Class (19 TFs—P value 6.6× 10−2)
• Schizophrenia/bipolar disorder (2 TFs—P value 9.1 ×
10−2) considering best 101 TFs.

The 8 identified TFs belonging to the GAD disease class
schizophrenia are reported in Table1.

Identified TFs with the lowest adjusted P values are:

• MAZ (adjusted P value < 10−21)
• KLF5 (adjusted P value < 10−18)
• KLF15 (adjusted P value < 10−17)
• VEZF1 (adjusted P value < 10−16)
• ZNF148 (adjusted P value < 10−15).

Remarkably29TFs showedanadjustedP value lower than
10−5. The table with all the TFs with P value smaller than
5× 10−2 is reported as SupplementalMaterial (TabS1). Inter-
estingly KLF5 (adjusted P value< 10−18), KLF15 (adjusted
P value < 10−17), KLF4 (adjusted P value < 10−13) and
KLF2 (adjusted P value < 10−11), belonging to the family
Kruppel-like factor, were identified as highly significant, in
particularKLF5was found to be highly related to schizophre-
nia and downregulated in schizophrenic subjects (Yanagi
et al. 2008). Moreover 5 TFs, belonging to the TCF family,
TCF3 (P value < 10−6), TCF12 (P value < 10−6), TCFL5
(P value < 10−3), TCF7 (P value < 10−3) and TCF4 (P
value< 10−2) were found as highly significant. Particularly
TCF4was found to regulate genes involved inneuronal devel-
opment and schizophrenia risk (Xia et al. 2018; Zakharyan
2016. Also FOS (adjusted P value < 10−2) is known to be
involved in schizophrenia disorder ( Zakharyan 2016).

Fig. 3 TF network associated to autism disorder in GAD disease
database

3.2 Second case study: autism disorder

A list of 1112 genes associated to autism disorder was down-
loaded from Disgenet (no threshold on the likelihood was
set). The software identified 181 TFs showing a significant
TFBS enrichment—adjusted P value smaller than 0.01—in
the promoter sequences of the 1112 autism-associated genes
(214 TFs when considering an adjusted P value smaller than
0.05). Potential interactions among the 181 identified TFs
were analyzed through STRING database ( Szklarczyk et al.
2021). 24 TFs, out of the initial 181, were found to be in the
first connected component, considering a stringent threshold
on interaction likelihood (T = 0.9). The related network,
made available by TRANSPARENT software, is reported in
the Fig. 3. The number of TSs in the connected network con-
sidering a smaller threshold on interaction likelihood is 97
for T = 0.7 and 172 for T = 0.4.

Enrichment analysis of the 214 identified TFs (adjusted P
value smaller than 0.05) was performed through DAVID tool
(Jiao et al. 2012). Several classes, coming fromGADDisease
database (Becker et al. 2004), were found to be significantly
enriched; among them:

• Autism (8 TFs—P value< 9.5× 10−2 considering best
181 TFs)

• Neurodevelopmental psychiatric disorders (3 TFs—P
value < 1.7× 1032)

• Parkinson’s Disease (7 TFs—P value < 1.2× 10−2)
• Depression (7 TFs—P value< 1.6 × 10−2) considering
best 214 TFs.
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Table 2 Identified TFs associated to autism disorder in GAD disease
database

Gene symbol Gene name

CUX2 Cut-like homeobox 2

EN2 Engrailed homeobox 2

FOXP2 Forkhead box P2

HES1 Hes family bHLH transcription factor 1

HOXA1 Homeobox A1

MAZ Myc-associated zinc finger protein

NFIL3 Nuclear factor, interleukin 3 regulated

POU6F2 POU class 6 homeobox 2

The 8 identified TFs belonging to the GAD disease class
autism are reported in Table 2.

Identified TFs with the lowest P values are:

• VEZF1 (P value < 10−17)
• MZF1 (P value < 10−17)
• KFL15 (P value < 10−15)
• MAZ (P value < 10−15)
• ZNF148 (P value < 10−14).

Forty-five TFs showed an adjusted P value lower than
10−5. The table with all the TFs with P value smaller
than 10−2 is reported as Supplemental Material (TabS2).
Interestingly, many TFs-19—belonging to the family FOX
(forkhead box), were identified as highly significant; among
them: FOXP2 (adjusted P value < 10−8), FOXH1 (adjusted
P value < 10−8), FOXK2 (adjusted P value < 10−7),
FOXP1 (adjusted P value < 10−7), FOXA3 (adjusted P
value< 10−6), FOXO3 (P value< 10−5), FOXD1 (adjusted
P value < 10−5). Those findings are consistent with the
related literature, providing a strong evidence of the link
between FOX genes (expressed in the central nervous sys-
tem that are involved in brain development as well as the
evolution of language) and autism spectrum disorder, regu-
lating genes implicated in this disorder (Bowers andKonopka
2012). Interestingly a significant association betweenFOXP2
single nucleotide polymorphisms and autistic disorder was
found in Gong et al. (2004). Moreover FOXO subfamily is
known to be involved in age-progressive axonal degeneration
and associated to several neurological andneurodevelopmen-
tal disorders, such as epilepsy, microcephaly, and autism
(Hwang et al. 2018). Similarly, several TFs belonging to
the homeobox family (HOX) and to Basic Helix-Loop-
Helix (BHLH), in particular ASCL1, were identified by the
software as highly significant in line with previous works
claiming the association between those TF families and
autism disorders (Rylaarsdam and Guemez-Gamboa 2019).

4 Conclusion

The tool presented in this work is a user-friendly software
designed to help researchers in analysing gene sets associ-
ated to a given task or a given disease. It allows to extract
useful information regarding transcription factors involved
in the expression regulation of given gene sets providing
the related TF network that can be directly visualized and
furtherly customized through STRING web resource. The
effectiveness and reliability of the tool was assessed trough
two different test cases: schizophrenia and autism disorder.
Obtained results clearly show that identified TFs, for both
datasets, are significantly associated with given disorders, in
terms of both gene enrichment and coherence with the lit-
erature. TRANSPARENT is based on a simple but straight
computational analysis; to the best of our knowledge there
is no available tool able to provide clear and easy to use data
associated to transcription factor regulation of a given gene
set. In conclusion we are confident that TRANSPARENT
can be a useful instrument to investigate transcription factor
networks and unveil the role that TFs play in given biological
tasks and diseases.
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