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ABSTRACT
The interplay of nuclear and electronic dynamics characterizes the multidimensional electronic spectra of various molecular and solid-
state systems. Theoretically, the observable effect of such interplay can be accounted for by response functions. Here, we report analytical
expressions for the response functions corresponding to a class of model systems. These are characterized by coupling between the diabatic
electronic states and the vibrational degrees of freedom, resulting in linear displacements of the corresponding harmonic oscillators, and by
nonadiabatic couplings between pairs of diabatic states. In order to derive the linear response functions, we first perform the Dyson expan-
sion of the relevant propagators with respect to the nonadiabatic component of the Hamiltonian, then derive and expand with respect to
the displacements the propagators at given interaction times, and finally provide analytical expressions for the time integrals that lead to
the different contributions to the linear response function. The approach is then applied to the derivation of third-order response functions
describing different physical processes: ground state bleaching, stimulated emission, excited state absorption, and double quantum coherence.
Comparisons between the results obtained up to sixth order in the Dyson expansion and independent numerical calculation of the response
functions provide evidence of the series convergence in a few representative cases.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0129073

I. INTRODUCTION

Multidimensional coherent spectroscopy represents a powerful
tool for investigating ultrafast dynamical processes occurring in
molecular and solid-state systems.1–6 In fact, the dependence of
nonlinear spectra on multiple frequencies allows one to separate
different and otherwise overlapping contributions and to establish
correlations between the observed excitation energies.

These processes often involve an interplay between electronic
and vibrational degrees of freedom, which plays an important role
in processes such as charge or energy transfer and determines the
observed coherent beatings.7–13 In a semiclassical representation
of the system dynamics, ultrashort laser pulses induce impulsive
transitions to different electronic states. This triggers the wave
packet motion on the corresponding potential energy surfaces, with
features that depend on the specific form of the electron–phonon
coupling. In many cases of interest, such coupling is represented
in terms of the linearly displaced-oscillator model, where each

vibrational mode is represented as an independent harmonic oscil-
lator, which undergoes an electronic-state dependent displacement
of the origin.14–23 This adiabatic picture can be integrated in a num-
ber of respects, including deviations from harmonicity,24,25 coupling
between different modes,26,27 and dependence of the vibrational
frequencies on the electronic state.28

The interplay between electronic and nuclear degrees of
freedom is even closer in the presence of vibronic couplings, which
result in coherent population transfer between the diabatic states
and hopping of the vibrational wave packet between the correspond-
ing potential energy surfaces.11 Its effects have been observed in
a variety of physical systems, ranging from molecular crystals to
J-aggregates,29 from polymeric films to natural and artificial light-
harvesting systems. A detailed and quantitative explanation of the
observed multidimensional spectra requires a detailed theoretical
description of these complex system and possibly of its interaction
with the environment. The general understanding of the multidi-
mensional spectra, and specifically the capability of disentangling
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the electronic and vibrational coherences, can be possibly favored
by the investigation of relatively simple systems, such as molecular
dimers.30,31 On the other hand, a number of reduced models
have been introduced in order to allow the rationalization of the
observed spectra and to provide a semiquantitative understanding
of the underlying dynamics in terms of a few electronic levels and
vibrational modes.11,32–38

Here, we consider linear and nonlinear response functions
in a class of multilevel nonadiabatic model systems defined as
follows: The vibrational degrees of freedom are described by har-
monic oscillators, which undergo a different displacement for each
of the electronic diabatic states. The Hamiltonian also includes terms
that coherently couple pairs of diabatic states, thus introducing
non-adiabaticity.

The linear response functions are identified (up to a prefactor)
with specific propagators, which are computed in three steps. First,
the propagators are expanded in a Dyson series with respect to
the nonadiabatic component of the Hamiltonian: Each term in the
series thus corresponds to a given number of transitions between
the diabatic electronic states. For a given number of transition
and for given values of these transition times, the propagator
can be formally (though not physically) identified with the adia-
batic response functions, whose analytical expressions have been
derived in Ref. 23 within a coherent state approach. After per-
forming the Taylor expansion of such response function with
respect to the relevant displacement, we integrate with respect
to the interaction times and obtain simple analytical expressions
for each of the contributions. Third-order response functions are
then derived, after decomposing them into the product of three
propagators.

The paper is organized as follows: In Sec. II, we define the
model systems to which the approach is applied. Section III contains
the main results: the expressions of the single- and multiple-time
propagators and the corresponding (linear and nonlinear) response
functions. Section IV contains the main steps in the formal deriva-
tion of the above results. Finally, we draw the conclusions in
Sec. V.

II. THE MODEL
The present approach allows the derivation of the response

function in the presence of nonadiabatic couplings between
electronic and vibrational degrees of freedom. More specifically, it
applies to models where the vibrational modes can be described
by harmonic oscillators, and the coupling between these and the
electronic degree of freedom results in an electronic-state depen-
dent displacement of the oscillators. The eigenstates of such
displaced harmonic oscillator Hamiltonian are characterized by
the factorization of the electronic and vibrational components,
as results from the crude adiabatic approximation.39 The non-
adiabaticity is introduced by a direct coupling between two elec-
tronic states, with no involvement of the vibrational degrees of
freedom.40

Within such a class of models, we consider in the following
those that are complex enough to display the processes of interest but
otherwise as simple as possible. Throughout the paper, we assume
that the nonadiabatic coupling only involves the first two excited
states. The corresponding Hamiltonian reads

H = H0 + V =
N−1

∑
ξ=0

H0,ξ + h̵[η∣1⟩⟨2∣ + η∗∣2⟩⟨1∣], (1)

where V represents the nonadiabatic term, H0 = ∑
N
ξ=1 H0,ξ includes

all the adiabatic ones, and its electronic-state specific components
are given by

H0,ξ = ∣ξ⟩⟨ξ∣
⎡
⎢
⎢
⎢
⎢
⎣

h̵ω̄ξ +
G

∑
ζ=1

h̵ωζ(a
†
ζ + zζ,ξ)(aζ + zζ,ξ)

⎤
⎥
⎥
⎥
⎥
⎦

. (2)

In the following, and for the rest of the paper, we set h ≡ 1.
The eigenstates of the Hamiltonian H coincide with those

of the adiabatic part H0 for ξ = 0 or ξ ≥ 3. In these subspaces
and for G = 1, the eigenstates of H and H0 are in fact given
by ∣ξ; n,−zξ⟩, where ∣n,−zξ⟩ = D(−zξ)∣n⟩ are the displaced Fock
states. Instead, due to the nonadiabatic term V , the eigenstates
∣ξ,−z1⟩ and ∣ξ,−z2⟩ of H0,1 and H0,2 do not coincide with those
of H, which in general do not have a simple analytical expression.
Interestingly, the form of the above Hamiltonian, and specifi-
cally that of the nonadiabatic term, changes qualitatively if one
replaces the basis {∣1⟩, ∣2⟩} with {∣+⟩, ∣−⟩}, formed by the states
that diagonalize He = ∑ξ=1,2 h̵ω̄ξ ∣ξ⟩⟨ξ∣ + V . In such a basis, the
coupling between electronic and vibrational degrees of freedom
is has a non-diagonal component in the electronic basis, which
can be identified with the nonadiabatic part of the Hamiltonian
(see Appendix A).

In the following, we refer to two simple yet interesting model
systems, corresponding to particular cases of the above Hamil-
tonian H. The first one, referred to as model A, is represented
by a four-level system with a single vibrational mode (N = 4,
G = 1, Fig. 1). Within such model, we derive the expressions of the
third-order response functions, which include contributions from
processes such as excited state absorption, involving the doubly
excited state ∣3⟩. The second model, referred to as model B, is rep-
resented by a three-level system with two vibrational modes (N = 3,
G = 2, Fig. 2) and can be referred to a pair of coupled monomers;
each monomer is coupled to its own (localized) vibrational mode.
For this model, we compute the first-order response function and
show how this can formally reduced to a single-mode response func-
tion in the case of a symmetric dimer. The dimer would in principle
include a doubly excited state ∣3⟩, which, however, does not play
any role in the linear response functions considered for this model
and is thus disregarded. In fact, the present approach could in prin-
ciple be applied to a single, more general, model, which includes
both a doubly excited state and two vibrational modes. However,
this would complicate the analytical expressions and make their
physical meaning less transparent without introducing significantly
new elements. For the sake of clarity, these two features are kept
separate and investigated independently from one another in the
two models.

Finally, in deriving the response functions, we assume that
the system dynamics is triggered by a Franck–Condon transition
between the electronic states, induced by interaction with the exter-
nal electric field. This is followed by a free evolution of the system,
resulting from the interplay between the electronic and vibrational
degrees of freedom.
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FIG. 1. First model system (A), which
includes two, non-adiabatically coupled
excited electronic states ∣1⟩ and ∣2⟩.
Optical transitions (green arrows) cou-
ple ∣1⟩ with the ground state ∣0⟩ and ∣2⟩
with the doubly excited state ∣3⟩. Each
electronic state ∣k⟩ implies a displace-
ment by −zk of the harmonic oscillator
corresponding to the vibrational mode.

FIG. 2. Second model system (B), which includes two, non-adiabatically coupled
excited electronic states ∣1⟩ and ∣2⟩. These correspond to the excitation, respec-
tively, of the first and second monomer that form a dimer. Transitions between
the ground (g) and excited state (e) of each monomer can be induced optically
(green arrows). The excitation of each monomer results in a displacement by −ze

of the corresponding vibrational mode (harmonic oscillator).

III. MAIN RESULTS
The central result of the present article is represented by the

time propagators between the excited states belonging to the sub-
space Se. This result is then used to derive the expressions of the
linear and nonlinear response functions. In the following, we present
a brief discursive description of the method (Sec. III A), followed
by the presentation of the final expressions (Secs. III B–III E). The
formal derivations of the results are presented in Sec. IV.

A. Brief description of the method
The relevant time propagator is the matrix element of the time

evolution operator between the states ∣σ; 0⟩ and ∣σ′; 0⟩: These are
given by the product of the diabatic electronic states that are cou-
pled by the nonadiabatic interaction V (σ, σ′ = 1, 2) and of the
vibrational ground state of the undisplaced harmonic oscillator. The
time evolution operator is computed by performing a Dyson expan-
sion with respect to V : Each term in the expansion corresponds to
an electronic pathway, i.e., to a given sequence of electronic states
e1, . . . , eM (an alternating sequence of ∣1⟩ and ∣2⟩), with M − 1 being
the order of the expansion. The overall time evolution of the sys-
tem that one can associate to each electronic pathway consists of
a sequence of sudden transitions between the two diabatic states,
interleaved by time intervals during which the system remains in the
same electronic state (Fig. 3).

For the vibrational state, each transition between the states ∣1⟩
and ∣2⟩ implies a hopping of the coherent state from one potential
energy surface to the other, with these two being relatively displaced
parabolas. The resulting time evolution resembles that induced by
sequences of delta-like laser pulses within the linearly displaced har-
monic oscillator model.23 This formal analogy allows us to use in
the present case the analytical expressions that have recently been
derived for the vibrational component of the response function in
the adiabatic case (R).

The following step consists in integrating over all the possible
values of the nonadiabatic interaction times. In order to perform
such integration analytically, we perform a Taylor expansion of R,
which can be written as the product of M(M + 1)/2 double expo-
nential functions. Each term in the Dyson expansion (order M − 1 in
the nonadiabatic coupling constant η) thus gives rise to a number of
infinite terms, one for each set of orders ki (i = 1, . . . , M(M + 1)/2)
of the Taylor expansions. Formally, each of these terms can be writ-
ten as a product of exponential functions oscillating during the
intervals of duration τj ( j = 1, . . . , M) with a frequency Ωj. This is
given by the sum of an electronic and a vibrational contribution: The
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FIG. 3. (a) Main steps for computing the single- and multi-time propagators: Dyson
expansion with respect to the nonadiabatic coupling; Taylor expansion with respect
to the displacements; integration over the interaction times. (b) Electronic and
vibronic pathways (and related frequenciesΩj ) associated with the terms obtained
after the Dyson and Taylor expansions. The diagram refers to the case where the
initial and final states concide with ∣1⟩.

former corresponds to the energy ω̄j (h ≡ 1) of the electronic state
for the relevant time interval (specified by j) and electronic pathway
(specified by M − 1); the latter is the energy qjω of the qjth eigen-
state of the undisplaced harmonic oscillator. The values of qj result
from those of kl in a one-to-many correspondence. Physically, one
can thus associate to each term of the Taylor expansion a vibronic
pathway defined by a sequence of electronic and vibrational states
∣ej; qj⟩, with j = 1, . . . , M. In addition, each of these terms is propor-
tional to the displacements (z1 or z2) or their difference to the power
of kT = ∑

M(M+1)/2
i=1 ki. Due to the modulus of the displacement being

typically smaller than one, this series is expected to converge, even
though the number of terms increases rapidly with kT .

These functions can be analytically integrated and give a
formally simple result, consisting—for each vibronic pathway—in
the sum of M terms, each one oscillating at a frequency Ωj. If all
these frequencies differ from one another, the oscillating terms e−iΩjt

are multiplied by constants Aj. If k of those frequencies coincide,
then each of the multiple e−iΩjt is multiplied by a monomial ajtrj ,
with rj = 0, . . . , k − 1 [it follows from the calculations that the num-
ber of identical frequencies for each vibronic pathway cannot exceed
(M − 1)/2]. Since this feature is common to all the terms that result
from the Taylor expansion, the entire contribution of order up to
M − 1 in η is given by the sum of terms that oscillate at the fre-
quencies ω̄1 and ω̄2 (diabatic state energies) and of their vibrational

replicas, multiplied by polynomial functions of t, of order (M − 2)/2
for even M and (M − 1)/2 for odd M.

The extension of this approach to the multimode case is rather
straightforward because the dynamics of the G vibrational modes
are independent from one another. The Dyson expansion of the
propagator is not modified by the presence of multiple modes. On
the other hand, the Taylor expansion has to be performed for each
of the adiabatic response functions R, resulting in a larger num-
ber of vibronic pathways. Each of these is given by a sequence
of states ∣ej; qj⟩, where qj defines a G-dimensional vibrational
(Fock) state. The final expression of the response function is thus
identical to that discussed above, apart from the replacement—in the
frequencies Ωj—of the single-mode energies qjω with their multi-
mode counterparts∑G

ζ=1 ωζqj,ζ .
In the multi-time propagators of interest, the overall evolu-

tion of the system is divided in three time intervals (TL, TC, and
TR), delimited by optically induced transitions between the sub-
space Se and the ground or doubly excited states. The generaliza-
tion of the above procedure thus requires two independent Dyson
expansions—one for each of the time evolutions that take place in Se
during the waiting times TL and TR (the evolution in TC always takes
place outside from the subspace Se and therefore does not require a
further expansion). The overall function at defined interaction times
can be written as a product of ML(ML + 1)/2 + 1 +MR(MR + 1)/2
double exponential functions, with ML (MR) being the order in
the Dyson expansion for the first (third) time interval. In the final
step, the integration is performed independently with respect to the
interaction times belonging to the intervals TL and TR. This gives
rise to the functions of order ML − 1 and MR − 1 in η, and that
depend respectively on TL and TR, in the same way as the single-time
propagators depend on t.

B. Time propagators
We consider the case where the system modeled by the Hamil-

tonian H [Eqs. (1) and (2)] undergoes a Franck–Condon transition
from the ground state ∣0; 0⟩ to ∣1; 0⟩, corresponding to a generic
linear superposition of Hamiltonian eigenstates. This will evolve
in time under the combined effect of the adiabatic (H0,e) and
nonadiabatic (V) terms.

The nonadiabatic interactions take place at times tk, with
tM−1 < tM−2 < . . . < t1 and result in transitions between, e.g., states
∣1; qk+1⟩ and ∣2; qk⟩ (where the qk specify the Fock states of the
undisplaced harmonic oscillator). Between two consecutive non-
adiabatic interactions, for time intervals τk = tk−1 − tk, the system
evolves freely under the effect of the Hamiltonian H0 and accumu-
lates the phase Ωkτk. The response functions are eventually derived
by integrating over the interaction times tk.

1. Off-diagonal elements
If the number of transitions that has taken place in the time

t is odd, M − 1 = 2n + 1, the initial and final excited states differ.
The resulting time propagator, i.e., the matrix element of the time
evolution operator US = e−iHt , can be written in the form

⟨2; 0∣US∣1; 0⟩ =
∞
∑
n=0

η∗∣η∣2nF2n+1(t)
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=
∞
∑
n=0

η∗∣η∣2n
∑

k

⎧⎪⎪
⎨
⎪⎪⎩

C
2n+2

∑
j=1

Aj(t) e−iΩjt
⎫⎪⎪
⎬
⎪⎪⎭k

, (3)

where it is intended that all the functions and parameters in the
curly brackets depend on k (see below). The function F2n+1(t),
corresponding to the order 2n + 1 in the Dyson expansion, is given
by the sum of monomials Aj(t) = ajtrj , with rj ≤ n, multiplied by
terms that oscillate at the frequencies,

Ωj =

⎧⎪⎪
⎨
⎪⎪⎩

ω qj + ω̄1 for even j
ω qj + ω̄2 for odd j,

(4)

with qj nonnegative integers. These frequencies are thus given by the
sum of two terms: the energy of the diabatic states (ω̄1 or ω̄2) and an
integer multiple of the vibrational frequency ω.

Each of the (2n + 1)-th order terms in the Dyson expan-
sion [Eq. (10)] is given by the sum of different contributions: one
for each vector k = (k1, . . . .kM(M+1)/2). These contributions result
from the Taylor expansion of the adiabatic propagator and are of
order kT = ∑

M(M+1)/2
i=1 ki in the displacements zζ,ξ [see Eq. (2)]. The

explicit dependence of the contributions in the sum on k and on the
displacements can be expressed as follows:

⟨2; 0∣US∣1; 0⟩ =
∞
∑
n=0

η∗∣η∣2n

×∑
k

⎧⎪⎪
⎨
⎪⎪⎩

[(−i)2n+1ehM(z)χM(z, k)]
2n+2

∑
j=1

Aj(t) e−iΩjt
⎫⎪⎪
⎬
⎪⎪⎭k

,

(5)

where M = 2n + 1.
The frequencies Ωj and the functions Aj(t) depend on k

only through the integers qj, which specify the sequence of vibra-
tional states in the related pathway. These integers are given by the
expression

qj =
M

∑
x=1

min(j,M+1−x)
∑

y=max(1,j−x+1)
k(x−1)M− 1

2 (x−1)(x−2)+y. (6)

We note that the relation between k and q is not one-to-one, because
different vectors k can correspond to a same q.

The constant prefactor, denoted with C in Eq. (3), depends both
on k and on the vector z = (z1, . . . , zM), whose components coin-
cide with the displacements of the oscillator (here, these are given by
zk = z2 for odd k and zk = z1 for even k). Such dependence is
expressed by the functions hM and χM . The former one, whose
general expression is reported in Sec. IV, is here given by

hM(z) = −
1
2

Mz2
12 − z1z2, (7)

where zij ≡ zi − zj. The latter one χM , which depends both on z and
on k, in the present case reads

χM(k, z) =
∏

M−1
p=1 [(−1)pz1z21]

k1+w [(−1)pz2z12]
kM−p+1+w

∏
M(M+1)/2
l=1 kl!

× (z1z2)
kM(M+1)/2

M−p

∏
q=2
[(−1)p+1z2

12]
kq+w , (8)

where w = (p − 1)M − (p − 1)(p − 2)/2. The zero-phonon line cor-
responds to q = 0 and χM = 1.

The expansion in Eq. (3) includes in principle an infinite
number of terms, resulting from both the Dyson and the Taylor
expansions. However, the relative importance in the former expan-
sion is expected to decrease for increasing values of the order 2n + 1,
especially in the short-time limit (∣η∣t ≲ 1). As to the second expan-
sion, being in general ∣z1∣, ∣z2∣ < 1, the value of the constant prefactor
C is also expected to rapidly decrease for increasing values of the
order kT , which defines the power in the displacements.

2. Diagonal elements
If the number of transitions that has taken place in time t

is even, the initial and final excited states coincide. The resulting
propagators read

⟨σ; 0∣US∣σ; 0⟩ =
∞
∑
n=0
∣η∣2nF2n(t)

=
∞
∑
n=0
∣η∣2n
∑

k

⎧⎪⎪
⎨
⎪⎪⎩

C
2n+1

∑
j=1

Aj(t) e−iΩjt
⎫⎪⎪
⎬
⎪⎪⎭k

, (9)

where σ = 1, 2. In the 0th-order contribution (n = 0), the propagator
is reduced to that derived for the adiabatic case.23 Analogous to the
case of the off-diagonal elements, the functions F2n are given by the
sum of monomial functions Aj(t) = ajtnj (with nj ≤ n) multiplied by
terms that oscillate at the frequencies

Ωj =

⎧⎪⎪
⎨
⎪⎪⎩

ω qj + ω̄3−σ for even j
ω qj + ω̄σ for odd j,

(10)

As to the dependence of the different contributions on k,
resulting from the Taylor expansion, this is given by

⟨σ; 0∣US∣σ; 0⟩ =
∞
∑
n=0
∣η∣2n

×∑
k

⎧⎪⎪
⎨
⎪⎪⎩

[(−i)2nehM(z)χM(z, k)]
2n+2

∑
j=1

Aj(t) e−iΩjt
⎫⎪⎪
⎬
⎪⎪⎭k

,

(11)

where M = 2n + 1. The functions hM and χM take here different
forms with respect to the previous case. In fact, the function hM of
the displacements is given by

hM(z) = −
1
2
(M − 1)z2

12 − z2
σ , (12)
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where the vector z has components zk = zσ for odd k and
zk = z3−σ , for even k. The function χM , which depends both on z and
on k, reads

χM(k, z) =
∏

M−1
p=1 [(−1)pzσz3−σ,σ]

k1+w+kM−p+1+w

∏
M(M+1)/2
l=1 kl!

× z2kM(M+1)/2
σ

M−p

∏
q=2
[(−1)p+1z2

12]
kq+w , (13)

where w = (p − 1)M − (p − 1)(p − 2)/2. The zero-phonon line cor-
responds to q = 0 and χM = 1.

C. Propagator in the frequency domain
The propagators are shown to consist of a number of con-

tributions, whose time dependence is given by functions fr(t)
= A(t)e−(γ+iΩ)t , where A(t) = atr and the exponential decay (γ > 0)
results from decoherence (see Sec. IV E). Therefore, the Fourier
transform of the propagator is given by combinations, with equal
coefficients, of the f̂ r(ω) = FT{ f r(t)}, whose expressions read

f̂ r(ω) = a∫
∞

0
dt tr e−[γ+i(Ω−ω)]t

=
r!

[γ + i(Ω − ω)]r+1 . (14)

In Figs. 4(a) and 4(b), we plot the real and imaginary parts of the
functions f̂ r(ω) corresponding to different values of r.

Due to the complex character of the prefactors that appear in
the expression of the functions Aj(t) (see Appendix B), both the real
and the imaginary part of each contribution in the Dyson expansion
of the propagator’s Fourier transform

⟨σ; 0∣ÛS(ω)∣σ′; 0⟩ = FT{⟨σ; 0∣US(t)∣σ′; 0⟩} (15)

consist of combinations of real and imaginary parts of the functions
f̂ r(ω) [panels (c) and (d)] and thus present a mixed absorptive and
dispersive character.

We finally apply these results to the diagonal and off-diagonal
propagators up to different orders in the Dyson expansion. For
the sake of simplicity, we show this in the case of the undisplaced
oscillator (z1 = z2 = 0), where hM = 0, χM = 1, Ω2k−1 = ω̄σ , and
Ω2k = ω̄3−σ (being qj = 0 for all the j). The propagators are given
by the sum of two terms that oscillate at the diabatic state energies,
e−iω̄ 1t and e−iω̄ 2t , each one multiplied by a polynomial of order n
[the expressions of the monomials Aj(t), in general and specifically

FIG. 4. Real and imaginary parts of the
Fourier transforms of [(a) and (b)] the
functions f r(t) = tr e−iω̄ 1 t ; [(c) and (d)]
contributions to the propagators. Abso-
lute values of the diagonal (e) and
off-diagonal (f) propagators, up to dif-
ferent orders in the Dyson expansion.
In all cases, we consider the following
parameter values: z1 = z2 = 0, ω̄1 = 5,
ω̄2 = 10, and γ = 1, all in units of η,
which is assumed to be real and positive.
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for the case of the undisplaced oscillator, are given in Appendix B
for M ≤ 6].

In this particular case, the diagonal propagator is dominated
by the zeroth-order contribution (M = 1) in the diagonal case (peak
at ω̄1), corresponding to a diabatic evolution within the initial state
∣1⟩, with a minor contribution at ω̄2, resulting mainly from the
second-order term (∣η∣2, transitions ∣1⟩Ð→ ∣2⟩Ð→ ∣1⟩∣) [panel (e)].
The off-diagonal propagator presents two symmetric peaks at the
two frequencies ω̄1 and ω̄2, mainly resulting from first-order con-
tribution (M = 2) and corresponding to the occurrence of a single
nonadiabatic transition ∣1⟩Ð→ ∣2⟩.

From the expressions of the Fourier transforms, it follows that
the relative weight of the contributions corresponding to different
orders is given by the values of the diabatic gap ω̄12 and of the
relevant decay rate γ, relative to the nonadiabatic coupling η. In fact,
the terms of order M − 1 and resulting from a monomial Aj(t) of
order r are proportional (at resonance) to

∣η∣M−1

∣ω̄12∣M−r−1γr . (16)

The smaller the value of γ, the larger the relative weight of the terms
with high r. Convergence (the fact that the contributions lose weight
for increasing M) results from the condition ∣η∣ < ∣ω̄12∣, γ.

D. Linear response function
A first, straightforward application of the propagators reported

in Sec. III B is represented by the first-order response function, for
the model systems A and B, schematized respectively in Figs. 1 and 2.

1. Model A
Model A is characterized by the presence of one vibrational

mode and only one excited state that can be optically addressed from
the ground state. The resulting response function is given by

R(1)A (T1) = i∣μ01∣
2
∞
∑
n=0
(−i)2n

∣η∣2nehM
∑

k
χM f M,q,1(T1), (17)

where hM(z) and χM(k, z) are given, respectively, by Eqs. (12) and
(13), whereas the time dependence is given by

f M,q,σ(T1) =
M

∑
j=1

Aj(T1) eiΩjt. (18)

In the response function, only even-order contributions in the
nonadiabatic interaction matter because also the emission process at
the end of the time evolution has to take place from the excited state
∣1⟩. Therefore, M = 2n + 1 and the vector z has components zk = zσ
for odd k and zk = z3−σ for even k.

In the presence of relaxation and dephasing (Sec. IV E),
the above response function undergoes an exponential decay as a
function of T1. In particular, this results in a prefactor,

FA(T1) = e−(γg+γe+Γe/2)T1 , (19)

to be added to the above expression of R(1)A (T1).

2. Model B
The case of model B is conceptually equivalent to the previous

one but includes some additional contribution. This is due to the
presence of a second vibrational mode and of a second allowed opti-
cal transition: that between the states ∣0⟩ and ∣2⟩. As a result, in the
case of a symmetric dimer (ω̄1 = ω̄2 ≡ ωe, μ0,1 = μ0,2 ≡ μe, z1,1 = z2,2
≡ ze), the linear response function reads

R(1)B (T1) = i∣μ0e∣
2
[
∞
∑
n=0
(−i)2n+1

(η + η∗)∣η∣2ne−(2n+2)z2
e

×∑
k
χ′2n+2 f 2n+2,q(T1) + 2

∞
∑
n=0
(−i)2n

∣η∣2ne−(2n+1)z2
e

× ∑
k
χ′2n+1 f 2n+1,q(T1)]. (20)

Here, the first (second) term in square brackets corresponds to path-
ways with an odd (even) number of nonadiabatic processes such that
the absorption and emission processes involve different (the same)
excited states. We note that, due to degeneracy between the two
excited states, ω̄12 = 0 and the fM,q,1 = fM,q,2 ≡ fM,q.

The fact that the two-level systems are identical implies that
the vibrational modes are characterized by the same frequency and
undergo the same displacement ze in passing from the ground state
∣g⟩ to the excited state ∣e⟩. This leads to a simplification of the prop-
agator and of the resulting response function, which can be written
formally as in the single-mode case, apart from the replacement of
hM(z) with h′M(z) = −Mz2

e and of the function χ with

χ′M(k, ze) =
∏

M−1
p=1 [(−1)p+1z2

e ]
k1+w+kM−p+1+w

∏
M(M+1)/2
l=1 kl!

×
1
2
[1 − (−1)M

]z2kM(M+1)/2
e

M−p

∏
q=2
[2(−1)p+1z2

12]
kq+w , (21)

where w = (p − 1)M − (p − 1) (p − 2)/2.
In the presence of dephasing and decoherence, the response

function decays exponentially as a function of time. Such decay is
described by the prefactor FB(T1) = FA(T1).

3. Verification against numerical results
In order to test the approach, we compare the response func-

tion obtained with the present approach with one computed with a
completely independent method. This consists in diagonalizing H
and propagating the initial state ∣1; 0⟩ by expanding it in the basis of
the Hamiltonian eigenstates. As shown in Fig. 5, the results of the
perturbative approach (symbols) converge to the nonperturbative
results (solid line) for increasing number of terms in the expansion.
Terms of increasing order are clearly required for increasing time
t. In this particular case, a good agreement for t∣η∣ > 1 requires the
inclusion of terms up to 6th order in the nonadiabatic coupling V . In
general, from the expression of the functions Aj(t) (see Appendix B),
it follows that the expansion should converge for small values of
∣η∣/∣ω̄12∣ and of t∣η∣ (h ≡ 1).
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FIG. 5. Real (a) and imaginary (b)
parts of the propagator corresponding
to model B obtained by including the
nonadiabatic interaction up to different
orders 2n: 0 (blue symbols), 2 (red),
4 (green), 6 (orange). The solid curve
corresponds to the propagator obtained
by an independent approach based on
the diagonalization of the full Hamilto-
nian. The Hamiltonian parameters are
z1 = 0.1 and z2 = 0 for the first mode,
z1 = 0 and z2 = 0.1 for the second
mode; the frequencies are ω = 1.587,
ω̄1 = 14.29 and ω̄2 = 17.14, all in units
of η; the sum on the vectors k includes
all terms with kT = ∑i k i ≤ 8. The time
is given in units of 1/η, with η being
the nonadiabatic coupling, assumed to
be real and positive.

E. Nonlinear response function
The expression of the single-time propagator represents a start-

ing point for the derivation of multi-time propagators, which can
be directly related to nonlinear response functions. In particular,
we focus hereafter on the response functions of third order in the
light–matter interaction for model A (Fig. 1).

Third-order response functions are expressed with respect to
the waiting times T1, T2, and T3, corresponding to the time inter-
vals between consecutive interactions with the field. In addition,
one can distinguish between the different contributions (pathways),
based on the underlying physical process: ground state bleaching,
stimulated emission, photoinduced absorption, and double quan-
tum coherence. In the following, the two inequivalent contributions
to the response functions are derived for each of these processes. The
functions hM and χM of the displacements are, however, common to
all the cases and are reported hereafter. The function hM is given by

hM(z) = −
M

∑
p=1

M−p+1

∑
q=1

zjq−1jq zjq+p−1jq+p , (22)

where zij ≡ zi − zj. The function χM , which also depends on k, reads

χM(k, z) =
∏

M
p=1∏

M−p+1
q=1 (zjq−1jq zjq+p−1jq+p)

kq+w

∏
M(M+1)/2
l=1 kl!

, (23)

where w = (p − 1)M − (p − 1) (p − 2)/2.

1. Ground state bleaching
The ground state bleaching is associated with those pathways

where both the ket and the bra are in the ground state during the
second waiting time. It includes a rephasing and a non-rephasing
contribution, which are treated separately hereafter.

a. Rephasing contribution. The rephasing contribution corre-
sponds in the perturbative (or Mukamelian) approach to the fol-
lowing sequence of transitions between operators: ∣0⟩⟨0∣Ð→ ∣0⟩⟨j∣
Ð→ ∣0⟩⟨0∣Ð→ ∣k⟩⟨0∣Ð→ ∣0⟩⟨0∣, where ∣j⟩ and ∣k⟩ are optically
excited states. In the case of model A, one has that j = k = 1. The
response function reads

R(3)2 (T1, T2, T3) = −i∣μ01∣
4
∞
∑

nL ,nR=0
(−i∣η∣)2(nL+nR)ehM

×∑
k
χM f ML ,qL ,1(−T1) f MR ,qR ,1(T3) eimCω(T2+T3).

(24)

The M-dimensional vector z has the lth component zl = zjl , where all
the odd-numbered indices are j2k+1 = 1 and all the even-numbered
indices are j2k = 2, apart from j0 = jML+1 = jM+1 = 0. The overall
order M − 3 = 2(nL + nR) in the nonadiabatic coupling results from
2nL (2nR) virtual transitions in the evolution of the bra (ket) during
the first (third) waiting time.

In the presence of decoherence (Sec. IV E), the above response
function is multiplied by a factor F2, which is given by the following
expression:

F2(T1, T2, T3) = e−(γe+γg+Γe/2)(T1+T3). (25)

This accounts for the decay of coherence between the ground state
∣0⟩ and an arbitrary linear superposition of the states ∣1⟩ and ∣2⟩
that takes place during the first and third waiting times and for the
relaxation of the excited states.

b. Non-rephasing contribution. The non-rephasing contribu-
tion corresponds to the following sequence of transitions: ∣0⟩⟨0∣
Ð→ ∣k⟩⟨0∣Ð→ ∣0⟩⟨0∣Ð→ ∣j⟩⟨0∣Ð→ ∣0⟩⟨0∣, where ∣j⟩ and ∣k⟩ are
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optically excited states. In the case of model A, one has that j = k = 1.
The expression of this contribution reads

R (3)
5 (T1, T2, T3) = −i∣μ01∣

4
∞
∑

nL ,nR=0
(−i∣η∣)2(nL+nR)ehM

×∑
k
χM f ML ,qL ,1(T3) f MR ,qR ,1(T1) e−imCωT2.

(26)

The M-dimensional vector z has the lth component zl = zjl , where all
the odd-numbered indices are j2k+1 = 1 and all the even-numbered
indices are j2k = 2, apart from j0 = jML+1 = jM+1 = 0. The overall
order M − 3 = 2(nL + nR) in the nonadiabatic coupling results from
2nL (2nR) virtual transitions in the evolution of the ket during the
third (first) waiting time.

Decoherence affects the non-rephasing contribution in the
same way as the rephasing contribution. Correspondingly, the above
response function has to be multiplied by a factor F5(T1, T2, T3)

= F2(T1, T2, T3).

c. Verification against numerical results. In order to test these
analytical results, we compare the third-order response function
obtained for the rephasing contribution with that derived by numer-
ical diagonalization of the Hamiltonian. As shown in Fig. 6, the
results of the perturbative approach (symbols) converge to the
nonperturbative results (solid line) for increasing number of terms
in the expansion. Terms of increasing order are clearly required for
increasing values of T3 and (not shown) of T1. The value of T2 is
irrelevant in this perspective, because nonadiabatic transitions can

take place during the second waiting time, when the system state
evolves within the ground state manifold.

2. Stimulated emission
The stimulated emission is associated with those paths where

both the ket and the bra are in the excited state subspace Se state
during the second waiting time. It includes a rephasing and a non-
rephasing contribution.

a. Rephasing contribution. The rephasing contribution cor-
responds to transitions ∣0⟩⟨0∣Ð→ ∣k⟩⟨0∣Ð→ ∣k⟩⟨j∣Ð→ ∣0⟩⟨j∣Ð→
∣0⟩⟨0∣, where ∣j⟩ and ∣k⟩ are optically excited states, here (model A)
coinciding with ∣1⟩. Its expression reads

R(3)1 (T1, T2, T3) = −i∣μ01∣
4
∞
∑

nL ,nR=0
(−i∣η∣)2(nL+nR)ehM

×∑
k
χM f ML ,qL ,1(−T1) f MR ,qR ,1(T2 + T3) eimCωT3.

(27)

The M-dimensional vector z has the lth component zl = zjl , where all
the odd-numbered indices are j2k+1 = 1 and all the even-numbered
indices are j2k = 2, apart from j0 = jML+1 = jM+1 = 0. The overall
order M − 3 = 2(nL + nR) in the nonadiabatic coupling results from
2nL (2nR) virtual transitions in the evolution of the bra (ket) during
the first (second and third) waiting time(s).

In the presence of decoherence (Sec. IV E), the above response
function is multiplied by a factor F1, which is given by the following
expression:

FIG. 6. Real (a) and imaginary (b) parts of the multi-time propagator for model A and corresponding, up to a constant prefactor, to the third-order response function: ground
state bleaching, rephasing contribution. The symbols correspond to the results obtained with the perturbative approach, by including terms up to a given order 2(nL + nR)
in the nonadiabatic coupling V : 0 (blue), 2 (red), 4 (green), 6 (orange). The solid line represents the results obtained by an independent nonperturbative approach. The
Hamiltonian parameters are z1 = 0.1, z2 = 0.2, and z3 = 0.15; the frequencies are ω = 1.587, ω̄1 = 14.29, and ω̄2 = 17.14, all in units of η; the sum on the vectors k
includes all terms with kT = ∑i k i ≤ 8. The plots report the dependence on T3, for T1 = 0.7 and T2 = 0. The times are given in units of 1/η, with η being the nonadiabatic
coupling, assumed to be real and positive.
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F1(T1, T2, T3) = e−(γe+γg+Γe/2)(T1+T3)−ΓeT2. (28)

This accounts not only for the dephasing and relaxation processes
that affect the coherences during the waiting times T1 and T3 (as for
the contributions related to ground state bleaching) but also for the
relaxation taking place during the second waiting time T2.

b. Non-rephasing contribution. The non-rephasing contribu-
tion corresponds to transitions ∣0⟩⟨0∣Ð→ ∣j⟩⟨0∣Ð→ ∣j⟩⟨k∣Ð→ ∣j⟩⟨0∣
Ð→ ∣0⟩⟨0∣, where ∣j⟩ and ∣k⟩ are optically excited states, here
coinciding with ∣1⟩ (model A). Its expression reads

R(3)4 (T1, T2, T3) = −i∣μ01∣
4
∞
∑

nL ,nR=0
(−i∣η∣)2(nL+nR)ehM

∑
k
χM

× f ML ,qL ,1(−T2) f MR ,qR ,1(T1 + T2 + T3) eimCωT3.
(29)

The M-dimensional vector z has the lth component zl = zjl , where all
the odd-numbered indices are j2k+1 = 1 and all the even-numbered
indices are j2k = 2, apart from j0 = jML+1 = jM+1 = 0. The overall
order M − 3 = 2(nL + nR) in the nonadiabatic coupling results from
2nL (2nR) virtual transitions in the evolution of the bra (ket) during
the second (three) waiting time(s).

The effect of decoherence on the non-rephasing contribution
coincides with that on the rephasing one. Therefore, the above
response function has to be multiplied by a factor F4(T1, T2, T3)

= F1(T1, T2, T3).

3. Excited state absorption
The excited state absorption is associated with those paths

where both the ket and the bra are in an excited state subspace Se
during the second waiting time, and the ket undergoes a further
excitation process at the end of such period.

a. Rephasing contribution. The response function associated
with the rephasing contribution corresponds to transitions ∣0⟩⟨0∣
Ð→ ∣0⟩⟨j∣Ð→ ∣k⟩⟨j∣Ð→ ∣l⟩⟨j∣Ð→ ∣j⟩⟨j∣, where ∣j⟩ and ∣k⟩ are singly
excited states, while ∣l⟩ is doubly excited. In the case of model A, one
has that j = k = 1 and l = 3. The expression of the response function
reads

R(3)3 (T1, T2, T3) = i∣μ01μ23∣
2
∞
∑

nL ,nR=0
(−i∣η∣)2(nL+nR+1)ehM

∑
k
χM

× f ML ,qL ,1(−T1 − T2 − T3)

× f MR ,qR ,2(T2) e−i(mCω+ω3)T3. (30)

The M-dimensional vector z has the lth component zl = zjl , where all
the odd-numbered indices are j2k+1 = 1, apart from jML+1 = 3, and all
the even-numbered indices are j2k = 2, apart from j0 = jM+1 = 0. The
overall order M − 3 = 2(nL + nR) + 2 in the nonadiabatic coupling
results from 2nR + 1 (2nL + 1) virtual transitions in the evolution of
the ket (bra) during the second (three) waiting time (s).

Decoherence affects the above response function (Sec. IV E). Its
effect can be accounted by including a factor F3, which reads

F3(T1, T2, T3) = e−(γe+γg+Γe/2)T1−ΓeT2 e−(γe+γb+Γe/2+Γb/2)T3. (31)

This accounts not only for the dephasing and relaxation processes
that affect the coherences during the waiting times T1 and T3 (as for

the contributions related to ground state bleaching), but also for the
relaxation taking place during the second waiting time T2.

b. Non-rephasing contribution. The response function associ-
ated with the non-rephasing contribution corresponds to transitions
∣0⟩⟨0∣Ð→ ∣j⟩⟨0∣Ð→ ∣j⟩⟨k∣Ð→ ∣l⟩⟨k∣Ð→ ∣k⟩⟨k∣, where ∣j⟩ and ∣k⟩ are
singly excited states, while ∣l⟩ is doubly excited. In the case of model
A, one has that j = k = 1 and l = 3. The expression of the response
function reads

R(3)6 (T1, T2, T3) = i∣μ01μ23∣
2
∞
∑

nL ,nR=0
(−i∣η∣)2(nL+nR+1)ehM

×∑
k
χM f ML ,qL ,1(−T2 − T3)

× f MR ,qR ,2(T1 + T2) e−i(mCω+ω3)T3. (32)

The M-dimensional vector z has the lth component zl = zjl , where all
the odd-numbered indices are j2k+1 = 1, apart from jML+1 = 3, and all
the even-numbered indices are j2k = 2, apart from j0 = jM+1 = 0. The
overall order M − 3 = 2(nL + nR) + 2 in the nonadiabatic coupling
results from 2nR + 1 (2nL + 1) virtual transitions in the evolution of
the ket (bra) during the first and second (second and third) waiting
times.

The effect of decoherence on the non-rephasing and rephasing
contribution coincides. Therefore, the above response function has
to be multiplied by a factor F6(T1, T2, T3) = F3(T1, T2, T3).

c. Verification against numerical results. In order to test these
analytical results, we compare the third-order response function
obtained for the rephasing contribution with that derived by numer-
ical diagonalization of the Hamiltonian. As shown in Fig. 7, the
results of the perturbative approach (symbols) converge to the non-
perturbative results (solid line) for increasing number of terms in
the expansion. Terms of increasing order are clearly required for
increasing values of T3 and (not shown) of T1, whereas the value
of T2 is irrelevant in this respect.

4. Double quantum coherence
We finally consider the pathways that involve coherences

between the ground state and a doubly excited state. These give rise
to two kinds of contributions.

a. First contribution. The response function associated with
the first kind of contributions corresponds to transitions ∣0⟩⟨0∣
Ð→ ∣j⟩⟨0∣Ð→ ∣l⟩⟨0∣Ð→ ∣l⟩⟨k∣Ð→ ∣k⟩⟨k∣, where ∣j⟩ and ∣k⟩ are singly
excited states, while ∣l⟩ is doubly excited. In the case of model A, one
has that j = k = 1 and l = 3. The expression of the response function
reads

R(3)7 (T1, T2, T3) = i∣μ01μ23∣
2
∞
∑

nL ,nR=0
(−i∣η∣)2(nL+nR+1)ehM

∑
k
χM

× f ML ,qL ,1(−T3) f MR ,qR ,2(T1) e−i(mCω+ω3)(T2+T3).
(33)

The M-dimensional vector z has the lth component zl = zjl , where all
the odd-numbered indices are j2k+1 = 1, apart from jML+1 = 3, and all
the even-numbered indices are j2k = 2, apart from j0 = jM+1 = 0. The
overall order M − 3 = 2(nL + nR) + 2 in the nonadiabatic coupling
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FIG. 7. Real (a) and imaginary (b) parts of the of the multi-time propagator for model A and corresponding, up to a constant prefactor, to the third-order response function:
excited state absorption, rephasing contribution. The symbols correspond to the results obtained with the perturbative approach by including terms up to a given order
2(nL + nR) in the nonadiabatic coupling V : 2 (blue), 4 (red), 6 (green), 8 (orange). The solid line represents the results obtained by an independent nonperturbative
approach. The Hamiltonian parameters are z1 = 0.1, z2 = 0.2, and z3 = 0.15; the frequencies are ω = 1.587, ω̄1 = 14.29, and ω̄2 = 17.14, all in units of η; the sum on
the vectors k includes all terms with kT = ∑i k i ≤ 8. The plots report the dependence on T3, for T1 = 0 and T2 = 0.07. The times are given in units of 1/η, with η the
nonadiabatic coupling, assumed to be real and positive.

results from 2nR + 1 (2nL + 1) virtual transitions in the evolution of
the ket (bra) during the first (third) waiting time.

Decoherence affects the above response function by inducing
a decay of the single and double coherences that evolve during the
three waiting times (Sec. IV E). As a result, the above response
function has to be multiplied by a factor F7, whose expression
reads

F7(T1, T2, T3) = e−(γe+γg+Γe/2)T1

× e−(γb+γg+Γb/2)T2−(γe+γb+Γe/2+Γb/2)T3. (34)

b. Second contribution. The response function associated with
the second kind of contributions corresponds to transitions
∣0⟩⟨0∣Ð→ ∣j⟩⟨0∣Ð→ ∣l⟩⟨0∣Ð→ ∣k⟩⟨0∣Ð→ ∣0⟩⟨0∣, where ∣j⟩ and ∣k⟩ are
singly excited states, while ∣l⟩ is doubly excited. In the case of model
A, one has that j = k = 1 and l = 3. The expression of the response
function reads

R(3)8 (T1, T2, T3) = −i∣μ01μ23∣
2
∞
∑

nL ,nR=0
(−i∣η∣)2(nL+nR+1)ehM

×∑
k
χM f ML ,qL ,1(T3) f MR ,qR ,2(T2) e−i(mCω+ω3)T2.

(35)

The M-dimensional vector z has the lth component zl = zjl , where all
the odd-numbered indices are j2k+1 = 1, apart from jML+1 = 3, and all
the even-numbered indices are j2k = 2, apart from j0 = jM+1 = 0. The
overall order M − 3 = 2(nL + nR) + 2 in the nonadiabatic coupling
results from 2nR + 1 (2nL + 1) virtual transitions in the evolution of
the ket during the first (third) waiting time.

The effect of decoherence on the second contribution that
involves a double quantum coherence differs from that on the first
contribution. In particular, the effect of dephasing and relaxation is
accounted for by a factor F8, whose expression reads

F8(T1, T2, T3) = e−(γe+γg+Γe/2)(T1+T3)e−(γb+γg+Γb/2)T2. (36)

F. Nonlinear response functions
in the frequency domain

The third-order response functions are given by the sum of
terms corresponding to different orders ML +MR − 2 in η. The
same applies to the response functions in the frequency domain,
R(ω1, T2,ω3), obtained by performing the Fourier transform with
respect to the times T1 and T3.

In the following, we consider as a representative example the
response function R(3)6 , related to excited state absorption, non-
rephasing contribution, for T2 = 0 and z1 = z2 = 0 (Fig. 8). We
note in passing that, for T2 = 0, this coincides with the response
function related to the first contribution of the double quantum
coherence, R(3)7 .

The lowest nonzero contributions are obtained for ML =MR = 2
(and thus to ∣η∣2). This physically corresponds to a single nonadia-
batic transition ∣1⟩Ð→ ∣2⟩, talking place during the first two waiting
times, and to a single nonadiabatic transition ⟨1∣Ð→ ⟨2∣, talking
place during the last two waiting times. In the time domain, this
term only includes terms that oscillate at the diabatic states energies
(Ωk,L = ω̄k and Ωk,R = ω̄3−k, with k = 1, 2), with constant prefactors
A1 and A2. The resulting contribution [panels (a) and (b), real and
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FIG. 8. Real [(a) and (c)] and imaginary
parts [(b) and (d)] of the second- and
fourth-order contributions in the Dyson
expansion of the third-order response
function R(3)

6 /i∣μ01μ23∣2 (excited state
absorption, non-rephasing contribution),
Fourier transformed with respect to the
waiting times T1 and T3, and for T2 = 0.
The model parameters are set to
the following values: ω̄1 = 5, ω̄2 = 10,
ω̄3 = 15, γg = γe = γb = 0.4, and Γe

= Γb = 0.4, all in units of η, assumed to
be real and positive..

imaginary parts, respectively] is characterized by the presence of
two identical diagonal peaks at the diabatic states energies and by
off-diagonal peaks with opposite sign.

The following nonzero contributions are obtained for ML =MR
= 8 (and thus to ∣η∣6). This physically corresponds to the triple
transition ∣1⟩Ð→ ∣2⟩Ð→ ∣1⟩Ð→ ∣2⟩, talking place during T1 + T2,
and to the transition ⟨1∣Ð→ ⟨2∣Ð→ ⟨1∣Ð→ ⟨2∣, talking place dur-
ing T2 + T3. In the time domain, this term still includes terms that
oscillate at the diabatic states energies (ω̄1 and ω̄2) but with pref-
actors that are linear in the relevant waiting times (T1 and T3).
The resulting contribution [panels (c) and (d), real and imaginary
parts, respectively] is characterized by the presence of more com-
plex features in the diagonal and off-diagonal positions with hybrid
absorptive and dispersive character (see Sec. III C).

IV. DERIVATIONS
In the following, we provide the formal derivation of the results

reported in Sec. III.

A. Time evolution operator
The starting point is the introduction of an interaction picture

based on the separation of the adiabatic and nonadiabatic compo-
nents of the Hamiltonian: H = (H g +H0,e +Hb) + V ≡ H0 + V . The
terms corresponding to the ground state (H g) and doubly occupied
states (Hb) are by assumption adiabatic, while the projection of the

Hamiltonian onto the subspace Se = {∣1⟩, ∣2⟩} includes both an adi-
abatic (H0,e) and a nonadiabatic (V) term. Hereafter, the focus is
on the free dynamics that takes place within the subspace Se, which
can undergo optical transitions from and to the ground and doubly
occupied states.

In the interaction picture, the time-dependent state is given
by ∣ψI(t)⟩ = eiH0te−iHt

∣ψ(0)⟩ ≡ UI ∣ψ(0)⟩, where the time evolution
operator reads41

UI(t) = 1 +
∞
∑
n=1
(−i)n

∫

t

0
dt1 . . .∫

tn−1

0
dtnVI(t1) . . .VI(tn). (37)

From this, one can obtain the time evolution operator in the
Schrödinger picture: US = e−iHt

= e−iH0tUI .
The nonadiabatic operator corresponds to VI(t) = eiH0t

Ve−iH0t
= eiH0,etVe−iH0,et . The exponential operators can be expressed

in terms of the displacement operators D(α) = eαa†−α∗a as follows:

e±iH0,et
=

2

∑
σ=1
∣σ⟩⟨σ∣ e±iω̄ σ t D(−zσ) e±iωa†at D(zσ), (38)

with zσ being the displacement corresponding to the electronic state
σ. From this , it follows that the nonadiabatic component of the
Hamiltonian is given by
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VI(t) = η∣1⟩⟨2∣eiω̄ 12tD(−z1)eiωa†atD(z12)e−iωa†atD(z2) +H.c., (39)

where ω̄12 ≡ ω̄1 − ω̄2 = −ω̄21.
The products of an odd number of operators V̂ that appear in

Eq. (37) can thus be written as

VI(t1) . . .VI(t2n+1) = η∣η∣2n
∣1⟩⟨2∣eiω̄ 21∑2n+1

k=1 (−1)ktk

×D(−z2){
2n+2

∏
l=1

D[(−1)lz12]e−iωa†aτl}D(z2)

+ H. c., (40)

where t0 = t2n+2 = 0. They physically correspond to contributions
where the system undergoes 2n + 1 transitions between the states
∣1⟩ and ∣2⟩ at the times t2n+1 < t2n < . . . < t1 separated by time
intervals of duration τk = tk−1 − tk.

The products of an even number of nonadiabatic operators are
diagonal in the basis of the adiabatic states and read

VI(t1) . . .VI(t2n) = ∣η∣2n
∣1⟩⟨1∣eiω̄ 21∑2n

k=1 (−1)ktk

×D(−z2){
2n+1

∏
l=1

D[(−1)lz12]e−iωa†aτl}D(z1)

+ ∣η∣2n
∣2⟩⟨2∣eiω̄ 12∑2n

k=1 (−1)ktk

×D(−z1){
2n+1

∏
l=1

D[(−1)lz21]e−iωa†aτl}D(z2),

(41)

where t0 = t2n+1 = 0. They physically correspond to contributions
where the system undergoes 2n transitions between the states ∣1⟩ and
∣2⟩ at the times t2n < t2n−1 < . . . < t1 separated by time intervals of
duration τk = tk−1 − tk.
B. Propagators at defined interaction times

From the above equations, it follows that the matrix element
between the electronic states ∣σ⟩ and ∣σ′⟩ (where σ, σ′ = 1, 2) of the
products e−iH0,etVI(t1) . . .V(tM−1) can always be written as alter-
nating sequences of displacement operators and free-oscillator time
evolution operators. The expectation value of such operators in the
vacuum state ∣0⟩ of the vibrational mode, to which we refer in the
following as adiabatic response function, has a well-defined analytical
expression, which reads23

R(v,M)
j1 jM

(τ1, . . . , τM) = exp[hM(z)]

× exp
⎛

⎝
−

M

∑
k=1

M−k+1

∑
l=1

zjl−1 ,jl zjl+k−1 ,jl+k

l+k−1

∏
p=l

vp
⎞

⎠
. (42)

The function hM of the displacements is given in Eq. (22). We stress
that R(v,M)

j1 jM
formally coincides with the vibrational response function

for the displaced harmonic oscillator model but has here a dif-
ferent physical interpretation. In particular, the transition between
electronic states were induced there by the interaction of the sys-
tem with the electric field, and here by the nonadiabatic term V .
In order to stress such difference, the response function for the
nonadiabatic model that is considered in the present paper is
denoted with the symbol R.

The adiabatic response function R(v,M)
j1 jM

can be associated with
a time evolution of the vibrational state induced by an Hamiltonian
that is piecewise constant and undergoes abrupt transitions as the
system undergoes transitions between the electronic state ∣1⟩ or ∣2⟩.
In particular, the Hamiltonian is constant during each of the M time
intervals, τk = tk−1 − tk (k = 1, . . . , M), delimited by two consecu-
tive transitions. At each time interval, one can associate a function
vk = e−iωτk , which appears in the expression of R(v,M)

j1 jM
, and an index

jk = 1, 2, which specifies the electronic state and thus the Hamilto-
nian H0,jk that induces the time evolution. The index jk also specifies
the relevant displacement zjk whose differences zjk−1 ,jk ≡ zjk−1 − zjk

appear in Eq. (42).
In the case of products of odd-order terms, the expectation

value that enters the expression of the matrix element ⟨1; 0∣US∣2; 0⟩
reads

⟨1; 0∣e−iH0,1tVI(t1) . . .VI(tM−1)∣2; 0⟩ = e−iω̄ 1t

× η∣η∣2neiω̄ 21∑2n+1
k=1 (−1)ktk R(v,M)

12 (τ1, . . . , τM), (43)

where M = 2n + 2, j2k = 2, j2k+1 = 1, apart from j0 = jM+1 = 0. The
corresponding Feynman diagrams are characterized by M + 1
arrows, all on the left side [Fig. 9(b)], with the state before the
first interaction and after the last one both coinciding with ∣0⟩
and in between an alternation of states ∣1⟩ and ∣2⟩. The time-
independent term in the exponent of the adiabatic response function
is given by hM(z) = − 1

2 Mz2
12 − z1z2. The expression of the prop-

agator ⟨2, 0∣e−iH0,2tVI(t1) . . .VI(tM−1)∣1, 0⟩ [see Fig. 9(a)] can be
obtained from the above expression by swapping the indices 1 and 2
that define the electronic states and by replacing η with its complex
conjugate (Fig. 10).

In the case of even-order terms, the expectation value that
enters the expression of the matrix element ⟨σ; 0∣US∣σ; 0⟩ reads

⟨σ; 0∣e−iH0,σ tVI(t1) . . .VI(tM−1)∣σ; 0⟩ = e−iω̄ σ t

× ∣η∣2neiω̄ 12∑2n
k=1 (−1)k+σ tk R(v,M)

σσ (τ1, . . . , τM), (44)

where σ = 1, 2, M = 2n + 1, j2k = 3 − σ, and j2k+1 = σ apart from
j0 = jM+1 = 0. The corresponding Feynman diagrams are character-
ized by M + 1 arrows, all on the left side [Figs. 9(c) and 9(d)], with
both the state before the first interaction and after the last one
coinciding with ∣0⟩, in between an alternation of ∣1⟩ and ∣2⟩. The
time-independent term in the exponent of the adiabatic response
function is given by hM(z) = − 1

2(M − 1)z2
12 − z2

σ .

C. Taylor expansion of the propagator
In order to compute the integrals with respect to the inter-

action times, we expand the response functions R(v,M)
σσ′ in Taylor

series with respect to all the exponentials that appear in the
exponent. In particular, the response function of order M is given by
the sum of M(M + 1)/2 terms: The first M terms v1, v2, . . . , vM cor-
respond to the individual time intervals τ1, τ2, . . . , τM , the following
M − 1 terms v1v2, v2v3, . . . , vM−1vM correspond to the double time
intervals τ1 + τ2, τ2 + τ3, . . . , τM−1 + τ1, and so on until the last term
v1v2 . . . vM−1vM , which corresponds to the M-tuple time interval
t = ∑M

k=1τM . The Taylor expansion thus gives
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FIG. 9. Representation in terms of the double-sided Feynman diagrams of the
adiabatic response functions R(v,4)

21 (a), R(v,4)
12 (b), R(v,5)

11 (c), R(v,5)
22 (d). The first

and last (black) arrows correspond to transitions from and to the electronic ground
state ∣0⟩ induced by the electric field. The intermediate (red) arrows represent
transitions between the excited states ∣1⟩ and ∣2⟩ induced by the nonadiabatic
term V in the Hamiltonian.

R(v,M)
σσ′ = e χM(z)

∑
k

(zσzσσ̄ )k1 . . . (zσzσ′)kM(M+1)/2

k1! . . . kM(M+1)/2!

× e−iωk1tM−1 . . . e−iωkM+1tM−2 . . . e−iωkM(M+1)/2t

= e hM
∑

k
χM

M−1

∏
p=0

e−iωtpmp = e hM
∑

k
χM

M

∏
p=1

e−iωτpqp , (45)

where z = (z1, . . . , zM) and k = [k1, . . . , kM(M+1)/2], with compo-
nents ki that vary from 0 to∞.

In the equation above, the M(M + 1)/2 oscillating terms are
reduced either to the M terms that depend on one of the times
tp or to the M terms that depend on the time intervals τp. In the
former case, the exponent of each factor in the last line above,
mp = lM−p − lM−p+1 (p = 0, . . . , M − 1), depends on k through the
expression

lM−p = kM−p +
M

∑
q=2

min(q−1,M−p−1)
∑

s=max(0,q−p−1)
kqM−p−(q−1)(q−2)/2−s. (46)

The coefficients qj can be expressed as a function of mi, with

qj = ∑
j
i=0 mi. The function χM depends both on z and on k through

the expression reported in Eq. (23). As a result, the propagator
corresponding to defined interaction times is expressed as sum of

FIG. 10. Representation in terms of the double-sided Feynman diagrams of the
third-order response functions of the type X 1 (a) and X 2 (b). The black arrows
correspond to transitions from and to the electronic ground (∣0⟩) or doubly excited
(∣2⟩) states induced by the field. The red arrows denote transitions between the
excited states ∣1⟩ and ∣2⟩ induced by the nonadiabatic term V in the Hamiltonian.

terms, each one given by a product of exponential functions of the
times.

D. Integration over the interaction times
In order to derive the matrix elements of the time evolution

operator US, one finally needs to integrate the above quantities, mul-
tiplied by the additional oscillating terms [see Eqs. (40) and (41)],
with respect to the M − 1 times tp. The multiple integral gives rise to
the following expression:

f M,q,σ(t) = e−i(ωm0+ω̄ σ)t
M−1

∏
p=1
∫

tp−1

0
dtp eiωpptp

=
M

∑
j=1

Aj(t) e−i(ω̄ σ−ω0,j−1) t
≡

M

∑
j=1

Aj(t) e−iΩjt , (47)

where q ≡ (q1, . . . , qM). Moreover, Aj(t) = ajtrj , with r being the
number of zero frequencies among ωk,j−1, for k = 1, . . . , j − 1.

In addition to Ωj, which appear in the final expression above,
it is thus necessary to introduce the frequencies ωkj, which take the
value

ωkj = −ω
j

∑
i=k

mi −
1
2
[(−1)k+σ

+ (−1)j+σ
] ω̄21 (48)

for k ≤ j and ωkj = 0 for k > j. From the above expression of ωk, it
follows that r cannot be larger than M/2 − 1, for even values of M,
and of (M − 1)/2, for odd values. The frequencies ωkj and Ωj can
be expressed as a function of one another through the following
relations:

Ωj = ω̄σ − ω0,j−1, ωkj = Ωk −Ωj+1. (49)

If none of the frequencies ωkj vanishes, then one can define
a set of constants AM−1−k,j, with k = 1, . . . , M – 1 and j = 1, . . . ,
k + 1. By sequentially performing the integrals in Eq. (47), one can
show that the following recurrence relations apply, starting from
AM−1,1 = 1:
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AM−1−k,j =
AM−k,j−1

iωM−k,M−2−k+j
, (50)

AM−1−k,1 = −
k+1

∑
j=2

AM−1−k,j. (51)

Combining together the above equations, one can eventually express
all the coefficients that enter the expression of the functions fM,q,σ(t)
in terms of the frequencies ωij,

AM−m =
(−1)m i1−M

∏
M−m−1
k=1 ωk,M−m−1∏

M−1
l=M−m ωM−m,l

, (52)

where AM−m ≡ A0,M−m.
In the presence of zero frequencies, the above recursive rela-

tions have to be modified. One can derive Eq. (47) by introducing
functions , where Aj(t) ≡ A0j(t). If ωM−k,M−k+j−2 ≠ 0, then

aM−k−1,j,r =
b

∑
s=r

s!
r!
(−1)s−r aM−k,j−1,s

(iωM−k,M−k+j−2)
s−r+1 , (53)

where b is the order of the polynomial AM−k,j−1 and the constant
term in the polynomial is given by

aM−k−1,1,0 = −
k+1

∑
j=2

aM−k−1,j,0. (54)

If instead ωM−k,M−k+j−2 = 0, then

aM−1−k,j,r =
1
r

aM−k,j−1,r−1 (55)

and aM−k−1,j,0 = 0.

E. Decoherence
The effect of decoherence can be included in the present

approach at a phenomenological level. In particular, such inclusion
leads to simple time-dependent prefactors for the derived response
functions under the condition that the environment couples sym-
metrically to the subspace Se = {∣1⟩, ∣2⟩} where the nonadiabatic
term is defined. This implies that pure dephasing between ∣1⟩ and
∣2⟩ is not included and that these two states are assumed to relax at
an equal rate.

In the presence of decoherence, the free evolution of the system
between two consecutive transitions induced by the electric field can
no longer be simulated by the Schrödinger equation. We thus refer
to a master equation in the Lindblad form42 given by

d
dt
ρ = i[ρ, H] +

NL

∑
i=1
[LiρL†

i −
1
2
(L†

i Liρ + ρL†
i Li)], (56)

with NL = 6 Lindblad operators Li. Three of these, viz.,

L1 =
√
Γe ∣0⟩⟨1∣, L2 =

√
Γe ∣0⟩⟨2∣, L3 =

√
Γb ∣0⟩⟨3∣, (57)

account for relaxation, respectively, from the states ∣1⟩, ∣2⟩, and ∣3⟩.
The other three operators read

L4 =
√

2γg ∣0⟩⟨0∣, L6 =
√

2γb ∣3⟩⟨3∣, L5 =
√

2γe (∣1⟩⟨1∣ + ∣2⟩⟨2∣),

(58)

and they account, respectively, for the decay of coherences between
the subspaces Sg = {∣0⟩}, Sb = {∣3⟩}, and Se and any other subspace.
It should be intended that each of the above operators Li is multi-
plied by an identity operator that applies to the vibrational degrees
of freedom and thus has no direct effect of the state of the harmonic
oscillator(s).

The coherences between states belonging to different sub-
spaces decay at a rate given by the sum of the respective
dephasing rates and of the average relaxation rate. For example,
ρ̇13 = −ρ13[γe + γb +

1
2(Γe + Γb) + iω̄13], with ω̄ij ≡ ω̄i − ω̄j. Coher-

ences between the states ∣1⟩ and ∣2⟩, instead, undergo an expo-
nential decay only in virtue of the relaxation from the subspace
Se: ρ̇12 = −ρ12(Γe + iω̄12). The same exponential decay affects the
populations ρ11 and ρ22. As a result, the superoperators associ-
ated with all the Lindblad operators Li commutes with the one
related to the Hamiltonian, and the effect of decoherence on the
time evolution of any ρij can be reduced to a multiplicative expo-
nential decay, with suitable decay rate. This set of Lindblad oper-
ators does not account for a pure dephasing term within the
subspace Se. Its inclusion would require a generalization of the
derivations presented in Sec. IV, which is beyond the scope of the
present article.

In view of the above results, the effect of the Lindblad operators
reported in Eqs. (57) and (58) can be effectively incorporated in the
expression of the propagators and of the response function through
the inclusion of prefactors that decay exponentially with the waiting
times. We note for completeness that this approach accounts for the
effects of population loss in the initial state of the relaxation process
but not for those of population gain in the final state.

F. Multimode case
The above results can be generalized to the case of multiple

(G > 1) vibrational modes. The procedure is the one that has been
followed in the single-mode case: calculation of the operators V I(t)
and of their products; identification of their expectation values in the
ground state of the vibrational modes with the multimode adiabatic
response functions; integration with respect to the interaction times.
In the case of products of odd-order terms, such expectation value
reads

⟨1; 0∣e−iH0,1tVI(t1) . . .VI(t2n+1)∣2; 0⟩ = e−iω̄ 1t

× η∣η∣2neiω̄21∑2n+1
k=1 (−1)ktk

G

∏
ζ=1

R(vζ ,M)
12 (τ1, . . . , τM), (59)

where ∣0⟩ ≡ ∣0, . . . , 0⟩ is the multimode ground state. As in the case
G = 1, the following relations hold: M = 2n + 2, j2k = 2, j2k+1 = 1,
apart from j0 = jM+1 = 0. Physically, this term still refers to the occur-
rence of 2n + 1 hopping processes between the excited states, at
the times t2n+1 < t2n < . . . < t1, which eventually lead to a transition
from ∣2⟩ to ∣1⟩.

In the case of even-order terms, the expectation value of the
vibrational ground state reads
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⟨σ; 0∣e−iH0,σ tVI(t1) . . .VI(t2n)∣σ; 0⟩ = e−iω̄ σ t

× ∣η∣2neiω̄12∑2n
k=1 (−1)k+σ tk

G

∏
ζ=1

R(vζ ,M)
σσ (τ1, . . . , τM), (60)

where as in the case G = 1, σ = 1, 2, M = 2n + 1, j2k = 3 − σ, j2k+1 = σ,
apart from j0 = jM+1 = 0. Physically, this term refers to the occur-
rence of 2n hopping processes between the states ∣2⟩ to ∣1⟩, at the
times t2n < t2n < . . . < t1, which eventually bring the system back to
its initial state.

We are now in the condition of writing the final expression
of the propagators. In particular, the off-diagonal one in the basis
{∣1⟩, ∣2⟩} reads

⟨1; 0∣US∣2; 0⟩ =
∞
∑
n=0
(−i)2n+1η∣η∣2n

⎡
⎢
⎢
⎢
⎢
⎣

G

∏
ζ=1

ehM(zζ)
∑
kζ
χM(zζ , kζ)

⎤
⎥
⎥
⎥
⎥
⎦

× f M,Q,1(t), (61)

f 0 = f M + 1 = 0. Besides, Q ≡ (q1, . . . , qG), where the relation
between the vector qζ and kζ is given by Eq. (6). The time-dependent
polynomials are obtained from the single-mode expressions by
replacing everywhere ωqp with∑G

ζ=1 ωζqp,ζ .
The diagonal part of the propagator is given by the following

expression:

⟨σ; 0∣US∣σ; 0⟩ =
G

∏
ζ=1

u0,ζ +
∞
∑
n=1
(−i)2n

∣η∣2n

×

⎡
⎢
⎢
⎢
⎢
⎣

G

∏
ζ=1

ehM(zζ)
∑
kζ
χM(zζ , kζ)

⎤
⎥
⎥
⎥
⎥
⎦

f M,q,σ(t) (62)

where M = 2n + 1, j2k = 3 − σ, j2k+1 = σ, apart from j0 = jM+1 = 0,
and u0,ζ = exp[z2

1,ζ(e
−iωζ t
− 1)]e−iω̄ σ t . As in the even-M case, the

time-dependent polynomials are obtained from the single-mode
expressions by replacing ωqp with∑G

ζ=1 ωζqp,ζ .
A simple and yet relevant case is one where the two excited

states correspond to electronic excitations localized in the first or
second component of a dimer: ∣1⟩ = ∣e, g⟩ and ∣2⟩ = ∣g, e⟩ (model B,
Fig. 2). The model includes two vibrational modes (G = 2), each
one localized in one of the monomers. The oscillator displacement
vanishes when the corresponding monomer is in the ground state
(zζ=1,2 = zζ=2,1 = 0). If the two units are identical, then the two vibra-
tional frequencies and the displacements (ze ≡ zζ=1,1 = zζ=2,2 ≠ 0)
coincide and ω̄12 = 0. In this case, the two-mode adiabatic response
function can be written as a single-mode one, by replacing hM(z)
and χM(z, k) respectively with h′M(z) and χ′M(z, k). In particular,
one can show that h′M(z) = −Mz2

e for all values of σ, σ′ = 1, 2. As
to the functions χ′M(z, k) [Eqs. (8) and (13)], their nominators
are given by products of terms Xki

i . The terms corresponding to
i = (p − 1)M − (p − 1)(p − 2)/2 + 1 and i = pM − p(p − 1)/2 (with
p = 1, . . . , M − 1) is Xi = (−1)p+1z2

e , while the term corresponding
to i =M(M + 1)/2 is z2

e for σ = σ′ and 0 otherwise; in all the other
cases, Xi = 2(−1)p+1 z2

e .

G. Multi-time propagators and nonlinear
response functions

The present approach can also be applied to multi-time
propagators, such as the ones that enter the expressions of

nonlinear response functions. We focus hereafter on the three-time
propagators, which typically represents the most relevant one in
multidimensional coherent spectroscopy.

For the sake of simplicity, we consider the case where optical
transitions are only allowed between the ground state ∣0⟩ and the
excited state ∣1⟩ and between ∣2⟩ and the doubly excited state ∣3⟩
(model A, Fig. 1). The relevant and inequivalent propagators can
thus be reduced to two. In the first one, the left and right propa-
gators only involve the state ∣1⟩, whereas the central one involves the
ground state,

X 1(TL, TC, TR) = ⟨1; 0∣e−iHTL ∣1⟩⟨0∣e−iHTC ∣0⟩⟨1∣e−iHTR ∣1; 0⟩. (63)

In order to derive the above quantities, one can proceed along
the same lines as for the single-time propagators. In a first step, the
time evolution operators associated with the nonadiabatic Hamil-
tonian He are expanded in powers of V I . As a result, one has, for
given values of the intermediate times tL,2nL < tL,2nL−1 < . . . , tL,1 and
tR,2nR < tR,2nR−1 < . . . < tR,1 an operator given by an alternating
sequence of displacement operators and free-oscillator time evolu-
tion operators,

⟨1; 0∣e−iH0,1TL VI(tL,1) . . .VI(tL,2nL)∣1⟩⟨0∣e
−iH0,0TC ∣0⟩

× ⟨1∣e−iH0,1TR VI(tR,1) . . .VI(tR,2nR)∣1; 0⟩

= e−iω̄ 1(TL+TR)∣η∣2(nL+nR)eiω̄21∑ξ=L,R∑
2nξ
k=1 (−1)ktξ,k

× R(v,M)
11 (τL,1, . . . , τL,ML , TC, τR,1, . . . , τR,MR), (64)

where ML = 2nL + 1 and MR = 2nR + 1. This can be formally iden-
tified with an adiabatic response function of order M = 2(nL + nR)

+ 3, where all the odd-numbered indices are j2k+1 = 1 and all the
even-numbered indices are j2k = 2, apart from j0 = jML+1 = jM+1 = 0.

In a second step, the adiabatic response function is expanded
in powers of the exponentials that appear in the exponent. Finally,
multiple integration is performed independently with respect to the
interaction times tL,i and tR,j. As a result, one obtains

X 1(TL, TC, TR) =
∞
∑

nL ,nR=0
(−i∣η∣)2(nL+nR)ehM

×∑
k
χM f ML ,qL ,1(TL) f MR ,qR ,1(TR) e−imCωTC. (65)

In the second case, the system undergoes a transition from ∣1⟩
to ∣2⟩ during the time TR. The state occupied during TC necessarily
coincides with ∣3⟩, with this being the only electronic state that is
optically coupled to ∣2⟩,

X 2(TL, TC, TR) = ⟨1; 0∣e−iHTL ∣2⟩⟨3∣e−iHTC ∣3⟩⟨2∣e−iHTR ∣1; 0⟩. (66)

The expansion with respect to the nonadiabatic term V I , where now
only odd powers contribute, leads to

⟨1; 0∣e−iH0,1TL VI(tL,1) . . .VI(tL,2nL+1)∣2⟩⟨3∣e−iH0,3TC ∣3⟩

× ⟨2∣e−iH0,2TR VI(tR,1) . . .VI(tR,2nR+1)∣1; 0⟩ = e−iω̄ 1TL

× e−i(ω3TC+ω̄ 2TR)∣η∣2(nL+nR+1)eiω̄21∑ξ=L,R∑
2nξ+1

k=1 (−1)ktξ,k

× R(v,M)
11 (τL,1, . . . , τL,ML , TC, τR,1, . . . , τR,MR), (67)
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where ML = 2(nL + 1) and MR = 2(nR + 1). In the adiabatic
response function or order M = 2(nL + nR) + 5, all the odd-
numbered indices are j2k+1 = 1, apart from jML = 3, and all the
even-numbered indices are j2k = 2.

After performing the Taylor expansion and integrating with
respect to the interaction times,

X 2(TL, TC, TR) =
∞
∑

nL ,nR=0
(−i∣η∣)2(nL+nR+1)ehM

∑
k

× χM f ML ,qL ,1(TL) f MR ,qR ,2(TR) e−i(mCω+ω3)TC.
(68)

The two expressions above capture all the cases that are rele-
vant for the third-order response functions, which can be obtained
by suitably defining the times TL, TC, and TR in terms of the waiting
times T1, T2, and T3 and exploiting the fact that U†

(t) = U(−t).

1. Ground state bleaching
The rephasing component of the ground state bleaching

contribution is associated with the quantity

⟨1, 0∣U†
e (T1)∣1⟩⟨0∣U†

g (T2 + T3)∣0⟩⟨1∣Ue(T3)∣1, 0⟩. (69)

This can be reduced to the function X 1 by setting TL = −T1,
TC = −T2 − T3, TR = T3.

The non-rephasing component of the ground state bleaching
contribution is associated with the quantity

⟨1, 0∣Ue(T3)∣1⟩⟨0∣Ug(T2)∣0⟩⟨1∣Ue(T1)∣1, 0⟩. (70)

This can be reduced to the function X 1 by setting TL = T3, TC = T2,
TR = T1.

2. Stimulated emission
The rephasing component of the stimulated emission contribu-

tion is related to the function

⟨1, 0∣U†
e (T1 + T2)∣1⟩⟨0∣U†

g (T3)∣0⟩⟨1∣Ue(T2 + T3)∣1, 0⟩. (71)

This can be reduced to the quantity X 1 by setting TL = −T1 − T2,
TC = −T3, TR = T2 + T3.

The non-rephasing component of the stimulated emission
contribution is related to the function

⟨1, 0∣U†
e (T2)∣1⟩⟨0∣U†

g (T3)∣0⟩⟨1∣Ue(T1 + T2 + T3)∣1, 0⟩. (72)

This can be reduced to the quantity X 1 by setting TL = −T2,
TC = −T3, TR = T1 + T2 + T3.

3. Excited state absorption
The rephasing component of the excited state absorption is

associated with the quantity

⟨1, 0∣U†
e (T1 + T2 + T3)∣2⟩⟨3∣Ub(T3)∣3⟩⟨2∣Ue(T2)∣1, 0⟩. (73)

This can be reduced to the function X 2 by setting TL = −T1 − T2
− T3, TC = T3, TR = T2.

The non-rephasing component of the excited state absorption
is associated with the quantity

⟨1, 0∣U†
e (T2 + T3)∣2⟩⟨3∣Ub(T3)∣3⟩⟨2∣Ue(T1 + T2)∣1, 0⟩. (74)

This can be reduced to the function X 2 by setting TL = −T2 − T3,
TC = T3, TR = T1 + T2.

4. Double quantum coherence
The first component of double quantum coherence contribu-

tion is related to the function

⟨1, 0∣U†
e (T3)∣2⟩⟨3∣Ub(T2 + T3)∣3⟩⟨2∣Ue(T1)∣1, 0⟩. (75)

This can be reduced to the quantity X 2 by setting TL = −T3,
TC = T2 + T3, TR = T1.

The second component of double quantum coherence contri-
bution is related to the function

⟨1, 0∣Ue(T3)∣2⟩⟨3∣Ub(T2)∣3⟩⟨2∣Ue(T1)∣1, 0⟩. (76)

This can be reduced to the quantity X 2 by setting TL = T3, TC = T2,
TR = T1.

V. CONCLUSIONS
In conclusion, we have developed an approach for analytically

deriving the response functions R in model systems that include
nonadiabatic couplings. The approach is based on the perturbative
expansion of relevant propagators with respect to the nonadiabatic
term in the Hamiltonian and on the formal correspondence between
the contributions in the expansion and adiabatic response functions
R, recently derived for the displaced-oscillator model. After per-
forming the Taylor expansion of R with respect to the displacements
and integrating with respect to the interaction times, we derive
analytical expressions for the one- and three-time propagators and,
from these, the linear and nonlinear response functions. It has also
been shown that the effect of a simple yet relevant form of deco-
herence, including both dephasing and relaxation, can be accounted
for by multiplying the above quantities by suitable exponential decay
functions.

The approach has been applied to two prototypical model
systems, which have been used for modeling a number of physi-
cal systems of interest. In these cases, the response functions have
been compared with those obtained by an independent numerical
approach, showing the convergence of the perturbative approach
for time intervals of increasing duration as the number of terms in
the expansion increases. General criteria are given for the conver-
gence of the Dyson expansion, both in the time and in the frequency
domains.

The application of the present approach to higher-order
response functions or to more complex models, which include more
vibrational modes, electronic levels, allowed optical transitions,
or more nonadiabatic terms in the Hamiltonian, is conceptually
straightforward. In fact, it mainly requires to apply the above pro-
cedure to a number of additional pathways that such extensions
would allow. Other generalizations can also be envisaged, result-
ing from a different expression of the nonadiabatic term V in
the Hamiltonian. In particular, expressions of such term that are
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proportional to the nuclear position operator are often encoun-
tered in the literature. This would require an analogous general-
ization of the adiabatic response function to the case of nuclear
position dependent transitions amplitudes (from Franck–Condon
to Herzberg–Teller coupling), which is the object of ongoing
investigations.
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APPENDIX A: EQUIVALENT EXPRESSIONS
OF THE HAMILTONIAN H GIVEN IN EQS. (1) AND (2)

Within the subspace S3, the Hamiltonian can be written as the
sum of a term (h = 1)

Ha = αn ⋅ σ + βσz(a†
+ a) ≡ Ha,1 +Ha,2 (A1)

and of a term Hb that is proportional to the identity operator
I = ∣1⟩⟨1∣ + ∣2⟩⟨2∣, and plays no role in the following discussion.
The components of σ are the Pauli matrices σX , σY and σZ in the
basis {∣1⟩, ∣2⟩}. The electronic part of the Hamiltonian, Ha,1, is char-
acterized by the real coupling constant α and by the unit vector
n = (sin θ cosϕ, sin θ sinϕ, cos θ). The same vector can also be
expressed as a function of the Hamiltonian parameters in Eqs. (1)
and (2),

n = C[Re(η),−Im(η),
1
2
(ω̄1 − ω̄2)], (A2)

with C = [∣η∣2 + 1
4(ω̄ 1 − ω̄ 2)

2
]
−1/2.

This determines the eigenstates ∣+⟩ and ∣−⟩ of the electronic
part, which can also be written as

Ha,1 = αn ⋅ σ = α(∣+⟩⟨+∣ − ∣−⟩⟨−∣) ≡ ατZ. (A3)

With respect to the basis {∣+⟩, ∣−⟩} and to the corresponding Pauli
matrices τX , τY , and τZ , the Hamiltonian reads

Ha = ατZ + βm ⋅ τ(a†
+ a), (A4)

where m = (−sin θ cosϕ,−sin θ sinϕ, cos θ) or equivalently

m = C[−Re(η), Im(η),
1
2
(ω̄1 − ω̄2)]. (A5)

Therefore, the kind of nonadiabatic Hamiltonian considered in the
present paper, characterized by a transverse electronic term V and
an electron–vibrational coupling that is diagonal in the diabatic state
basis, can also be written as the sum of a diagonal electronic term and
of a more general, non-diagonal vibronic coupling.

APPENDIX B: LIST OF THE FUNCTIONS fM,q,σ(t)
FOR M ≤ 6

We consider for simplicity the case where the vibrational
frequency ω and that corresponding to the electronic gap (ω̄12) are
incommensurate. Therefore, in view of Eq. (48), only the frequen-
cies ωij where j − i is an odd number can vanish. In particular, this
happens if, in addition,∑j

k=i mk = 0.
In the following we report, for each value of M, the expres-

sion of the functions Aj that apply if all the relevant frequencies
ωij are nonzero, and the expressions that change with respect to
the above in case some of the frequencies vanish. If two frequen-
cies ωij and ωmn, with j ≠ n, vanish at the same time, the resulting
changes in the functions Aj, with respect to the case where no fre-
quencies vanish, are all the ones that are derived for ωij = 0 and
ωmn = 0 independently.

1. Zeroth order (M = 1)
This is the contribution of lowest order in η to the diagonal

propagators ⟨σ; 0∣US∣σ; 0⟩ (σ = 1, 2). It is characterized by terms
with

A1 = 1, (B1)

with corresponding frequencies Ω1 = ωq1 + ω̄σ .

2. First order (M = 2)
This is the contribution of lowest order in η to the non-

diagonal propagators ⟨σ; 0∣US∣3 − σ; 0⟩ (σ = 1, 2). From the general
expressions of the coefficients Aj [Eq. (52)], it follows that

A2 =
1

iω11
, A1 = −

1
iω11

. (B2)

The frequency ω11 is always nonzero. Therefore, while consider-
ing the Fourier transforms, the first-order contribution can only
give rise to Lorentzian line shapes ( f̂ 0), centered at the frequencies
Ω2 = ωq2 + ω̄3−σ and Ω1 = ωq1 + ω̄σ .

In the absence of displacement (z1 = z2 = 0), all the qj vanish,
and the above expressions reduce to

A2 =
1

iω̄12
, A1 = −

1
iω̄12

.
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3. Second order (M = 3)
This is the contribution of lowest nonzero order in η to the

diagonal propagators. From the general expressions of the coeffi-
cients Aj [Eq. (52)], if all the frequencies ωij are nonzero, it follows
that

A3 = −
1

ω12ω22
, A2 =

1
ω11ω22

, A1 = −
1

ω11ω12
. (B3)

These are multiplied by terms that oscillate at the frequencies
Ω2k−1 = ωq2k−1 + ω̄σ and Ω2k = ωq2k + ω̄3−σ .

If instead ω12 = 0, then the following expressions replace those
reported above for the general case:

A3 = −
it
ω22

, A1 =
1
ω2

22
. (B4)

These coefficients correspond to the frequency Ω1 = Ω3 (the equal-
ity follows from ω12 = Ω1 −Ω3 = 0). The coefficient A2 remains
unchanged.

In the absence of displacement (z1 = z2 = 0), the above expres-
sions for ω12 = 0 reduce to

A3 =
it
ω̄12

, A2 = −
1
ω̄2

12
, A1 =

1
ω̄2

12
.

4. Third order (M = 4)
From the general expressions of the coefficients Aj, if all the

frequencies ωij are nonzero, it follows that

A4 = −
1

iω13ω23ω33
, A3 =

1
iω12ω22ω33

,

A2 = −
1

iω11ω22ω23
, A1 =

1
iω11ω12ω13

.
(B5)

The corresponding frequenciesΩj are given by the same expressions
specified for the previous orders.

If ω12 = 0 (and therefore Ω1 = Ω3) and ω23 ≠ 0, then the fol-
lowing expressions replace those reported above for the general
case:

A3 =
t

ω22ω33
, A1 = −

1
iω22ω33

(
1
ω22
−

1
ω33
), (B6)

while A2 and A4 remain unchanged.
If ω23 = 0 (and therefore Ω2 = Ω4) and ω12 ≠ 0, then the fol-

lowing expressions replace those reported above for the general
case:

A4 = −
t

ω11ω33
, A2 =

1
iω11ω33

(
1
ω11
+

1
ω33
), (B7)

while A1 and A3 remain unchanged.
If both ω12 = ω23 = 0 are zero, then the functions Aj are

given by the expressions in Eqs. (B6) and (B7). In the absence of
displacements, these reduce to

A4 = −
t
ω̄2

12
, A3 = −

t
ω̄2

12
, A2 =

2
iω̄3

12
, A1 = −

2
iω̄3

12
.

5. Fourth order (M = 5)
From the general expressions of the coefficients Aj, if all the

frequencies ωij are nonzero, it follows that

A5 =
1

ω14ω24ω34ω44
, A4 = −

1
ω13ω23ω33ω44

,

A3 =
1

ω12ω22ω33ω34
, A2 = −

1
ω11ω22ω23ω24

, A1 =
1

ω11ω12ω13ω14
.

(B8)
If ω12 = 0 (Ω1 = Ω3), then the above expressions of A1 and A3

are replaced by the following ones:

A3 =
it

ω22ω33ω34
A1 = −

1
ω22ω33ω34

(
1
ω22
−

1
ω33
−

1
ω34
). (B9)

If ω14 = 0 (Ω1 = Ω5) and ω34 ≠ 0, then

A5 =
it

ω24ω34ω44
A1 = −

1
ω24ω34ω44

(
1
ω24
+

1
ω34
+

1
ω44
). (B10)

If ω23 = 0 (Ω2 = Ω4), then

A4 = −
it

ω13ω33ω44
A2 =

1
ω13ω33ω44

(
1
ω13
+

1
ω33
−

1
ω44
). (B11)

If ω34 = 0 (Ω3 = Ω5) and ω14 ≠ 0, then

A5 =
it

ω14ω24ω44
A3 = −

1
ω14ω24ω44

(
1
ω14
+

1
ω24
+

1
ω44
). (B12)

If ω14 = ω34 = 0 (Ω1 = Ω3 = Ω5),

A5 = −
t2

2ω24ω44
, A3 = −

it
ω24ω44

(
1
ω24
+

1
ω44
),

A1 =
1

ω24ω44
(

1
ω2

24
+

1
ω2

44
+

1
ω24ω44

).
(B13)

If the oscillator does not undergo any displacement in the states
∣1⟩ and ∣2⟩ (z1 = z2 = 0), then all the frequencies ωij with even (odd)
i and odd (even) j vanish. The above equations reduce to

A5 = −
t2

2ω̄2
12

, A4 =
it
ω̄3

12
, A3 =

2it
ω̄3

12
, A2 = −

3
ω̄4

12
, A1 =

3
ω̄4

12
.

6. Fifth order (M = 6)
From the general expressions of the coefficients Aj, if all the

frequencies ωij are nonzero, it follows that

A6 =
1

iω15ω25ω35ω45ω55
, A5 = −

1
iω14ω24ω34ω44ω55

,

A4 =
1

iω13ω23ω33ω44ω45
, A3 = −

1
iω12ω22ω33ω34ω35

,

A2 =
1

iω11ω22ω23ω24ω25
, A1 = −

1
iω11ω12ω13ω14ω15

.

(B14)

The Fourier transform of these contributions thus give rise to
Lorentzian line shapes ( f̂ 0) centered at the frequencies Ωj.

Other vectors q in the Taylor expansion will give rise to van-
ishing frequencies. We start by considering the case where only one
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frequency vanishes within each group ωik (i = 1, . . ., k). If ω12 = 0
(and therefore Ω1 = Ω3), then

A3 = −
t

ω22ω33ω34ω35
,

A1 =
1

iω22ω33ω34ω35
(

1
ω22
−

1
ω33
−

1
ω34
−

1
ω35
).

(B15)

If ω14 = 0 (and therefore Ω1 = Ω5) and ω34 ≠ 0, then

A5 = −
t

ω24ω34ω44ω55
,

A1 =
1

iω24ω34ω44ω55
(

1
ω24
+

1
ω34
+

1
ω44
−

1
ω55
).

(B16)

If ω23 = 0 (and therefore Ω2 = Ω4), then

A4 =
t

ω13ω33ω44ω45
,

A2 = −
1

iω13ω33ω44ω45
(

1
ω13
+

1
ω33
−

1
ω44
−

1
ω45
).

(B17)

If ω25 = 0 (and therefore Ω2 = Ω6) and ω45 ≠ 0, then

A6 =
t

ω15ω35ω45ω55
, (B18)

A2 =
1

iω15ω35ω45ω55
(

1
ω15
+

1
ω35
+

1
ω45
+

1
ω55
). (B19)

If ω34 = 0 (and therefore Ω3 = Ω5) and ω14 ≠ 0, then

A5 = −
t

ω14ω24ω44ω55
, (B20)

A3 =
1

iω14ω24ω44ω55
(

1
ω14
+

1
ω24
+

1
ω44
−

1
ω55
). (B21)

If ω45 = 0 (and therefore Ω4 = Ω6) and ω25 ≠ 0, then

A6 =
t

ω15ω25ω35ω55
, (B22)

A4 = −
1

iω15ω25ω35ω55
(

1
ω15
+

1
ω25
+

1
ω35
+

1
ω55
). (B23)

In all these cases, the Fourier transform gives rise to functions f̂ 0 and
f̂ 1, both centered at the relevant frequencies Ωj.

We finally consider the case where two frequencies vanish
within each group ωik (i = 1, . . ., k). If ω14 = ω34 = 0 (and therefore
Ω1 = Ω3 = Ω5),

A5 =
t2

2iω24ω44ω55
,

A3 =
t

ω24ω44ω55
(

1
ω24
+

1
ω44
−

1
ω55
),

A1 = −
1

iω24ω44ω55
(

1
ω2

24
+

1
ω2

44
+

1
ω2

55
+

1
ω24ω44

−
1

ω24ω55
−

1
ω44ω55

).

(B24)

If ω25 = ω45 = 0 (Ω2 = Ω4 = Ω6),

A6 = −
t2

2iω15ω35ω55
,

A4 = −
t

ω15ω35ω55
(

1
ω15
+

1
ω35
+

1
ω55
),

A2 =
1

iω15ω35ω55
(

1
ω2

15
+

1
ω2

35
+

1
ω2

55

+
1

ω15ω35
+

1
ω15ω55

+
1

ω35ω55
).

(B25)

If the displacements corresponding to the states ∣1⟩ and ∣2⟩
vanish, then ωij = 0 for even (odd) i and odd (even) j. The above
equations thus reduce to

A6 = −
t2

2iω̄3
12

, A5 =
t2

2iω̄3
12

, A4 = −
3t
ω̄4

12
,

A3 = −
3t
ω̄4

12
, A2 =

6
iω̄5

12
, A1 = −

6
iω̄5

12
.
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