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Fig. 1. Given a closed 2-manifold mesh, we split it automatically into double height field (DHF) components that can be fabricated using two-piece rigid

casting and assembled afterwards.

We introduce a novel technique to automatically decompose an input object’s

volume into a set of parts that can be represented by two opposite height

fields. Such decomposition enables the manufacturing of individual parts

using two-piece reusable rigid molds. Our decomposition strategy relies

on a new energy formulation that utilizes a pre-computed signal on the

mesh volume representing the accessibility for a predefined set of extraction

directions. Thanks to this novel formulation, our method allows for efficient

optimization of a fabrication-aware partitioning of volumes in a completely

automatic way. We demonstrate the efficacy of our approach by generating

valid volume partitionings for a wide range of complex objects and physically

reproducing several of them.

CCS Concepts: · Computing methodologies→Mesh geometry models;

Shape analysis.

Additional Key Words and Phrases: double height field, volumetric decom-

position, casting

ACM Reference Format:

Thomas Alderighi, Luigi Malomo, Bernd Bickel, Paolo Cignoni, and Nico

Pietroni. 2021. Volume decomposition for two-piece rigid casting.ACMTrans.

Graph. 40, 6, Article 1 (December 2021), 14 pages. https://doi.org/10.1145/

3478513.3480555

1 INTRODUCTION

Due to its efficiency, versatility, and scalability in cost and produc-

tion speed, molding is a de facto standard for mass production. Nu-

merous common products, ranging from plastic parts to edible items,
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are brought into shape using molds. Molds are usually composed of

multiple shell components surrounding a cavity representing the

volume of the desired object. By filling the cavity with a liquid that

solidifies, they can be used to materialize the target shape. In this

paper, we focus on reusable rigid molds that can be employed in

numerous fabrication processes, such as casting, injection molding,

or blow molding. For reusable rigid molds, the complexity of the

to-be-fabricated object’s shape is directly related to the complexity

of the mold itself, such as the number of required mold pieces and

their geometry. When considering only rigid, linear mold extrac-

tion processes, a mold piece can be removed only if the contact

surface with the object corresponds to a height field and there are

no collisions with other parts. While articulated molds composed

by multiple pieces allow the reproduction of sophisticated shapes,

two-piece molds are, in contrast, significantly simpler to design and

operate. However, their applicability is restricted to shapes that can

be represented as double height fields (DHFs).

In practice, to benefit from the advantages of two-piece molding,

shapes are often explicitly designed to fulfill the double height field

constraint, or their shape is modified [Stein et al. 2019] to ensure

castability as a single piece. An alternative approach for extending

the method to more general shapes and preserving their original

geometry is to split the object into multiple parts that individually

fulfill the moldability criteria and then assemble them afterward.

However, this approach comes with a demanding design problem:

how can we segment the volume into a small number of parts while

ensuring that each part can be represented as a double height field?

As parts also have to be assemblable, the surfaces of two parts that

are in contact with each other need to match. These constraints

restrict potential double height field configurations between neigh-

boring parts and create global dependencies, making the problem

challenging to solve.
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In this paper, we address this problem by proposing a novel

optimization-based approach to decompose a volumetric object

into multiple parts, guaranteeing that each part is manufacturable

with a two-piece mold. Unlike traditional shape segmentation ap-

proaches, which rely on surface representations, our system exploits

a volumetric representation of the object. We show an overview of

the pipeline in Figure 2. Given a tetrahedralization of the object to

be cast, we first compute a casting feasibility value (castability) for

each volumetric element, for a set of predefined directions. Then,

exploiting these values, we derive an optimized decomposition of

the volume by solving the partitioning problem using graph-cut. We

employ a novel energy formulation that produces a decomposition

into double height field pieces that are compact and easy to fabricate

and assemble. The contact surfaces between parts are generated

starting from the volume partitioning with a new approach that

ensures smooth contact surfaces while preserving castability and

assemblability.

Our fully automatic approach offers advantages with respect to

intelligent, assisted tools that help the user to create sound decom-

positions like the one proposed by Nakashima et al. [2018]. While

manual-assisted methods can lead to visually appealing shape de-

compositions, this process still requires a substantial effort from the

user. The problem might quickly become hard to manage for signif-

icantly complex geometries with a high genus or high-frequency

details. Furthermore, Nakashima et al. [2018], when decomposing,

do not offer a complete, explicit treatment of contact surfaces be-

tween pieces and, even if they work on hollow thin-shell objects

where this problem is less critical, they cannot guarantee that parts

match perfectly.

We demonstrate the reliability of the method by showing several

fabricated examples. As illustrated in the results section, our method

can automatically decompose complex shapes and thereby creates

a new avenue towards more efficient and automatic reproduction

of digital artifacts with rigid two-piece molding.

2 RELATED WORK

There is a vast literature on rigid mold generation in the computer-

aided design and mechanical engineering fields [Chakraborty and

Reddy 2009; Lin and Quang 2014; Zhang et al. 2010]. Most of these

methods focus on how to obtain a proper mold or generate an object

decomposition that targets mechanical objects. More generally, the

task at hand is to custom design molding mechanisms to enable

rigid casting for very specific examples or to automatize the casting

process for geometries that are already designed for manufacture by

this process. For this reason, these approaches do not work in the

general case (e.g., generating the mold for casting organic free-form

shapes). The task of designing a casting process with rigid molds is

non-trivial, as it involves multiple necessary conditions in the form

of simultaneous geometric constraints, which must be rigorously

satisfied for feasibility. For this reason, within industrial applica-

tions this task is manual and allocated to skilled experts.

In recent years, many methods have been proposed to partition a

shape into multiple pieces in order to simplify its fabrication pro-

cess. A recent survey [Wang et al. 2021] provides an overview of the

techniques for designing and assembling rigid assemblies. A class

of these techniques uses mesh partitioning to overcome the limita-

tions and the lack of additive manufacturing. Another substantial

part of the research focuses on shape decomposition for subtrac-

tive manufacturing (i.e., CNC milling fabrication); other methods

are explicitly dedicated to the molding process. While these three

scenarios are substantially different from a practical perspective,

they share similarities regarding the geometric constraints involved.

Most of these works, including those by Araújo et al. [2019], Herholz

et al. [2015], and Muntoni et al. [2018], address the decomposition

as a multi-label segmentation problem defined over either the object

surface or its volume, and focus on tailoring the energy formula-

tion and constraints to the problem at hand. Such formulations are

commonly solved using known optimization techniques like integer

linear programming or graph-cut optimization. In Sections 3 and 4

we will describe the constraints related to our scenario and how we

model them within the graph-cut optimization framework.

2.1 Segmentation for Additive Manufacturing

In the context of additive manufacturing, a fabricated object might

also be decomposed to accommodate a different class of practical

problems. Chopper [Luo et al. 2012], for example, decomposes the

mesh into parts that individually fit with the 3D printer’s workspace.

Other decomposition methods include the minimization of supports

[Hu et al. 2014], the optimization of packing [Chen et al. 2015], or

the reduction of the visible artifacts of 3D printed supports in the

final assembly [Filoscia et al. 2020].

Decomposing an object into multiple pieces also involves the

related assembly problem. In that case, relying only on the surface

might be insufficient to model the involved physical constraints. The

volumetric decomposition strategy proposed by Araújo et al. [2019]

analyzes the spatial movement of pieces to guarantee the existence

of an assembly sequence. This technique focuses on assembling

multi-material parts. Contrary to constrained fabrication techniques

(like molding or subtractive manufacturing), the components are

fabricated using additive manufacturing; hence, they are not re-

quired to be height fields. Moreover, the method takes the initial

surface decomposition as a user-given input. In contrast, in the

context of mold generation, the definition of such decomposition is

the actual problem that needs to be solved.

2.2 Segmentation for Subtractive Manufacturing

Similar to rigid mold casting, the classic 3-axis milling process has

critical restrictions in the class of manufacturable shapes. For exam-

ple, the accessibility requirement for a 3-axis milling tool is similar

to the conditions required by rigid casting; that is, the surface to

be milled must be accessible to the milling head. A common strat-

egy to overcome these limitations is to decompose the object into

multiple height fields. Alemanno et al. [2014] proposed one of the

first methods to allow the production using 3-axis CNC milling by

manual decomposition of shapes into multiple height fields.

Fanni et al. [2018] proposed a polycube decomposition suitable

for additive and subtractive techniques. The approach proposed by

Muntoni et al. [2018] decomposes a 3D object into height fields,

then projects the decomposition toward the interior, covering the
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(a) (b) (c) (d)

Fig. 2. An overview of the proposed pipeline: (a) the DHF-accessible region (green) for a direction 𝑑 (red arrow) visualized within the object volume; (b) the

DHF segmentation obtained on the mesh tetrahedralization; (c) the final resulting solid parts that can be manufactured using (d) pairs of generated rigid

molds for each piece.

entire volume and, at the same time, ensuring each piece to be

manufacturable with 3-axis milling. This method outputs an axis-

aligned block decomposition. While enforcing planar cuts might be

a necessity for 3-axis milling, in the case of molding, such constraint

is not needed and it might lead to an unjustified high number of

parts. Instead, designing the segmentation problem to our specific

application domain allowed us to derive decompositions with fewer

parts.

DHFSlicer [Yang et al. 2020] replaces the single height-field de-

composition with a more general double height field, which allows

decomposing objects into small sets of height-bounded 3-axis mill-

able parts (slices). Although we share the ultimate goal of obtaining

double height fields, DHFSlicer was designed with a very different

application goal, namely reducing milling time and material waste

by targeting the processing of slabs of material. Although reason-

able for slab milling, this approach, which results in tens of parts, is

unfeasible for casting.

Our solution strategy differs significantly and produces results

that are much better suited for molding, as shown in the results

section (Figure 16). In more detail, DHFSlicer employs a binary-

space partition strategy that generates parts that are local double

height fields. On the other hand, by solving a volumetric labeling

problem, our method produces parts with general internal surfaces

that fully satisfy the double height field constraint.

DSCarver [Zhao et al. 2018] segments a shape to optimize the dif-

ferent orientations for subtractive manufacturing using a (3+2) axis

milling machine. The method considers the volume surrounding

the object to estimate the accessibility of the milling tool. Thanks

to the extra degrees of freedom offered by the setup, this method

can produce significantly more complex, even high-genus, objects

as a single piece. The VDAC method [Mahdavi-Amiri et al. 2020],

instead, strives to jointly optimize setup and path planning by fo-

cusing on minimizing both the number of setup directions required

for 3-axis CNC milling and the number of carving path transi-

tions/repositioning while giving priority to the former. Similarly, the

work of Nuvoli et al. [2021] decompose the object surface into por-

tions that can be individually manufactured using a 4-axis milling

machine.

2.3 Segmentation for Casting

Height field decomposition is also used in casting to ensure mold

extractability. Herholz et al. [2015] automatized this process by

proposing an automatic method to segment the surface into dif-

ferent height fields that correspond to the components of a multi-

piece rigid mold. A more radical approach, proposed by Stein et

al. [2019], bi-partitions an input surface mesh for two-piece rigid

casting. While these methods offer a practical fabrication approach,

their application is limited to simple surfaces. Moreover, these meth-

ods resolve the required height field constraint by deforming the

input surface, significantly affecting the fidelity of the manufactured

results.

Flexmolds [Malomo et al. 2016] and Metamolds [Alderighi et al.

2018] overcame the rigid molding limitations by using flexible molds,

which, thanks to their elasticity, allow a relaxed castability con-

straint. Composite molds [Alderighi et al. 2019] consider the vol-

ume surrounding the fabricated objects to automatically generate

silicone molds that include cuts and allow for the casting of highly

complex shapes using two-piece molds.

While most of the previous works focus on decomposing a mold

that surrounds the cast object, we focus instead on how to automat-

ically subdivide an input object into parts that can be individually

cast with an easier setup (a two-piece rigid mold). We automatically

derive a set of double height fields by jointly optimizing for the

number of parts and their casting directions. In this way, we avoid

most of the classic physical limitations involved in multiple-piece

casting, extending the range of shapes fabricable using rigid casting.

3 MOTIVATION

The automatic design of rigid molds is a complex problem involving

hard geometric constraints that ensure casting feasibility. Compared

to flexible molding, the design of rigid molds is much more con-

strained and therefore generally more difficult. Given an input shape,

an effective mold assembly for reproducing it should be composed

of rigid mold pieces that satisfy the following constraints:

(C1) Surface Partition: each portion of the cast object surface

must correspond to one and only one mold piece.
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(C2) Height Fieldness: the surface cast by a mold component

must be a height field with respect to a direction 𝑑𝑖 to ensure

that each mold component can be removed from the cast with

a linear translation along a direction 𝑑𝑖 .

(C3) Extraction Path: each mold component must be able to

be extracted at least along one direction 𝑑𝑖 without intersect-

ing either other mold pieces or the cast object.

Deriving an optimal mold assembly satisfying these constraints in

order to minimize, for example, the number of mold components,

requires exploring a huge solution space. Attempts have been made

to solve this problem by relaxing some of the constraints. For ex-

ample, the approach by Herholz et al. [2015] models the problem

as an integer linear program to partition the object surface into a

set of height fields, returning a solution that satisfies (C1) and (C2).

In order to have a limited number of parts, the method partially

neglects the height field constraint in small regions, but it is later

enforced in a post-processing step by deforming the object geom-

etry. Moreover, the actual volume of the mold pieces is implicitly

derived from the surface partitioning, without any guarantee re-

garding (C3). Ultimately, this method could fail to produce a usable

mold assembly, even for relatively simple shapes. If successful, it

may significantly change the geometry of the cast object. Following

mold design practices commonly employed for industrial applica-

tions, (C3) is usually enforced by carefully planning the paths and

the stages of extraction for each piece.

Our goal is to enable the rigid mold casting of generic objects

(ranging from free-form to mechanical shapes) and to preserve their

original shape. To reach this objective, we shifted the paradigm

from finding a mold decomposition to partitioning the object vol-

ume into a set of parts that can be easily produced by rigid casting

and subsequently assembled to form the input object. This is a com-

monly used strategy in the industrial setting, where decomposing

an object into simpler parts (i.e., double height field parts) makes

the fabrication process cheaper and more efficient. While on the

one hand, breaking the object into multiple parts could hinder its

structural robustness, on the other hand, it dramatically reduces

the complexity of the molds. This loss of robustness can be lim-

ited using strong glues or more sophisticated binding techniques

during assembly. Moreover, since our method natively supports

the decomposition of full objects (as opposed to thin shells), larger

adhesion areas and more effective binding becomes possible. Ad-

ditionally, decomposing the object into smaller parts allows us to

define a novel criterion for global accessibility, the double height

field accessibility. This criterion ensures that the parts can be cast

and then assembled using simple linear movements, enabling the

fabrication of objects using common plastic injection machinery,

which is a very high throughput fabrication technology currently

used in mass production of plastic objects.

Multiple two-piece rigid molds. The choice of to split the cast

object, rather than the mold, renders the problem more manageable

and also offers a series of advantages:

• We solve by design (C3), the Extraction path constraint, by

decomposing the object into parts that can be individually

cast using two-piece rigid molds. By doing so, we avoid any

collisions by mold parts along their extraction direction since,

pairwise, they always have two opposite, feasible extraction

directions. With these simplification, we only aim for optimal

decomposition of the volume, where each segment can be

represented with two opposite height fields and hence will

be moldable using two-piece rigid molds.

• It provides us with the ability to accurately produce intricate

shapes that were not achievable with previous methods for

rigid casting [Herholz et al. 2015]. As we previously explained,

having a single multi-piece mold reduces the solution space

sensibly, and so it can practically limit the class of fabricable

objects. This is especially true with high-genus shapes, where

mold pieces can mutually collide during the extraction pro-

cess. Those methods are restricted to shapes with relatively

simple topology or have to modify the input surfaces to cope

with a smaller solution space. Instead, the proposed method

can fabricate both objects with a complex topology (see Fig-

ure 14) and objects with complex surface detail (see Figure 1),

preserving their original shape entirely.

• It can enable the rigid cast manufacturing of objects that are

generally not feasible with a single mold assembly, like a

bottle with a thin neck or simple hollowed shapes.

• We obtain a set of parts that are generally compact and easy to

cast, either manually or using a robotized industrial pipeline.

Volumetric segmentation. As opposed to most of the segmen-

tation for fabrication methods, we resort to a volume segmentation

rather than a surface segmentation. While this choice might consid-

erably increase the complexity of the problem, using a volumetric

mesh offers a series of practical advantages:

• Volumetric representation allows us to derive a more compact

partitioning. Intuitively, if we consider only the surface of

an object, parts that are close in a volumetric sense might be

quite distant using the geodesic metric. These assumptions

might produce unexpected effects on the final segmentation.

As an extreme example, related to the point above, let us

consider a hollow cube. In this case, the external and internal

surfaces are not even connected, so they will never share the

same partition. Instead, relying on a volumetric representa-

tion allows us to effectively bypass this problem.

• In contrast with methods that partition the volume by rely-

ing only on the information present on the surface [Araújo

et al. 2019; Livesu et al. 2020], solving the segmentation as a

volumetric labeling problem implicitly provides the geometry

of the internal cuts (see Figure 2c).

4 METHOD

Ourmain goal is to decompose the volume of awatertight 2-manifold

surface mesh into a collection of double height fields. A double height

field (or DHF) is a geometry that can be represented with a pair of

opposite height fields. We initially discretize the volume of the input

mesh by tetrahedral tessellation. In our work, we used TetWild [Hu

et al. 2020, 2018] to produce a tetrahedral mesh from a triangular

input mesh.

Our processing pipeline is composed of the following steps (see

Figure 2):
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DHF-accessibility In the first stage of the algorithm, we esti-

mate the DHF-accessibility of the tetrahedral elements for a

set of candidate extraction directions. Given a direction 𝑑 , a

binary field expresses the capacity of each tetrahedron 𝑡𝑖 to

be extracted along that direction 𝑑 (see Figure 2a).

Volume segmentation We segment the object volume into

parts by associating one label with each tetrahedron. Each

label corresponds to an extraction direction𝑑𝑖 that determines

the double height field representation of the geometry it is

assigned to. Each connected set of elements with the same

label form a volumetric part that will be cast with a two-

piece rigid mold. We derive an optimized labeling by solving

a graph-cut problem that considers all the tetrahedrons and

all candidate directions. Our graph-cut formulation blends

DHF-accessibility and compactness of parts (see Figure 2b).

Internal surfaces regularization As a byproduct of the volu-

metric segmentation, we obtain new inner surfaces between

adjacent parts. Since these surfaces are derived from the tetra-

hedral mesh partitioning, they contain high-frequency arti-

facts from the volumetric tessellation. These high frequencies

are very likely to invalidate the DHF property of the parts.

We therefore smooth the internal surfaces emerging from

the segmentation with a novel set of constraints to ensure

that the final surfaces of each part is actually a DHF (see

Figure 2c).

Mold generation Finally, for each part, we generate a couple

of rigid molds using an algorithm similar to Alderighi et

al. [2018], using the boolean operations defined in [Zhou et al.

2016]. As proposed by Alderighi et al. [2019; 2018], we also

equip the resulting molds with channels and holes to enable

the casting of liquid material and allow the air to escape

during the manufacturing process (see Figure 2d).

4.1 DHF-Accessibility

To decompose the mesh into multiple volumetric parts that can be

successfully cast using two-piece rigid molds, we must guarantee

that each part is a double height field (DHF) along two opposite

directions. In theory, we can achieve this goal by simply splitting

the mesh into countless parts. However, for obvious reasons, we are

interested in using as few parts as possible.

Formalizing the space of all the possible segmentations of a closed

surface where each portion can be represented as a DHF is a chal-

lenging task because of the multiple constraints involved. Checking

if a part is a valid height field requires analysis of its entire shape in

every possible direction. Consider the example in Figure 3a. In this

case, we defined a valid DHF partitioning using a single direction.

Yet, adjacent regions of the mesh must be distinct. Modeling such

behavior will inevitably produce an enormous solution space that

is difficult to explore and optimize efficiently.

To make the problem tractable, we reduce the space of possible

DHF segmentations to the space of possible double height field-

accessible segmentations. We can compute if a point 𝑝 is DHF-

accessible along a direction𝑑 if shooting a ray along direction𝑑 from

𝑝 does intersects with the mesh surface only once. It is significant

(a) (b)

Fig. 3. (a) A valid partitioning of the mesh into double height fields, con-

sidering a direction 𝑑 ; (b) The partitioning induced by double height field

accessibility and the relative directions.

Fig. 4. DHF-accessibility for a point 𝑝 along a direction 𝑑 is verified when

the ray shot from 𝑝 along𝑑 intersects the surface only once. Notice that two

opposite directions can generate different DHF-accessible regions (green),

depending on the object shape.

that DHF-accessibility depends only on the point, the direction, and

the global shape, bypassing the need to consider the shape of the

part explicitly. Thanks to this simplification, we can first precom-

pute a set of valid directions for each point and then cluster points

with compatible directions into partitions, shifting the focus of the

optimization problem to the compactness and the smoothness of

the produced partitions. The DHF-accessibility criterion is shown in

Figure 3b. Figure 4 shows two examples of DHF-accessible regions

in two opposite directions. Notice that, while the region is differ-

ent, both configurations generate a valid DHF. Hence, if a region is

DHF-accessible with respect to a direction, then it will be a double

height field with respect to that direction and its opposite and so

fabricable with two-piece rigid molds.

Although our simplified DHF-accessibility excludes some valid

double height field partitionings, it comes with a great advantage:

the direction set defines a sequence of part movements to assemble

the shape. So, in other words, DHF-accessibility ensures both double

height field decomposition and the existence of a valid assembly

procedure. In our formulation, when a portion of the mesh is DHF-

accessible along a specific direction, then it is possible to move it
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Fig. 5. Illustrating the tolerance on the DHF-accessibility evaluation.

along that direction without intersecting any other part of the mesh.

It follows that we can simply translate each part along its direction

to assemble the final object.

In the discrete setting, we first pre-define a set of uniformly

distributed directions 𝑑1, ..., 𝑑𝑛 ∈ D. In our implementation, we

sampled 512 directions uniformly distributed on a sphere using

the strategy proposed by Keinert et al. [2015]. Additionally, to ex-

press the DHF-accessibility of a tetrahedron, we check it for ev-

ery point within its volume. Implementing this test might require

complex geometric operations, including sweeping volumes and

boolean operations. For practical purposes, we only estimate the

DHF-accessibility of a set of points carefully placed within a tetrahe-

dron’s volume. Therefore, in our setting, we consider a tetrahedron

𝑡𝑖 DHF-accessible along direction 𝑑 𝑗 if and only if it is DHF-feasible

on all its sampled points. In our implementation, we sample 15

points for each tetrahedron: the four vertices, the six edges’ mid-

points, the four faces’ barycenters, and the barycenter of the entire

tetrahedron.

We add a geometric tolerance to regularize the accessibility field

estimation and so the regularity of the extracted parts. This toler-

ance factor allows for control of the amount of undercut that is

considered to be admissible (taking into account that plastic mate-

rials like the mold itself and the object can slightly deform during

the extraction procedure), allowing the object to snap out of mild

undercuts. To do so, we add a tolerance factor, 𝜖 , in millimeters

that is controlled by the user. Given a ray 𝑟 , for each intersection ℎ𝑖
of 𝑟 we sample the distance of the ray segment (ℎ𝑖−1, ℎ𝑖 ) from the

mesh surface. If this distance is below 𝜖 at every sampled point, the

intersection is ignored and the ray passes the accessibility test (see

Figure 5). To efficiently compute the ray-surface intersections, we

use Embree [Wald et al. 2014].

4.2 Volume Segmentation

Given a tetrahedral meshT , for each tetrahedron 𝑡 wewant to assign

one direction 𝑑 ∈ D. In other words, we look for a labeling function

ℓ : T → D that assigns a direction (label) to each tetrahedron in T .

Intuitively, we want to associate to each tetrahedron with a valid

direction with respect to the DHF-accessibility constraint while also

encouraging solutions with a small number of parts and smooth

boundaries.

Solving a multi label assignment problem is known to be NP-Hard.

To solve it efficiently, we use the graph-cut optimization framework

(Section 4.3.3). The graph-cut algorithm derives an approximation

of the optimal labeling by minimizing an energy function in the

form of

argmin
ℓ

∑︁

𝑡 ∈T

𝐷 (𝑡, ℓ) +
∑︁

(𝑡𝑖 ,𝑡 𝑗 ) ∈AdjT

𝑆
(

𝑡𝑖 , 𝑡 𝑗 , ℓ
)

+ 𝐿(ℓ) , (1)

where 𝐷 (𝑡, ℓ) is the data term and describes the cost of assigning

the direction 𝑑 = ℓ (𝑡) to the tetrahedron 𝑡 (Section 4.2.1). AdjT
is the set of face-adjacent tetrahedra pairs in the tesselation T .

The energy term 𝑆 (𝑡𝑖 , 𝑡 𝑗 , ℓ) is a smoothness term that penalizes the

overall boundary area between adjacent parts and determines their

shape and locations (Section 4.2.2). We use this term to support the

formation of compact and smooth parts. The smoothing term also

avoids the energy minimization to converge to the extreme situation

where each tetrahedron is associated with a different direction;

hence it implicitly favors solutions with a smaller number of parts.

We will describe this term in Section 4.2.2. The rightmost term 𝐿

is a label cost term that penalizes the use of many labels in the

segmentation (Section 4.2.3).

4.2.1 Data Cost. To obtain a fabricable solution we must associate

to each tetrahedron one direction for which it is DHF-accessible.

Since accessibility is a discrete boolean function, the data cost will

generate intervals with constant energy:

𝐷 (𝑡, 𝑑) =

{

0 if 𝑡 DHF-accessible for 𝑑

+∞ otherwise.
(2)

Similarly to the approach byHerholz et al. [2015] (which segments

the external surface only), 𝐷 (·) does not provide a smooth signal.

In our approach, to improve the minimization of the data cost and

regularize the problem, we propose a smooth data cost function

that favors direction assignment to tetrahedra that are organized in

large clusters.

Therefore, we introduce a penalty term, per tetrahedron per label,

for all tetrahedra that result DHF-accessible from a direction (the

others keep the infinite penalty term). Given a direction 𝑑 , we define

the function𝑑𝑖𝑠𝑡𝑑 (𝑡) as the distance from 𝑡 to the closest tetrahedron

that is not feasible (DHF-accessible) for 𝑑 . When 𝑑𝑖𝑠𝑡𝑑 (𝑡) is large, it

means that direction 𝑑 is a good choice for tetrahedron 𝑡 , because

all nearby tetrahedra are also feasible for that direction. Therefore,

we define the penalization term for tetrahedron 𝑡 and a direction 𝑑

as:

𝑝 (𝑡, 𝑑) = 𝛼 · 𝑒
−

𝑑𝑖𝑠𝑡𝑑 (𝑡 )2

2·𝑐2 .

This cost smoothly converges to 𝛼 as we get closer to the unfeasible

region and approaches 0 around 4 ·𝑐 , following a Gaussian bell shape.

The parameter 𝑐 controls the width of the Gaussian bell, which in

our context is related to the spatial influence of the penalization

term. The data cost then becomes:

𝐷 (𝑡, 𝑑) =

{

Volume(𝑡) · 𝑝 (𝑡, 𝑑) if 𝑡 DHF-accessible for 𝑑

+∞ otherwise,
(3)

where the volume of the tetrahedron weights the resulting data cost.

In our experiments we set the parameter 𝛼 = 5 and the parameter

𝑐 = 10.
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4.2.2 Smoothing Cost. We introduce a smoothing term to penalize

the formation of irregular borders between parts. This term supports

the formation of compact and smooth parts. Also, it avoids the

energy minimization process to converge to the extreme situation

where each tetrahedron is associated with a different direction while

implicitly favoring solutions with a smaller number of parts.

For each pair of adjacent tetrahedra (𝑡𝑖 , 𝑡 𝑗 ) ∈ AdjT , assigned with

directions (𝑑𝑖 , 𝑑 𝑗 ) = (ℓ (𝑡𝑖 ), ℓ (𝑡 𝑗 )), we define the energy term

𝜎 (𝑡𝑖 , 𝑡 𝑗 ) =

{

0 if 𝑑𝑖 = 𝑑 𝑗

𝛽 · 𝐴𝑟𝑒𝑎(𝑡𝑖 , 𝑡 𝑗 ) if 𝑑𝑖 ≠ 𝑑 𝑗 ,

where 𝐴𝑟𝑒𝑎(𝑡𝑖 , 𝑡 𝑗 ) is the area of the triangular face shared between

𝑡𝑖 and 𝑡 𝑗 . When multiplying an area by 𝛽 , we transform the whole

term into a volume quantity, which is comparable with the data

cost (also expressed as a weighted volume). In our setup we use𝑚𝑚

as base unit and therefore 𝛽 represents a length which was set to

6𝑚𝑚.

Additionally, to penalize solutions with longer seams on the sur-

face, we define an additional smoothness term penalizing surface

edges shared between tetrahedrons having different labels:

𝜎 (𝑒𝑖, 𝑗 ) =

{

0 if 𝑑𝑖 = 𝑑 𝑗

𝛽2 · (1 +𝐴𝑂 (𝑒𝑖, 𝑗 ) · len(𝑒𝑖, 𝑗 )) if 𝑑𝑖 ≠ 𝑑 𝑗 ,

where 𝑒𝑖, 𝑗 ∈ ΩT is an edge on the mesh surface shared between

two tetrahedra 𝑡𝑖 and 𝑡 𝑗 , which have at least one face on the object

surface. This penalization term also accounts for the visibility of the

surface seams, similarly to the approach in [Filoscia et al. 2020]. To

favor the formation of surface seams on less visible edges, we add

a normalized term 𝐴𝑂 (𝑒𝑖, 𝑗 ) that is equal to 0 where the ambient

occlusion is maximum and 1 on the least occluded edges.

Eventually, our smoothing cost becomes:

𝑆
(

𝑡𝑖 , 𝑡 𝑗 , ℓ
)

= 𝜎 (𝑡𝑖 , 𝑡 𝑗 ) + 𝜎 (𝑒𝑖, 𝑗 ) .

4.2.3 Label Cost. In our implementation, a constant penalization

factor is added for any label assigned in the solution; in particular,

the cost is computed as

𝐿(ℓ) = 𝜆 · Volume(T ) · |{ℓ (𝑡) : 𝑡 ∈ T }| ,

where we set as weighting factor 𝜆 = 0.01.

4.3 From Segmentation to Solid Parts

Once we have derived an optimized labeling, the object volume can

be decomposed into solid parts represented by a double height field.

Note that, at this stage, the optimized labeling could assign the same

label, and thus direction, to multiple connected components of the

volume. Whenever this is the case, we consider each connected

component of the labeling as a separate solid double height field

part.

4.3.1 Internal surfaces smoothing. When we partition the volume

into multiple components, we also create new boundary surfaces

between all pairs of adjacent parts. Unfortunately, due to the internal

tetrahedral tessellation, these boundaries are not smooth (Figure 7b).

Also, our DHF-accessibility is computed using ray-intersections

only against the external surface of the object (see Section 4.1). For

Fig. 6. Boundary seams smoothing. Left: the surface seams polyline (green),

derived from the DHF partitioning, can freely move within a tolerance

region (gray) while preserving DHF-accessibility of the surface regions it

delimits. Right: the same polyline is smoothed using the tolerance region as

smoothing domain.

these two reasons the inner boundaries of the parts, defined by the

raw tetrahedral decomposition, can exhibit some undercuts and

are not guaranteed to be double height fields. We therefore smooth

the boundaries between parts and enforce the double height field

property using a two-step approach.

In the first step, we smooth the seams on the mesh surface by

iteratively performing laplacian smoothing of the seams polyline,

and reprojecting it on the mesh surface. Unfortunately, smoothing

the partitioning borders (the seams) might invalidate the double

height field property. Therefore, to avoid this undesired effect, we

create a tolerance region on the mesh surface where the boundary

polyline can freely move without invalidating the accessibility (see

Figure 6) and use it to constrain the smoothing and reprojection

of the boundary polyline. To obtain this region, after the DHF-

accessibility computation step, we perform a morphological erosion

of all feasible tetrahedral regions for every direction. The effect

of such morphological erosion is to consider as not feasible any

tetrahedron that is vertex-adjacent to some not DHF-accessible

tetrahedron. This procedure guarantees that for any point in the

volume, assigned to a direction 𝑑 , there is a neighborhood that can

be also associated to 𝑑 retaining the DHF-accessibility property.

In the second step, once we have smoothed the seams on the

mesh surface, we smooth the internal surfaces keeping their border

fixed (Figure 7c). In this step, we enforce the double height field

property by adopting an iterative approach that smooths the surface

and reprojects it outside a volume where the DHF-accessibility will

be not preserved for the chosen directions (Figure 7d). For each

part, we compute the volumetric region that all inner boundaries

must avoid to preserve the DHF-accessibility. Let’s consider a single

component of the optimal segmentation (Figure 8a); we compute

its łinfeasible volumež as the intersection of the sweeping volumes

of the object external surface of the part, as seen from direction

assigned to it 𝑑 and −𝑑 (Figure 8b). Intuitively, given a direction 𝑑

and a surface S to be extracted along 𝑑 , any part of S that is inside

the sweeping volume of S with respect to 𝑑 won’t be extractable

along that direction. Thus, for a double height field, any point in
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(a) (b) (c) (d) (e)

Fig. 7. Processing of internal surfaces: (a) starting from the tetrahedral segmentation, (b) the inner surfaces are defined as the boundaries between parts; (c) a

regular smoothing can violate the double height field constraint; (d) the constraints is enforced through reprojection outside the łinfeasible volumesž, red in (e).

S must be outside the intersection of both its sweeping volumes

with respect to 𝑑 and −𝑑 . This represents a necessary condition to

ensure the DHF-accessibility. Hence, we move each point of the

surface which falls within this volume on the volume boundary

(Figures 8c,d), by iteratively cycling between laplacian smoothing

and damped projection steps.

Notice that while each part is guaranteed to be a DHFwith respect

to the object’s surface, some portions of the internal surfaces might

be occludedwith respect to both𝑑 and−𝑑 , as the condition explained

above is not sufficient. This situation is quite rare in practice but

we still solve it using a conservative strategy. To accommodate

the DHF condition we carve out a portion of the volume from the

boundary surface, including the occluded region. As a result, this

strategy generates one or more holes inside the assembled full object

and, while we sacrifice the perfect match across adjacent parts, the

process has no impact on the object’s external surface.

4.3.2 Mold generation. Given the set of solid parts, we proceed to

generate the mold geometry for each ones. Each part is a double

height field with respect to the direction assigned to it by the volume

segmentation (Section 4.2). At this point, given a direction 𝑑 , we

need to sample the actual surface accessibility along direction 𝑑

and −𝑑 for all the faces on the part surface. For every triangle we

compute the ray accessibility using the same strategy and tolerance

we defined in Section 4.1. This will partition the surface into three

sets: the faces accessible along 𝑑 , the ones accessible along −𝑑 , and

the faces accessible for both directions. To assign each face to its

mold piece (corresponding to 𝑑 or −𝑑), we solve a small graph cut

problem where each face that is shared by the two opposite direc-

tions is assigned to the one that is better aligned to its normal, also

considering a smoothness term to keep the boundary as smooth

as possible. The decomposition boundary is usually jagged, as it is

bound to lie on the discrete triangular edges. We smooth the bound-

ary polyline using a laplacian smoothing on the tangent plane with

respect to the object surface, where the vertices of the polyline can

move only within the regions of the surface that are accessible by

both𝑑 and −𝑑 , while parts of the polyline where this region is empty

are fixed. This smooth polyline is the starting point for generating

the two-piece mold parting surface using the approach described

in [Alderighi et al. 2018] based on Poisson Disk Reconstruction.

Given the mold parting surface geometry, one key detail for a

successful mold design is the placement of the air vents for material

casting and for the release of the air that would eventually get

trapped inside the mold volume during the pouring [Alderighi et al.

2019, 2018; Malomo et al. 2016]. The generation of air vents for a

rigid mold poses two main problems:

• the geometry of the air vent itself needs to be extractable

along the two height field directions;

• air vents should be located at all local maxima within the

mold cavity, where air could be trapped.

Thanks to the double height field property of our decomposition,

we can prove that it is always possible to design a mold where both

the aforementioned requirements are satisfied. In particular, we can

prove that, if we carefully choose the gravity direction for mate-

rial casting, local maxima will always be located on the boundary

between the two height fields composing the object part. As a conse-

quence, the air vents geometry can be generated such that the vent

completely lies on the mold parting surface, and thus their double

height field property can be enforced. This concept is illustrated

in Figure 9. Given a double height field surface along a direction 𝑑 ,

for any direction 𝑦 orthogonal to 𝑑 all local maxima are located on

the boundary between the 𝑑 region and the −𝑑 region (Figure 9 left).

Otherwise, the part would violate the height field property with

respect to 𝑑 (Figure 9 right) or −𝑑 .

4.3.3 Solving Using Graph-cut. In our pipeline we solve the parti-

tioning problem using the graph cut optimization framework (gco-

v3.0 [Boykov et al. 2001; Delong et al. 2012]), which relies on the

𝛼-expansion algorithm.

The iterative nature of the 𝛼-expansion algorithm makes it sen-

sitive to the initialization of the optimization algorithm and the

ordering in which the labels are evaluated during the 𝛼-expansion

cycles. To reduce the influence of these two factors on the quality

of the solutions, we repeat the minimization process multiple times,
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(a) (b) (c) (d)

Fig. 8. (a) To make the inner boundary surface accessible (black), we first compute two volumes by sweeping the segmented surface regions (green and blue)

along the opposite of their extraction direction (b); we then compute their intersection (red), and we force the inner boundary surface to stay outside this

volume (c), obtaining a new surface that does not collide with the part external boundary during the extraction (d).

Fig. 9. Left: Air vents must be placed on the boundary between the two

height field composing the mold (respectively from 𝑑 and −𝑑). Right: the

presence of a local maximum (with respect to 𝑦) outside the boundary

violates the height field property with respect to 𝑑 (b). The undercut is

highlighted in red.

Fig. 10. For a simple object, our method can derive a single two-piece rigid

mold as in [Stein et al. 2019].

randomizing both the algorithm initialization and label orders, as

suggested in [Herholz et al. 2015]. In our setup, the graph-cut mini-

mization algorithm is ran 15 times, and the best solution is selected,

among the resulting minimizers, to be the one that minimizes the

number of parts in the decomposed object. In case of a tie, the al-

gorithm selects the solution that minimizes the variance of parts

volume to favour the more balanced solutions.

5 RESULTS

We tested our method on a series of 3D models with varying geo-

metric complexity. For simple objects our method can successfully

derive a single two-piece rigid mold (e.g., the cactus model in Fig-

ure 10). We tested our method for the fabrication of shapes featuring

complex geometric features (Figure 11) or topology (Figure 14). Our

method is able to decompose the tested shapes into a manageable

number of parts, and we demonstrated the effectiveness of the re-

sulting two-piece molds by physically fabricating the parts using

casting. We experimented with our pipeline by manufacturing the

set of two-piece molds for eight models in total (see Table 1). For

practical reasons, we fabricated the molds using additive manufac-

turing technology. We used two different 3D printers: a Utimaker

S5 and Stratasys J750. Our test models were manufactured by liquid

casting all parts using a variety of materials, including white resin,

gypsum and translucent resin. Moreover, since our molds are height

fields, they can also be manufactured using a 3-axis milling, enabling

the casting of a wider range of materials (e.g., metal).

Actually, since the parts resulting from our decomposition can

be represented by double height fields, they could be fabricated

using subtractive manufacturing, as in DHFSlicer [Yang et al. 2020].

However, to effectively manufacture either mold or object parts

through subtractive technologies, our method would also need to

consider the shape of the milling tool when evaluating the DHF-

accessibility.

An additional advantage of decomposing the object into parts,

rather than generating multi-piece molds, is that it enables the gen-

eration of valid molds for objects featuring inaccessible cavities that

are impossible to cast as a single piece using a reusable mold. In Fig-

ures 12 and 14 (bottom) we show two examples of such shapes and

the resulting decomposition obtained with our method. Defining a

optimal DHF decomposition ground truth to compare against would

be challenging since the optimality criteria are often related to the

considered shape and its final purpose. However, in the context

of an automatic, general-purpose decomposition algorithm, Fig-

ure 13 shows how our method can output optimal or near-optimal

solutions.

We report some statistics of the processing time in Table 1. Com-

putation has been performed on a machine equipped with a 8-core

AMD Ryzen 7 2700X CPU clocked @ 3.7GHz and 32 GB of RAM.

We can observe that the computation time for DHF-accessibility

is proportional to the number of tetrahedra used to tessellate the

volume of the object, while the derivation of the segmentation, on

the other hand, depends on the overall complexity of the shape and

the structure of the DHF-accessibility fields.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.



1:10 • Thomas Alderighi, Luigi Malomo, Bernd Bickel, Paolo Cignoni, and Nico Pietroni

Fig. 11. Segmentation and fabrication result: for each model we show the tetrahedral decomposition, the final DHF parts, the fabricated molds with their

respective cast part, and the final assembled results.

5.1 Parameters

Figure 17 shows the impact of the the undercuts tolerance 𝜖 (Section

4.1), as well as the impact of the regularized data cost and smooth-

ing factor (Section 4.2), on the quality of the segmentation results.

Using a smaller undercut tolerance will make the DHF-accessibility

estimation more sensitive to high-frequency surface details and

discretization noise. This results in partitions with a higher number

of parts (see Figure 17, top), that better adhere to the height field

constraint. Increasing the allowed undercut depth will result in a

lower number of parts. Indeed, some casting (and mold) materials

can bear the relatively small deformations that occur during the

extraction process, guaranteeing extractability of the parts for small

values of 𝜖 . We used PLA and ABS for the molds, a shore 70D ure-

thane resin for the casts, and set 𝜖 = 0.4 mm for all our experiments.

In Figure 17 (middle) we show the impact of using a smooth data

cost with respect to a binary data cost (see Section 4.2.1). When

using a binary data cost, the solver tends to output unbalanced de-

compositions. This is due to the fact that the minimized energy only

depends on the smoothness cost, and thus on the size of boundaries

involved in the segmentation. In this setting, if the space of feasible

assignments includes a partitioning with a few large parts and a set

of smaller ones to fill out the inaccessible volume, the minimizer

will pick that solution. Enforcing a smooth data cost, penalizing

the assignment of a direction near the boundaries of its feasible

region, favors more balanced solutions. This can sometimes result
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Table 1. Result Statistics

Model bbox size (mm) #tets DHF time Solve time Partsgen time Moldgen time #parts real cast Fig.

Elephanticus 115 × 80 × 106 88928 232 609 335 2113 9 ✓ 1

Dancing Armadillo 98 × 199 × 95 57875 136 466 175 1628 7 ✗ 2

Elephant 143 × 199 × 120 50589 114 264 273 1629 7 ✗ 6, 7

Duck 70 × 80 × 83 94056 157 1911 189 433 2 ✓ 11

Bunny 95 × 94 × 74 82234 156 611 130 1248 4 ✓ 11

Cactus 49 × 82 × 12 3006 5 2 19 242 1 ✓ 10

DualDodec 47 × 47 × 147 47042 122 218 257 818 3 ✓ 14

Bottle 87 × 350 × 88 13364 36 51 230 909 4 ✗ 12

Fertility 173 × 129 × 67 24215 41 147 104 545 2 ✓ 14

Magalie 53 × 120 × 66 114546 320 927 208 634 3 ✓ 11

Table 80 × 68 × 79 85024 266 606 188 1295 5 ✓ 11

Julia 117 × 119 × 150 42562 144 1255 107 1255 4 ✗ 16

Bimba 87 × 100 × 72 59077 236 329 209 795 5 ✗ 17

Armadillo 83 × 99 × 75 57681 123 331 124 1624 6 ✗ 17

Pulley 98 × 100 × 48 50066 127 139 368 566 2 ✗ 13

DoubleTorus 166 × 138 × 112 19527 28 45 5 224 1 ✗ 13

Ujoint 154 × 77 × 77 56507 92 448 685 423 2 ✗ 13

DragonStand 99 × 70 × 44 75500 203 484 355 1610 7 ✗ 17

Table 2. Statistics for the performed experiments: for each model, we report the size, the number of tetrahedra, and the computational time (in seconds) for

the main steps of our pipeline: DHF-accessibility computation for 512 directions, the solution of the graph-cut partioning problem, boundary smoothing and

generation of the solid DHF parts, and generation of the mold pieces. Finally, we show the resulting number of DHF parts.

Fig. 12. A model with a complex occlusion configuration, like a bottle, can

be successfully automatically decomposed and fabricated with the proposed

method.

in a slightly larger number of parts, but at the same time, favors the

generation of more fabricable parts. Finally, in Figure 17 (bottom)

we show the effect of the smoothing factor described in Section 4.2.2

on the output decomposition. The image shows the result of our

DHF decomposition using different 𝛽 values: on the left, with 𝛽 = 0

the output features high fragmentation counting 469 parts; in the

middle, with 𝛽 = 1 the resulting decomposition is made up of 13

Fig. 13. Outputs of our method on simple shapes. Our solutions closely

match optimal DHF manual segmentations.

parts; finally, on the right, for 𝛽 = 6 (the value used for the results

in the paper), the decomposition results in 7 parts. The comparison

shows how adding a penalization term on the size of the segmenta-

tion boundaries that considers both the internal surfaces and the

length of the surface seams, has an impact on the regularity of the

decomposition boundaries and also on the fragmentation. In fact,

given our definition of DHF-accessibility and the nature of the prob-

lem we solve, it is hard to establish a penalization or reward factor

for assigning a given direction label to a specific tetrahedron. This

make it crucial to introduce a regularization factor (i.e., a smoothing

cost) that helps the solver to converge to solutions that favor the

usage of a smaller number of parts and that feature boundaries that

are as smooth as possible.
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Fig. 14. Segmentation and fabrication of shapes with complex topology.

(a) CoreCavity (2 pieces) (b) Ours (𝜖 = 1.5𝑚𝑚) (c) Ours (𝜖 = 0.4𝑚𝑚)

Fig. 15. Comparison of the proposed method with CoreCavity [Nakashima et al. 2018]. The zoomed-in areas highlight large deformations introduced by

CoreCavity to ensure fabricability of parts with larger violations of the height field constraint.

DHFSlicer (26 pieces) Ours (4 pieces)

Fig. 16. Comparison of the proposed method with DHFSlicer [Yang et al.

2020].

5.2 Comparisons

We also compared the proposed method with the double height field

decomposition produced by DHFSlicer [Yang et al. 2020] (Figure 16).

While both methods succeed in deriving a valid partitioning for two-

piece rigid mold fabrication, our approach produces a significantly

lower amount of pieces, resulting in a more practical fabrication

process.

Figure 15 shows a comparison between our method and CoreCav-

ity [Nakashima et al. 2018] on a shelled version of the bunny model

obtained from the paper supplemental material. The first differ-

ence between the methods is that, differently from CoreCavity, our

method is completely automatic and natively supports full volumet-

ric decomposition. In some cases, thanks to the feasibility relaxation,

CoreCavity might produce decompositions with fewer parts. Un-

fortunately, since CoreCavity does not allow for direct control of
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𝜖 = 0 𝜖 = 0.4

Binary data cost - Eq. (2) Our data cost - Eq. (3)

𝛽 = 0 𝛽 = 1 𝛽 = 6

Fig. 17. The impact of the different components on DHF-decomposition

output. Top: the impact of the undercut tolerance 𝜖 (Section 4.1). Middle:

The improvement provided by regularized data cost compared to the simple

binary DHF-accessibility value (Section 4.2.1). Bottom: The effect of the

smoothing factor controlled by the 𝛽 parameter (Section 4.2.2).

the introduced deformations, the sweeping volume strategy (used

by CoreCavity to correct the undercuts) might introduce visible

artifacts. This is obvious in the case of the bunny model (shown

in Figure 15.a), in which the introduced deformations are larger

than 2mm. In contrast, we allow the user to control the amount of

tolerated undercut by tuning the 𝜖 parameter. We show two seg-

mentations, one with an undercut tolerance 𝜖 = 1.5𝑚𝑚 (Figure 15.b)

and one with 𝜖 = 0.4𝑚𝑚 (Figure 15.c). By introducing larger toler-

ance, our method can reach similar decompositions to the output of

CoreCavity, though deeper undercuts would require special treat-

ment such as surface deformation (similar to CoreCavity) to ensure

fabricability. Using a lower tolerance instead results in a larger num-

ber of parts whose undercuts are within the tolerable limits of the

physical molding process and do not require any deformation, as

demonstrated by our fabricated results.

Another major limitation of CoreCavity is its lack of applicability

for thick shells. CoreCavity requires a bijective mapping between

the interior and exterior surfaces of the shell. However, this map-

ping can not exist when the external and internal surfaces have

different topologies, which might be the result of an increase in the

shell thickness. Moreover, CoreCavity constrains the internal cut

geometry to the side facets of the prisms induced by the mapping.

This poses a major limitation to the method in case of thick shells,

where it would make it harder to enforce the double height field

constraint. Our method tackles this problems by explicitly managing

the internal cutting surface geometry.

6 CONCLUSIONS

We proposed a new method to decompose a generic input shape

into a set of double height fields that can be singularly fabricated

with two-piece rigid casting and assembled afterwards. Our formu-

lation enables the fabrication of complex shapes with significantly

fewer pieces than previous methods. While we used the proposed

approach to produce a few physical copies in an experimental setup,

our pipeline can be adapted for large-scale industrial production.

Indeed, automatic decomposition for two-piece rigid casting can

cope significantly well with robotized fabrication in the industrial

context. In addition, our pipeline ensures the existence of a correct

assembly procedure.

Our methods suffer from a few limitations. First of all, our DHF-

accessibility formulation does not guarantee feasibility in the gen-

eral case. For a very complex shape, some volumetric elements might

have no DHF-accessible direction. For example, let us imagine an

object composed of multiple nested components. The internal ones

might have no accessible DHF direction. In such a case, it is sufficient

to isolate that partition and decompose it in a separate step.

Moreover, since our DHF-accessibility sampling strategy and

our partitioning formulation are directly related to the tetrahedral

tessellation of the object volume, the discretization resolution can

affect the quality of the generated results. In each of our experiments

we found that a manageable number of tetrahedra were sufficient

to obtain valid fabricable results. See Table 1 for details about the

number of tetrahedra for all the presented examples.

Concerning limitations, while it is true that small undercuts can

be tolerated, in practice, due to the generated friction, large vertical

walls can make it very difficult to successfully extract the object

from the mold. In such cases it is a suggested best practice to ensure

a small draft angle when designing the molds. For future work, such

criterion could be embedded in our DHF-accessibility formulation.

Finally, as any other shape decomposition approach, breaking the

object into parts can reduce its final robustness. Adding a fragility

minimization factor into the proposed optimization framework is a

interesting research challenge that would require further investiga-

tion. Another direct improvement of the proposed method would

be including global constraints in the segmentation process, such

as symmetry. Symmetric segmentation can significantly improve

the aesthetic quality of the final result. One might also use methods

for quadrilateral patch layout generation [Pietroni et al. 2016] to

orient the partition along curvature lines or use a precomputed vol-

umetric block decomposition [Livesu et al. 2020] to generate a more

compact partitioning. For future work, an interesting extension of

our method would be to allow user-guidance for aesthetic choices,
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as well as investigating methods that can explore and characterize

the design space of potential decompositions.
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