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ABSTRACT

Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in
various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies
and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion
and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open
challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0147231

Charles Darwin taught us that it is not the strongest of a species
that survive, but the ones who are most adaptable to change. Like-
wise, the process of learning can be considered to be “any change
in a system that produces a more or less permanent change in
its capacity for adapting to its environment.”1 These two state-
ments clearly underline the importance of adaptivity for life.
Simply speaking, one could say: “To live means to adapt.” At the
same time, adaptive mechanisms are also the essential features
of (“intelligent”) artificial systems, from state-of-the-art control
techniques for complex systems, to machine learning approaches
and robotic systems. Perhaps the most basic notion of adaptiv-
ity is the ability to adjust to condition or change over time. This
ability is an essential component of various natural and artifi-
cial processes considered in different research fields. It is also
the key property of the human mind to perceive and enjoy music
and visual arts and to create and invent and, thus, is the driv-
ing force behind all cultural achievements. Adaptive mechanisms
take place on a wide range of spatial and temporal scales, from
the adaptation of a single neuron, over the ability of a social sys-
tem to adjust to a changing environment, up to the adaptation
of the Earth system’s climate. Over the last few decades, sub-
stantial know-how to describe and control complex systems has
been developed in different scientific areas. With the increasing
potential of modern technology, on the one hand, and the enor-
mous challenges facing humanity as a large social system, on the
other hand, there is a renewed interest to take an interdisciplinary
approach to adaptivity. This article gives an overview of the role
of adaptive systems in different scientific fields and highlights
prospects for future research directions on adaptivity.

I. INTRODUCTION

A widespread feature of natural and artificial complex systems
is their adaptivity. There is lively interest in modeling and under-
standing the various forms of adaptive mechanisms appearing in
real-world systems and to develop new control strategies based on
adaptive mechanisms.

Such control strategies play an essential role, especially in
complex systems science, as they reflect to some extent the
understanding we have of a complex system. Because of their
interactions, relationships, dependencies, nonlinearities, and high-
dimensionalities, the behavior of complex systems is inherently
difficult to model. Machine learning tools are often used to solve
predictions about complex systems. However, applying machine

learning to complex systems is quite challenging because the train-
ing data set has to reflect the diverse dynamics. This usually results
in the data set being very large, making such methods well suited for
so-called big data.

Moreover, the focus today is not only on complex systems con-
sisting of many interacting components, but as an interdisciplinary
field, complex systems actually attract contributions from many dif-
ferent fields. Despite the strong drive for innovation and application
of adaptive complex systems in various scientific fields, as concep-
tualized in Fig. 1, cross-fertilization between different disciplines is
hardly promoted. A partial answer toward a mathematical theory
of adaptive systems has been developed since the 1960s for con-
trol and optimization problems,2–6 including stochastic systems,7 a
systematic exposition of the interrelations and interplay between
adaptation and learning,7 as well as the use of the speed gradient

FIG. 1. Adaptivity across different scientific disciplines (blue) and applications
(yellow) as well as its strong interlinking and interlocking, similar to a system of
gears.
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method8 in adaptive control of network topology.9 In this review, we
discuss recent interdisciplinary applications of adaptive dynamical
systems and focus on collecting ideas that would allow for includ-
ing modern research fields, such as complex network theory, power
grid modeling, or climate systems where a full mathematical theory
is still elusive.

This Perspective article aims to make a first step in opening a
dialogue between different scientific communities and the diverse
formalism of their languages. It summarizes different perspectives
on the concept of adaptivity and shows which open challenges are
waiting to be taken up. To this end, it brings together the view-
points on the topic of adaptivity of researchers from a wide range
of backgrounds, including physics, biology, mathematics, computer
and social science, and musicology. This Perspective article features
a collection of contributions from experts representing various sci-
entific disciplines. The individual contributions are guided by the
following questions:

1. What role do adaptive mechanisms play in their respective field?
How can one define adaptivity? What methods are related to
adaptivity? What applications are related to adaptivity?

2. Which challenges can be solved by using adaptive mechanisms?
Are there open research questions related to adaptivity? What are
the future perspectives?

The article consists of four main topical parts: Network Per-
spective and Models of Adaptivity (Sec. II), Perception and Neural
Adaptivity (Sec. III), Adaptivity and Artificial Learning (Sec. IV),
and Adaptivity in Socio-Economic Systems (Sec. V). Each part con-
tains perspectives from several specialists active in the respective
area of research.

In Sec. II, we discuss different ideas on the definition of adap-
tivity from the perspective of nonlinear dynamics, control theory,
and network science, and how adaptive systems can be used to
understand real-world systems of interacting units (networks). In
the beginning, a generic viewpoint on adaptivity with regard to
the interplay of structure and function in dynamical network the-
ory is introduced (Sec. II A). Building upon this idea, adaptation
is discussed as a slowly evolving feedback mechanism (Sec. II B).
Further highlighted are the interplay of adaptivity and noise as
well as the role of adaptive control mechanisms in inducing critical
transitions. Complementing the discussion on the notion of adap-
tivity, the question is raised: Is adaptivity in nonlinear dynamics,
neuroscience, artificial intelligence, and socio-economic dynamics
instances of the same abstract notion? To answer this question, the
framework of dependent type theory is introduced and suggested to
be utilized for comparing different notions of adaptivity (Sec. II C).
Section II D summarizes the first part from the complex networks
perspective where the interplay between dynamics and network
topology is in the center of interest. Here, various connections
between models featuring adaptivity are shown, and adaptive net-
work models are highlighted as a powerful modeling approach
toward real-world dynamical systems.

Section III focuses on the important role of adaptation in
physiology, especially in the form of perception mechanisms and
neuronal plasticity. Evolution tends to come up with similar solu-
tions to related problems. The physiological properties of biological
systems can be seen as complex networks of interactions, which are

known as regulatory networks. Under similar contexts, such reg-
ulatory networks of distinct systems share similarities—these are
so-called adaptation motifs, where specific adaption motifs have dis-
tinct functional significance (Sec. III A). Organisms, and, hence,
their brains, have developed strategies to adapt to modifications
in the environment across timescales, from adaptation to sudden
changes in sensory stimuli to long timescales of evolutionary pro-
cesses. Also, learning and memory formation can be viewed as
adaptive processes, where learning in neuronal circuits relies on
short- and specifically long-term synaptic plasticity (Sec. III B). Neu-
ronal systems often consist of millions of neurons whose individual
dynamics are often not accessible with mathematical methods. How-
ever, for the macroscopic collective dynamics emerging in such
systems, several methodologies have been developed. A powerful
method is the next generation neural mass approach, which allows
for a low-dimensional reduction of neuronal populations equipped
with frequency adaptation and short-term plasticity (Sec. III C).
Computational models have proven to be useful for understanding
the mechanisms underlying adaptation mechanisms in the brain.
In medicine, for example, deep brain stimulation is the gold stan-
dard for treating medically refractory Parkinson’s patients who
suffer from various motor and non-motor-symptoms and display
an abnormal neuronal synchrony. Considering synaptic plasticity
in computational modeling enables to design appropriate therapeu-
tic stimulation (Sec. III D). Music is a constant adaptation process,
where adaptations are active processes, including changing strate-
gies, emotional reactions, or the development of new abilities. A
physical culture theory is assuming music as an adaptive system
to be represented by spatiotemporal electric fields in the brain,
consisting of impulses, physical energy bursts, sent out, returning
with certain damping, thereby causing new impulses (Sec. III E). In
experiments, the magnitude of the neural response in the auditory
cortex is decreasing if the same stimulus is presented repetitively
with a constant stimulus onset interval. The gradual reduction of
the magnitude is termed adaptation and is suggested to be due to
modulations of synaptic coupling between neurons (Sec. III F).

Another wide field where adaptivity plays a key role is artifi-
cial intelligence and machine learning. We illuminate this field in
Sec. IV. Indeed, at its very heart, “learning” means “adapting” to
input data. The adapting system can, therefore, be, for example, a
real or “artificial brain,” such as a neural network, and the adapta-
tion rules may depend on the learning task, network architecture,
and learning algorithm. Section IV provides a variety of perspec-
tives on adaptivity in artificial learning, discussing current research,
new applications, and open challenges. The methods span from deep
neural networks (Sec. IV A), recurrent neural networks (Sec. IV B),
and reinforcement learning (Sec. IV D) to reservoir computing
(Sec. IV C). A common focus throughout Sec. IV is the two-way
relationship between natural sciences and machine learning. On
the one hand, tools from theoretical physics may provide insights
into the functionality of machine learning algorithms, pushing our
understanding beyond the “black box” paradigm. In particular, con-
cepts from statistical physics are explored to address fundamental
questions, such as reconciling the success of artificial learning with
the curse of dimensionality (see Sec. IV A). Second, simple mod-
els inspired from physics are used to generate training data to
probe specific features of machine learning algorithms, such as their
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ability to extract and utilize memory of a given input sequence
(see Sec. IV B). On the other hand, the usage of machine learning
tools to investigate (Secs. IV B and IV D) or to control (Secs. IV C
and IV E) complex physical systems is a field of rapidly growing
relevance. A sticking example is how reservoir-computing tech-
niques open up new strategies to control chaotic nonlinear dynamics
(Sec. IV C). In this context, another major challenge concerns the
exploration of the rules of (and the control of) the collective or co-
operative behavior of self-organizing multi-agent systems; from the
design of new algorithms (Sec. IV D) to the control of real-world
microscopic “biomimetic” intelligent particles and swarms of robots
(Sec. IV E).

Section V is devoted to the large field of a socio-economic
system. Here, adaptive mechanisms appear naturally and play an
important role for their modeling. Adaptive networks also play a
central role not only for realistic investigations of spreading dynam-
ics but can help to study and design interventions for disease con-
tainment, mitigation, and eradication. Elaborating on this, in the
last section of this fourth part, an overview on adaptivity in epi-
demiology is provided (Sec. V A). Another interesting topic is the
interaction of social and epidemic systems where also the coevo-
lutionary (adaptive) dynamics of the interaction structure and the
dynamical units is in the focus of recent research (Sec. V B). Apart
from the connection to epidemiology, social systems themselves are
adaptive. Here, adaptivity can be regarded as the process of changing
social systems through external influences. In this context, under-
standing these changes induced by increasing connectivity through
online platforms or increasing availability of information are driving
research questions (Sec. V C). The human factor is also considerably
important for the (adaptive) control of power grids, e.g., consid-
ering a temporally changing energy consumption (Sec. V D). The
challenges in order to be compatible with new circumstances are dis-
cussed from different viewpoints. In power grid systems, we find the
adaptation of both the topology and dynamics of the grid. On the
other side, there is an anthropogenic influence on the Earth system
(Sec. V E). Here, we can learn much from the past about adaptive
mechanisms in this complex system and the perturbations to which
it is subjected. With this, Sec. VI of this article provides challenging
open research questions that could be solved by using adaptivity one
or the other way.

II. NETWORK PERSPECTIVE AND MODELS OF

ADAPTIVITY

In this section, different ideas are discussed on how adaptivity
can be defined in the context of nonlinear dynamics, control theory,
and network science, and how adaptive systems could be used to
understand real-world systems of interacting units (networks). Per-
spectives are provided on how different dynamical models featuring
adaptive mechanisms are related and how these models can be used
to investigate the dynamics of natural or man-made systems.

A. Structural adaptivity in dynamical networks—By

Serhiy Yanchuk

Adaptivity is a general concept commonly understood as a pro-
cess or ability of a system to adjust itself to changing (external)

conditions. Thus, when speaking of adaptivity, one implicitly distin-
guishes the “conditions” (X) and the adaptation property (Y). In the
following, an attempt is made to define these two variables (compo-
nents) with a special reference to the theory of adaptive dynamical
networks.

• The structure Y is the adaptation matter, the part of the system
responsible for the adaptation properties. In adaptive dynamical
networks, this is usually understood as a network structure rep-
resented by connectivity and/or connection weights. By analogy
with dynamical networks and neuroscience in general, we refer
to this variable as a structure.

• The function X represents the conditions that trigger the adap-
tation. In adaptive dynamical networks, this is usually the
dynamic state of the network, i.e., the collective and individual
dynamics of the nodes. This factor may also include stochastic
or external perturbations. These variables usually change with
time, i.e., X(t) in the case of temporal adaptation. Following the
terminology of the dynamical networks, we generally refer to
this variable as function.

The non-adaptive systems correspond to a constant structure
Y = Y0, which is independent of the function X(t). By assuming
that X is governed by a system of differential equations, a general
representation of a non-adaptive system is

Ẋ(t) = f(X, Y), (1)

Ẏ = 0. (2)

We assume here the general case that the structure Y influences the
function X. Systems (1) and (2) are often used for modeling neural
networks with fixed connectivity Y. An example of a non-adaptive
dynamical network is the coupled system

ẋi = fi(xi, t)+

N
∑

j=1

κijgij(xi, xj),

where xi(t) determines the state of node i = 1, . . . , N and κij is the
connection weight (κij = 0 if there is no connection). The absence of
network adaptivity is indicated by the fixed structure κij. The func-
tion variable in this example is X = (x1, . . . , xN), while the structure
variable is Y =

{

κij

}

i,j=1,...,N
and it is constant. The class of non-

adaptive networks is extremely useful for modeling many processes
and phenomena in nature and technology;10–12 see also Secs. II D
and V A–V C.

When the structure depends on the function, we obtain an
adaptive system

Ẋ(t) = f(X, Y), (3)

Ẏ(t) = g(X, Y), (4)

with a mutual structure–function interaction.13
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An example of an adaptive dynamical network is

ẋi = fi(xi, t)+

N
∑

j=1

κijg(xi, xj), (5)

κ̇ij = h(xi, xj, κij), (6)

where the rule (6) is responsible for the adaptation and the temporal
changes of the structure Y. The rule (6) is the case when the connec-
tion weight between node i and node j depends only on the function
of these nodes xi(t) and xj(t). Of course, this is not the only possi-
ble adaptation rule. Particular realizations of the adaptation rule (6)
are neuronal systems with plasticity. Specifically, when the plastic-
ity is long-term, i.e., the structural changes act on a slower timescale
than the functional dynamics (neuronal spiking),14–18 this leads to
systems with multiple timescales. As a representative system, the
paradigmatic adaptive network of phase oscillators,

φ̇i = ωi −

N
∑

j=1

κij sin(φi − φj + α), (7)

κ̇ij = −ε
(

κij + sin(φi − φj + β)
)

, (8)

appears to be very useful to study various phenomena in adap-
tive networks, such as synchronization, frequency clustering, recur-
rent synchronization, adaptivity-induced resistance to noise, and
others.17,19–24 Equations (7) and (8) are a special case of the more
general equations (9) and (10) in Sec. II D; see also the exam-
ples discussed there. All of these phenomena are also revealed in
more realistic and complex models, such as Hodgkin–Huxley neu-
rons with spike-timing-dependent plasticity.17,25 Thus, paradigmatic
models of the type (7) and (8) have demonstrated their effectiveness
in studying and predicting novel phenomena characteristic for large
classes of adaptive networks.

The main challenges in studying the above classes of adaptive
dynamical networks are as follows:

• High dimensionality. If the number of nodes in the network
is N, the number of possible connections is N2. Thus, the
dimensionality of the model increases dramatically compared
to dynamical networks with a fixed structure.

• If the adaptation is slow, i.e., ε � 1 in Eq. (8), the system
becomes multi-scale with the slow manifold of dimension N2.
This additional multiscale structure provides opportunities for
analysis,26 but for large networks, it goes far beyond the standard
results employing geometric singular perturbation theory.

Despite recent advances in the study of dynamical adaptive net-
works, many challenging problems remain unsolved. These prob-
lems include mean-field theory, application to climate network
modeling, understanding the role of adaptivity in machine learn-
ing, developing dimensionality reduction techniques, particularly
methods for dealing with extremely high-dimensional slow mani-
folds. Besides large networks, small networks with adaptivity appear
to have a highly nontrivial bifurcation structure compared to their
non-adaptive counterparts. Studying and finding typical bifurca-
tion scenarios in such systems (also known as Eckhaus instability or
Busse-balloons in PDEs) is another open and challenging problem.

B. Adaptation, slow feedback, and noise—By Igor

Franović

Adaptation is often qualitatively described as a slow evolu-
tion of network connectivity patterns due to a feedback from the
nodal dynamics, drawing comparison to synaptic plasticity in neu-
ronal systems;27 see also Sec. II A. Nevertheless, one should bear
in mind that adaptation may also directly impact the features of
nodal dynamics, with examples ranging from frequency adapta-
tion in clapping audiences or flashing fireflies28 to scenarios where
the limited availability of metabolic resources modulates neuronal
excitability29,30 or contributes to maintaining neuronal systems near
criticality.31 A detailed discussion concerning the two latter effects
in relation to spike-frequency adaptation and short-term synap-
tic plasticity can be found in Sec. III C. While these two types of
adaptation, affecting the coupling or nodal dynamics, may appear
independently, it is also not uncommon that they act in concert
guiding the system’s self-organization.32,33 So far, most of the system-
atic insights on the role of adaptation have been gained regarding
its impact on synchronization, including how it gives rise to differ-
ent states of (partial) synchrony,16,21,34–37 or the way it modifies the
order of synchronization transition28 and the associated nucleation
process.38 Another active branch of research concerns adaptation
as a general control mechanism, establishing its role in inducing
critical transitions30,31 and triggering of alternating or cyclic activ-
ity patterns.39–41 Moreover, unfolding studies employing reservoir
computing for design of controllers for nonlinear, and, in particular,
chaotic systems, also hold great promise; see Sec. IV C.

1. Interaction of adaptation and noise

An important, but still insufficiently understood problem con-
cerns the interaction between adaptation and noise, an issue natu-
rally arising in applications to neuroscience. In spite of an apparently
desynchronizing effect of noise, it has been shown that adapta-
tion and noise may give rise to a self-organized network activity
that promotes growth of overall synaptic strength,17 thereby can-
celing the potentially desynchronizing stochastic effects. While this
may seem counterintuitive, one should recall that classical synaptic
plasticity rules, such as spike-timing-dependent plasticity,27 support
synaptic potentiation if coupled neurons are approximately (but
not identically) synchronized and maintain their relative order of
firing.42 However, such self-organized resilience of synchronization
to noise is so far evinced for coupled oscillators rather than coupled
excitable or mixed excitable-oscillatory populations. Addressing the
two latter cases would be highly relevant for applications in neu-
roscience where local dynamics typically involves excitability and
diversity.43–45

Apart from the mean effect on the overall coupling strength, an
additional subtlety from the interaction of adaptation and noise con-
cerning stochastic fluctuations so far addressed mostly at the micro-
scopic level. For motifs of coupled stochastic excitable units, such
an interaction may induce switching dynamics, i.e., slow stochastic
fluctuations between coexisting metastable states. The switching is
naturally reflected both at the level of nodal dynamics and the effec-
tive motif coupling configuration, given by the coupling strengths.46

In particular, for the example of a system of two identical excitable
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units, the noise can induce two different oscillatory modes with a dif-
ferent prevailing order of firing between the units. In the presence
of slow adaptation, such metastable states engage in an alternating
dynamics, accompanied by an alternation of coupling configura-
tions characterized by a strong coupling in one direction and a
strongly depressed one in the opposite direction. Translated to the
language of neuroscience, the latter effect corresponds to switching
between two functional neuronal motifs with directed couplings on
the same structural motif.47

Concerning stochastic fluctuations at the level of a single
excitable system, it has been shown that a slowly adapting feed-
back, acting as a low pass filter to affect the unit’s excitability,40

may in an interaction with noise induce a novel form of behavior
called stochastic bursting, an alternating activity involving episodes
of relative silence interspersed with irregular spiking. Such stochas-
tic bursting occurs in the parameter region that in the limit of an
infinite scale separation between the units’ dynamics and adaptation
supports bistability between noise-induced and noise-perturbed
spiking. Apart from inducing a novel type of behavior, adaptation
may also provide for a control mechanism of coherence resonance40

or may make the noise-induced suppression of spiking frequency
within inverse stochastic resonance more efficient.41,48

2. Impact of an adaptation rate

An often overlooked feature of adaptation when elaborating its
impact on emergent dynamics is the adaptation rate. Classically, an
adaptation rate is considered to be sufficiently slow such that the
overall dynamics may be treated within the framework of singular
perturbation theory,26 separating between the fast local dynamics
of units and the slow evolution of adaptation variables. However,
the impact of an adaptation rate has not been investigated system-
atically, mostly due to a lack of an appropriate analytical method.
In certain examples, it has numerically been shown that intermedi-
ate adaptation rates can substantially deviate the system’s behavior
from the predictions of singular perturbation theory,46 and finding
appropriate means to address this issue remains an open problem.

3. Mathematical approaches to adaptation

From a broader perspective, developing mathematical
approaches to study adaptive networks is challenging because it
requires reconciling different aspects of system behavior, such as
criticality, feedback, multiple timescale dynamics, diversity, and
noise. So far, an extension of a master stability function approach49

has proven effective in reducing the synchronization problem
by separating for dynamical and topological features, allowing
for a classification of system states with respect to synchroniza-
tion properties. For coupled phase or neural oscillators, such an
approach has revealed that adaptation may induce a desynchro-
nization transition21 and support different multi-frequency hierar-
chical cluster states and chimera-like states of partial synchroniza-
tion. Nevertheless, the general problem of the impact of adaptation
on system’s multistability remains open. In certain cases, such as
the Kuramoto phase oscillators with an asymmetric spike-timing-
dependent plasticity-like plasticity rule, adaptation has been shown
to induce multistability between the synchronized, desynchronized,

and multiple partially synchronous states.16 Also, for adaptively cou-
pled identical phase oscillators, multicluster states have been shown
to exhibit a high degree of multistability.34,35 Apart from under-
standing the impact on synchronization problems, an important
issue concerns the role of adaptation in inducing cyclic activity
patterns by controlling critical transitions of the adaptation-free sys-
tem. Treating such problems, such as the onset of collective activity
bursts in heterogeneous systems adaptively coupled to a pool of
resources,39 requires combining different reduction approaches50–52

and multiple timescale methods. Nevertheless, developing rigor-
ous mathematical approaches where mean-field methods apply to
layer dynamics while adaptation is treated by a reduced system
is a vibrant field of investigation. In parallel, a hybrid approach
for treating the interaction of adaptation and noise by combin-
ing the Fokker–Planck formalism with multiple timescale methods
has recently been derived.40 Further generalization of an adap-
tation concept to cases where an adaptation rate itself varies in
time may additionally require including methods from nonequi-
librium thermodynamics and information theory. This naturally
applies to sensory adaptation,53,54 where information transmission
is optimized under different constraints, including metabolic costs,
dynamic range, and intrinsic stochasticity.55 From the perspective
of nonequilibrium thermodynamics, sensory adaptation is a dissi-
pative process ruled by an energy–speed–accuracy tradeoff,53 where
one may exploit the relation between adaptation and irreversibility,54

quantified by the entropy production.

C. Adaptivity: A shared notion?—By Nuria Brede and

Nicola Botta

This article discusses notions of adaptivity from the perspec-
tive of different disciplines, ranging from non-linear dynamics to
psychology, neuroscience, and computer science. Yet, while most
authors would agree that adaptivity is a property, their answers to the
question “A property of what?” presented in the various contribu-
tions seem to differ. This is not accidental, but simply a consequence
of the exploratory nature of the paper, and it poses a challenge for
future work: Can we find a framework that is sufficiently generic
to formulate and compare the notions of adaptivity in different
research areas, understand their differences and similarities, iden-
tify shared concepts and computational methods, and facilitate the
communication between disciplines?

We argue in this section that dependent type theory would be
an ideal candidate for (formulating) such a framework. What do
we mean by this? The reader who is unfamiliar with dependent
type theory should for the moment think of it as a mathematical
logic fused with a programming language (we will explain more in
Sec. II C 2). Ionescu et al.56 argue that type theory fits most of the
requirements for frameworks for modeling and programming put
forward by Broy et al.57 In a research program originally initiated
by Ionescu, type theory has been applied to understand notions of
vulnerability, viability, reachability, avoidability (discrete dynamical
systems), optimality (control theory), climate sensitivity, commit-
ment, and responsibility (climate policy).58–61 The largest study of the
above is Ionescu et al.58 where various notions of vulnerability, stem-
ming from domains such as climate change, food security, or natural
hazard studies, are compared.
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1. Notions of adaptivity

A key idea commonly put forward is that adaptivity is a “feature
of natural and artificial complex systems.” Thus, from this perspec-
tive, adaptivity is a property of a system. However, in their 1992
seminal paper “Reinforcement learning is direct adaptive optimal
control,”62 Sutton et al. argue that what is adaptive is a method for
controlling a system, rather than the system itself. This suggests to
see adaptivity as a property of optimal control methods.

It is worth noticing that optimal control methods do not need
to be adaptive. At least since 1957,63 we know that many determin-
istic and stochastic sequential decision problems can be solved for
optimal policies via dynamic programming. Dynamic programming
can indeed be applied to also solve non-deterministic, fuzzy, and,
more generally, monadic sequential decision problems,64 as long as
the uncertainty monads and the measures of uncertainty (for exam-
ple, for stochastic uncertainty, the expected value measure) satisfy
certain compatibility conditions.65 However, when the transition
function (or the reward function) of a sequential decision problem
is not given, optimal policies have to be learned by interacting, step
by step, with an environment: for example, via Q-learning.66 This is
learning to act optimally rather than optimal planning.

Even if we share the intuition that adaptivity is a property of a
system, or of a method for controlling a system that interacts sequen-
tially with an environment, it remains to clarify whether the notions
of adaptivity in different domains arise as instances of the same
abstract notion or whether they are genuinely different, potentially
even incompatible. Such a clarification requires specifying and com-
paring different notions of adaptivity in a common framework. As
mentioned above, in prior work, we have employed type theory for
this purpose.

2. Logic and type theory

Most scientists are well trained in applying elementary math-
ematics and first-order logic to formulate properties in specific
domains; e.g., in mathematics, you might define what it means for
a function to be injective, or in dynamical systems theory, what it
means for a function to be the flow of a dynamical system. Therefore,
for a mathematically trained people, logic is a well-suited language
to make precise and develop a shared understanding of concepts.
Indeed, this purpose is at the heart of a modern mathematical logic,
at least going back to Leibniz’ vision of a universal language that
would not suffer from the ambiguities of natural language.

Dependent type theory67 takes the advantages of a mathemat-
ical logic one step further. It is a theory that may be seen both as
a higher-order logic and as a pure functional programming lan-
guage with a static type system. It was developed as a foundational
theory for constructive mathematics by the Swedish mathematician
and philosopher Per Martin-Löf.68 Dependent type theory has solid
implementations69–73 and impeccable mathematical credentials74–77

(see also Refs. 78 and 79 for popular science accounts, including
the voices of mathematicians who have turned to computer-aided
formalization).

Due to its double role as logic and programming language,
dependent type theory is well-suited as a framework for both formu-
lating and machine checking mathematical specifications. Because

types can represent propositions and well-typed programs corre-
spond to proofs,80 dependent type theory is also the key for writ-
ing programs that are correct “by construction,” bridging the gap
between the mathematical model and implementation. This is cru-
cial for safety-critical applications81–85 but also in research areas in
which testing model implementations is nearly impossible or too
expensive.86

3. Monadic dynamical systems

The vulnerability study of Ionescu et al.58 led to the introduc-
tion of monadic dynamical systems, combining ideas from generic
programming87,88 and category theory89 with dynamical systems the-
ory. Monadic dynamical systems are sufficiently general to capture
various different definitions of vulnerability as instances of a com-
mon abstract schema. The framework for vulnerability was later
extended by Botta et al.59,64,65 to a framework for specifying and
solving sequential decision problems within dependent type theory.
We think that this framework could also be applied and suitably
extended to study different notions of adaptivity.

D. Partial synchronization patterns in adaptive

networks—By Eckehard Schöll

This subsection explores the applications of network models as
outlined in Sec. II A in different domains. From a complex networks
perspective, the interplay between dynamics and network topol-
ogy is in the center of interest. Collective dynamics in networks
of nonlinear oscillators is often characterized by synchronization
phenomena,10,11 as already studied by Christiaan Huygens in 1656.
Among these, partial synchronization patterns have become a major
focus of research recently.90 Examples are provided by cluster or
group synchronization (where within each cluster, all elements are
completely synchronized, but between the clusters, there is a phase
lag, or even a difference in frequency), and many other forms. A
particularly intriguing example of partial synchronization patterns,
which has recently gained much attention, is chimera states, i.e.,
symmetry-breaking states of partially coherent and partially inco-
herent behavior; for recent reviews, see Refs. 91–93. Chimera states
in dynamical networks consist of spatially separated, coexisting
domains of synchronized (spatially coherent) and desynchronized
(spatially incoherent) dynamics. They are a manifestation of spon-
taneous symmetry-breaking in systems of identical oscillators and
occur in a variety of physical, chemical, biological, neuronal, ecolog-
ical, technological, or socio-economic systems. Other examples of
partial synchronization include solitary states,94–96 where one single
or a few elements behave differently compared with the behavior of
the background group, i.e., the neighboring elements or hierarchical
multifrequency clusters.20

In adaptive networks, the coupling weights are not fixed but
are continuously adapted by feedback of the dynamics, and both
the local dynamics and the coupling weights evolve in time as
co-evolutionary processes; compare with discussions in Secs. II A
or II B. Adaptive networks have been reported for chemical,97

epidemic98 (see also Secs. V A and V B), biological, and
social systems99 (see also Sec. V C). A paradigmatic exam-
ple of adaptively coupled phase oscillators has recently attracted
much attention20,21,34,35,100–107 and it appears to be useful for
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predicting and describing phenomena in more realistic and
detailed models.18,25,108,109 It describes N adaptively coupled phase
oscillators20,34 [as a general case of Eqs. (7) and (8) in Sec. II A],

φ̇i = ωi +

N
∑

j=1

aijκijf(φi − φj), (9)

κ̇ij = −ε
(

κij + g(φi − φj)
)

, (10)

where φi ∈ [0, 2π) represents the phase of the ith oscillator
(i = 1, . . . , N), ωi is its natural frequency, and κij is the coupling
weight of the connection from node j to i. Furthermore, f and g
are 2π-periodic functions where f is the coupling function, g is the
adaptation rule, and ε � 1 is the adaptation time constant. The
connectivity between the oscillators is described by the entries aij ∈

{0, 1} of the adjacency matrix A. In particular, for the Kuramoto
phase oscillator,110 the coupling function is f(φ) = − sinφ , and
synaptic neuronal plasticity may be described by g(φ) = − cos(φ
+ β) where the parameter β describes different adaptivity rules.

One purpose of this section is to provide a new perspective by
demonstrating that a wide range of models ranging from neuronal
networks with synaptic plasticity via power grids to physiological
networks modeling tumor disease and sepsis can be viewed as adap-
tive oscillator networks, and partial synchronization patterns can be
described on equal footing. This modeling approach allows one to
transfer methods and results from one system to the other.

A common class of network models describing power grids is
given by N coupled phase oscillators with inertia,111 also known as a
swing equation. It has been widely used in works on synchronization
of complex networks and as a paradigm for the dynamics of modern
power grids,112–122

Mφ̈i + γ φ̇i = Pi +

N
∑

j=1

aijh(φi − φj), (11)

where M is the inertia coefficient, γ is the damping constant, Pi

is the power of the ith oscillator (related to the natural frequency
ωi = Pi/γ ), h is the coupling function, and aij is the adjacency
matrix as defined in Eq. (9). Another view on the role of adaptivity
for power grid systems can also be found in Sec. V D.

It has been shown123 that the class of phase oscillator models
with inertia is a natural subclass of systems with adaptive coupling
weights where the weights denote the power flows between the
corresponding nodes. We first write Eq. (11) in the form

φ̇i = ωi + ψi, (12)

ψ̇i = −
γ

M



ψi −
1

γ

N
∑

j=1

aijh(φi − φj)



 , (13)

where ψi is the deviation of the instantaneous phase velocity from
the natural frequency ωi. We observe that this is a system of N
phase oscillators (12) augmented by the adaptation (13) of the
frequency deviation ψi. Similar systems with a direct frequency
adaptation have been studied in Refs. 28 and 124–126. Note that the
coupling between the phase oscillators is realized in the frequency

adaptation, which is different from the classical Kuramoto system.110

In order to introduce coupling weights into system (12) and (13),
we express the frequency deviation ψi as the sum ψi =

∑N
j=1 aijχij

of the dynamical power flows χij from the nodes j that are cou-
pled with node i. The power flows are governed by the equation
χ̇ij = −ε

(

χij + g(φi − φj)
)

, where g(φi − φj) ≡ −h(φi − φj)/γ are
their stationary values127 and ε = γ /M. It is straightforward to check
that ψi, defined in such a way, satisfies the dynamical equation (13).

As a result, the swing equations (12) and (13) can be written as
the following system of adaptively coupled phase oscillators:

φ̇i = ωi +

N
∑

j=1

aijχij, (14)

χ̇ij = −ε
(

χij + g(φi − φj)
)

. (15)

The obtained system corresponds to (9) and (10) with coupling
weights χij and coupling function f(φi − φj) ≡ 1. The coupling
weights form a pseudocoupling matrix χ describing the power flow
between the nodes. Note that the base network topology aij of the
phase oscillator system with inertia equation (11) is unaffected by
the transformation.

In adaptive phase oscillator networks, there exists a diversity of
multifrequency cluster states,20,35,107 including chimera states20 and
solitary states.128 In a multifrequency cluster state, all oscillators
split into M groups (called clusters), each of which is character-
ized by a common cluster frequency�µ. In particular, the temporal
behavior of the ith oscillator of the µth cluster (µ = 1, . . . , M) is
given by φµi (t) = �µt + ρ

µ

i + s
µ

i (t) where ρµi ∈ [0, 2π) and s
µ

i (t)
are bounded functions describing different types of phase clusters
characterized by the phase relation within each cluster.34

As an example, in Figs. 2(a) and 2(c), we present a four-cluster
state of in-phase synchronous clusters on a globally coupled net-
work. Hierarchical multicluster states are built out of single cluster
states whose frequency scales approximately with the number Nµ of
elements in the cluster. The coupling matrix displayed in Fig. 2(e)
shows the characteristic block diagonal shape known for adaptive
networks. In particular, the oscillators within each cluster are more
strongly connected than the oscillators between different clusters.

A second example, which uses a splay state with φj = 2πkj/N
and wavenumber k ∈ N as the building block for multiclusters,
is shown in Figs. 2(b), 2(d), and 2(f). Splay states are character-
ized by the vanishing local order parameter Rj = |

∑N
k=1 ajk exp(iφk)|

= 0. Figures 2(b), 2(d), and 2(f) present a hierarchical mixed-type
multicluster on a nonlocally coupled ring of phase oscillators. It con-
sists of one large splay cluster with wavenumber k = 2 and a small
in-phase cluster consisting of three solitary states.

In summary, the findings for partial synchronization of adap-
tively coupled phase oscillators can be transferred to networks of
phase oscillators with inertia. This holds not only for simple homo-
geneous systems, but also for heterogeneous real-world networks,
such as the German ultrahigh voltage power grid.123

In recent years, studies on both types of models, oscillators with
inertia and adaptively coupled oscillators, have revealed a plethora
of common dynamical scenarios, including solitary states,118,119,128,130

multifrequency clusters,34,35,117,131 chimera states,20,103,132 hysteretic
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FIG. 2. Hierarchical multicluster states in networks of coupled phase oscilla-
tors with inertia. Panels (a) and (b), (c) and (d), and (e) and (f) show the
temporally averaged phase velocities 〈φ̇j〉, phase snapshots φj(t), and the
pseudocoupling matrices χij(t), respectively, at t = 10 000. In (e), the oscil-
lator indices are sorted in an increasing order of their mean phase velocity.
The states were found by numerical integration of (11) with identical oscilla-
tors Pi = 0, h(φ) = −σγ sin(φ + α), and uniform random initial conditions
φi(0) ∈ (0, 2π), ψi(0) ∈ (−0.5, 0.5). The parameter α is a phase lag of the
interaction.129 Parameters: (a), (c), and (e) globally coupled networks, M = 1,
γ = 0.05, σ = 0.016, α = 0.46π and (b), (d), and (f) nonlocally coupled ring
networks with coupling radius P = 40,M = 1, γ = 0.3, σ = 0.033, α = 0.8π ;
N = 100. After Berner et al., Phys. Rev. E 103, 042315 (2021). Copyright 2021
American Physical Society.123

behavior, and non-smooth synchronization transitions.38,101,116,133,134

Power grids, as well as neuronal networks with synaptic plastic-
ity, and other adaptive networks describe real-world systems of
tremendous importance for our daily life, which exhibit partial syn-
chronization patterns that may be important for the understanding
of the onset of instability. Neural systems and power grid networks
are also discussed in Secs. III and V, respectively. A particularly
intriguing example and a future perspective is the functional model-
ing of physiological two-layer networks of the immune system and
the parenchyma coupled adaptively by cytokines.135,136 This can be
used for the modeling of tumor disease and sepsis with the immune
layer as a reference point, where the healthy state is characterized by
complete frequency synchronization and the pathological state is a
multifrequency cluster state.

III. PERCEPTION AND NEURAL ADAPTIVITY

In this section, the focus is on adaptive mechanisms in phys-
iological systems. Here, basic regulatory principles are highlighted,
fundamental concepts for a physical culture theory are developed,
mechanisms and modeling of perception are described, and concrete
medical applications on neural networks are presented.

A. Design principles for adaptation in physiological

systems—By Omer Karin

Here, we will explore motifs for adaptation in physiological reg-
ulatory networks. The physiological properties of biological systems
arise from the myriad of interactions of their underlying compo-
nents. As an example, the production rate of proteins from a gene
depends on the abundance of other proteins, known as transcrip-
tion factors, whose production depends on the abundance of other
transcription factors. Similarly, the secretion of a hormone to the
bloodstream depends on the concentrations of other blood factors,
which are themselves affected by the levels of other hormones. These
complex networks of interactions are known as regulatory networks.

To study regulatory networks, it is useful to notice that evolu-
tion tends to come up with similar solutions to related problems.
It is often the case that, under similar contexts, the regulatory net-
works of distinct systems share mathematical similarities—these are
so-called regulatory motifs or design principles.137–139 By identify-
ing such design principles, one can extract a deeper understanding
of the functional significance of the regulatory interactions. We
may, therefore, ask what are the design principles that support
adaptation—the ability of the system to adjust itself to function
properly, despite uncertainty in internal parameters or the external
environment.

Consider the problem of maintaining homeostasis of a blood
factor, such as glucose (denoted x). Blood glucose needs to be main-
tained within a narrow range (around 5 mM) with deviations being
detrimental or even life-threatening. Our bodies have a natural
mechanism to lower blood glucose—we have specialized cells called
β-cells, which can sense blood glucose and secrete the hormone
insulin, which causes remote cells (fat cells, skeletal muscle cells, and
liver cells) to reduce glucose levels. This mechanism can maintain
glucose around some steady state, which would depend sensitively
on many parameters, including the abundances β-cells, plasma vol-
ume, and the responses of cells to insulin. These can (and do) vary
greatly between individuals; yet, we know that most individuals can
maintain blood glucose within a narrow range.140

A related problem occurs in bacterial chemotaxis. The bac-
teria E. coli navigates with a strategy resembling a random walk,
where it moves and reorients with some set rate φ (typically once
every few seconds). This is known as the tumbling rate. Naviga-
tion is achieved by adjusting φ according to sensed ligand molecules
known as attractors and repellants. A step increase in an attrac-
tant molecule transiently decreases φ, leading to a net drift toward
areas with higher attractant concentration. However, at fixed attrac-
tant concentration u, over a wide sensed range, φ is constant and
independent of u.141,142 How is φ maintained constant, despite vari-
ations in the input activity of the circuit?

It has long been suggested that both problems are closely
related to the engineering problem of disturbance rejection.143–145
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FIG. 3. Motifs for adaptation in physiological systems. (a) In hormone circuits, a hormone-regulated variable governs the growth rate of the tissue responsible for its
secretion, enabling precise adaptation. This adaptation mechanism ensures that the dynamics of the regulated variable remain robust in the face of physiological variations.
(b) Organisms employ a combination of logarithmic sensing, precise adaptation, coupled to movement regulation, to achieve robust sampling of an input field. This motif is
observed in chemotaxis and potentially in the mammalian dopamine system.

This problem is exemplified by how a cruise-control system of a
car maintains a fixed speed on varying slopes, or how a thermostat
maintains a fixed temperature in uncertain operating conditions.
The solution requires integral feedback: the controller feedback
increases with the error (it integrates the error); therefore, at a steady
state, the error is zero.

How is integral feedback implemented in biological circuits? In
hormone circuits, there appears to be a simple answer [Fig. 3(a)]. Let
x be the regulated variable and y be its regulating hormone, with Z
being the mass of the tissue that secretes the hormone. In the blood
glucose system, x is the blood glucose, y is the blood insulin, and Z
is the β-cell mass. The following motif is observed across hormone
systems: there is a slow negative feedback where the main regulator
of the growth dynamics of Z is x; that is, x adjusts the death-, growth-
, and replication-rates of the cells of Z. Thus,

Ż = f(x)Z, (16)

where f(x) is the x-dependent growth rate. The system will settle at
the steady state where f(x) = 0 (denoted x0) regardless of variation
in the other physiological parameters, including plasma volume,
secretion rate, and the responses of remote cells.

The ubiquity of the motif suggests that it is uniquely advan-
tageous. Why is it so prevalent? Beyond integral feedback, another
intriguing phenomena occur. Consider, for example, the following
simple model for the glucose system:

u̇ = u − sxy,

ẏ = pZ − γ y,
(17)

where s is the sensitivity to the response of the hormone and p
is the product of the per-cell secretion and (inverse) plasma vol-
ume. u is the time-dependent input, incorporating, e.g., meal intake.
Equation (16) not only sets the steady state of x to x = x0, it makes

the entire dynamics in response to any input u invariant of s,p.146

These scale-invariant dynamics are evident in clinical data from
distinct hormonal systems.146–149 Thus, in hormone systems, neg-
ative feedback from the regulated variable to its controlling tissue
allows the system to adapt its dynamics to variability in key system
parameters, which are uncertain and may be highly variable.

Scale invariance also occurs in bacterial chemotaxis; in this
case, the dynamics of the tumbling rate φ(t) are modulated by the
attractant input u(t) in a manner, which depends only on rela-
tive, rather than absolute, changes in u(t), a phenomenon known as
fold-change detection.150 Fold-change detection is documented in the
navigation systems of other simple organisms, including in worms
and slime molds.151,152

What about more complex organisms? In vertebrates, includ-
ing mice and humans, movement is controlled by the transmission
of dopamine in the mid-brain. Dopamine is secreted in response to
surprise (or prediction error) about rewards, such as food or drink;
better outcomes than expected cause dopaminergic neurons to fire
above their baseline rate, while worse outcomes transiently inhibit
dopaminergic firing.153 The responses are also scale-invariant.154

Finally, when the animal moves, dopamine changes in a way that
is consistent with a response to the temporal derivative of a spatial
input field.155

Upon closer examination, the dopamine system shares key sim-
ilarities with the chemotaxis system, where in the case of dopamine,
the input field corresponds to expectations about rewards.156 This
input field decays spatially from actual locations where rewards
are provided, similar to the decay of a chemical attractant from
its source. Dopamine also invigorates movements in a manner
analogous to the effect of attractants on bacterial movement.

We, therefore, identified another regulatory motif: fold-change
detection of an input field, which modulates movement statistics
[Fig. 3(b)]. What is the function of this motif? From the perspective
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of sensing, scale invariance allows us to remove uncertainty and
retain sensitivity over a wide dynamic input range. An additional
distinct advantage is apparent when we consider the coupling
between sensing and movement. The fold-change detection circuit
calculates the temporal logarithmic derivative of the input u(t). In a
spatial setting, we can consider a spatial input field U(x); the move-
ment dynamics of the organism over long time- and length- scales
are captured by the stochastic dynamics,

dx = βv2φ∇ log U dt + v2
√

2φ dW, (18)

where v is the typical movement speed, and β depends on circuit
parameters. The steady-state distribution of the organism location
is P(x) = U(x)β , which only depends on circuit parameters (rather
than movement parameters); the motif, thus, provides a robust
mechanism for sampling a power of the input field. This is again
consistent with experimental observations on both chemotaxis and
the dopamine system.156 Thus, in these systems, a motif that appears
to support adaptation of sensing in the background of uncertain
input levels, in fact, provides a mechanism for robust sampling of
uncertain environments.

The examples considered here suggest that adaptation motifs
that allow for scale-invariant dynamics are prevalent, and that spe-
cific adaptation regulatory motifs, which recur in similar contexts,
have distinct functional significance. Identifying these motifs, and
comparing their behavior in different contexts, is due to improve our
understanding of how adaptation is achieved by complex regulatory
networks.

B. Adaptation and neuronal coding—By Christoph

Miehl

“To live is to adapt to the world around us.”157 The environment
of an organism can change on vastly different timescales, ranging
from, e.g., a change in lighting to climate change. Organisms, and
hence their brains, have developed strategies to adapt to these mod-
ifications in the environment across timescales, from adaptation to
sudden changes in sensory stimuli to long timescales of evolution-
ary processes. In the following, some key adaptive mechanisms in
the brain on short timescales are highlighted.

In principle, single neurons can adapt to changes in the envi-
ronment based on two strategies, either by modifying their intrinsic
or extrinsic properties. Intrinsic changes include, e.g., increase or
decrease in the excitability of a neuron.160 Extrinsic changes are
related to updates in the strength of the synaptic connections onto
the neuron. An extrinsic mechanism that has been linked to adap-
tation on short timescales (tens to hundreds of milliseconds) is
short-term synaptic plasticity. Input spikes that occur within short
timescales can cause a transient decrease (short-term depression)
or an increase (short-term facilitation) of the synaptic efficacy161

(see Sec. III C). The mechanism leading to a permanent increase
or decrease in synaptic strength is long-term synaptic plasticity.
In experiments, long-term changes in the synaptic strength can be
induced via a “pairing protocol,” a prominent example being spike-
timing-dependent plasticity.162 Repeatedly triggering a spike in the
postsynaptic neuron following a spike in the presynaptic neuron
within approx. 10 ms leads to long-term potentiation, while presy-
naptic spikes following postsynaptic spikes within ≈10–100 ms leads

to long-term depression.163,164 Both short- and long-term plastici-
ties have not only been identified at synapses between excitatory
neurons but also at inhibitory-to-excitatory synapses (for more
information, see Refs. 158 and 165).

A prominent experimental paradigm to test adaptation on
short timescales is the “oddball paradigm.”166 In this paradigm, one
(usually visual or auditory) stimulus is presented many times, the
standard (or familiar, predictable) stimulus. The second stimulus is
only presented rarely, the deviant (or novel, unpredictable) stimu-
lus. On the whole-brain level, electroencephalogram measurements
reveal that presenting the deviant stimulus leads to a strong negative
deflection in the EEG signal compared to the signal following from a
standard stimulus presentation, termed “mismatch negativity.”167,168

Similarly, measurements of either single neurons or neuronal pop-
ulations in sensory cortices reveal elevated neuronal responses for
deviant compared to the standard stimuli169–171 [Fig. 4(a)]. Com-
putational models have proven to be useful for understanding the
mechanisms underlying short-term adaptation in the brain (see
also Secs. III C and III F). Multiple studies suggest that short-term
plasticity is a critical mechanism underlying adaptation to famil-
iar stimuli,172–174 and short-term plasticity at inhibitory synapses
is important for controlling temporal context-dependent neuronal
responses.175,176 In a complementary approach, it has been suggested
that long-term plasticity at inhibitory-to-excitatory synapses under-
lies the difference in responses to familiar and novel stimuli.177 In
this work, increase of inhibitory-to-excitatory synapses via long-
term plasticity leads to a decrease in excitatory responses to familiar
stimuli, while novel stimuli still lead to elevated responses.

Many functional implications have been suggested for the
role of reduced neuronal activity for familiar stimuli compared to
elevated activity for novel stimuli, ranging from efficient coding
and redundancy reduction, fast detection of unexpected events, to
Bayesian inference.157,166 Another highly considered implication is
predictive coding. In this framework, it is thought that the goal of
the brain is to minimize the difference between its internal predic-
tion about the world and the sensory input.178 High responses to
novel stimuli can be thought of as the prediction error. However,
how exactly these computations are implemented in the brain and
how they are related to short- and long-term plasticity mechanisms
are largely unresolved.

Neuronal circuits also need to be robust against perturbations.
In experimental studies, disrupting the sensory inputs in the devel-
oping brain by performing deprivation experiments (e.g., closing the
eye of an animal) leads to homeostatic adjustments of the respective
neuronal circuits.179 A related question is how tightly neuron intrin-
sic properties, such as conductance densities, need to be regulated
to maintain a proper circuit function.180 For example, computa-
tional models and machine learning tools reveal that similar circuit
dynamics can be found even for vastly different ion channel conduc-
tance densities and that this degeneracy allows one to dynamically
compensate perturbations on very fast timescales.181–183 Neuromod-
ulators (such as serotonin, dopamine, etc.) are the chemicals that
control the neuron’s intrinsic properties.184 Further computational
studies have started investigating the combined effects of intrin-
sic and extrinsic neuron properties on neuronal activity and robust
formation of switches between activity states, as found, e.g., in the
sleep-wake cycle.185
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B

A

FIG. 4. (a) Oddball paradigm. Presenting a stimulus repeatedly (stimulus A) leads to a decrease of the neuronal response, while the deviant stimulus (stimulus B) leads to
a high neuronal response. Panel adapted from Wu et al., Trends Neurosci. 45, 884–898 (2022). Copyright 2022 Elsevier, Inc.158 (b) Synaptic plasticity leading to strongly
recurrently connected structures (assemblies). Panel adapted from Miehl et al., J. Physiol. (published online) (2023). Copyright 2023 John Wiley & Sons, Inc.159

Furthermore, learning and memory formation can be viewed
as adaptive processes. Interestingly, it is suggested that learning
in neuronal circuits relies on the same mechanisms as described
above, short- and specifically long-term synaptic plasticity. While
short-term plasticity might underlie working memory,186 long-term
plasticity has been hypothesized as the basis for long-term memory
storage.14 One prominent idea is that groups of strongly intercon-
nected neurons, so-called assemblies, are the basic unit of repre-
sentation in the brain, and long-term plasticity has proven key for
learning these connectivity structures in computational models159,187

[Fig. 4(b)]. Neuronal circuits face the problem of “stability-flexibility
tradeoff,” meaning that on the one hand, synaptic connectiv-
ity should remain stable to allow for long-term memory storage
and be robust against perturbations, while on the other hand,
circuits should remain flexible allowing re-learning or learning
of new representations.188 Computational studies modeling neu-
ronal networks have suggested different solutions, such as rever-
berate neuronal activity,189 inhibitory-to-excitatory plasticity,190 or
a combination of multiple synaptic plasticity and homeostatic
mechanisms.191

Despite recent promising developments, experimental and
computational studies have only scratched the surface of under-
standing the role of intrinsic, short-, and long-term plasticity mecha-
nisms in sensory adaptation. This endeavor is specifically important
because deficits of information processing in neuropsychiatric dis-
eases have been linked to disruptions in excitatory and inhibitory
local circuits,192,193 and mismatch negativity has been suggested as
a biomarker for psychotic disorders.194 Therefore, uncovering the

role of different cellular dynamics can have positive therapeutical
impacts (see Sec. III D).

C. A next generation neural mass approach to

spike-frequency adaptation and short-term

plasticity—By Simona Olmi

Neural mass models are mean-field models developed to mimic
the dynamics of homogenous populations of neurons. These models
range from purely heuristic ones (as the well-known Wilson–Cowan
model195), to more refined versions obtained by considering the
eigenfunction expansion of the Fokker–Planck equation for the dis-
tribution of the membrane potentials.196,197 However, quite recently,
a next generation neural mass model has been derived in an exact
manner for heterogeneous populations of spiking neurons.198–200

This exact derivation is possible for networks of quadratic integrate
and fire (QIF) neurons, representing the normal form of Hodgkin’s
class I excitable membranes,201 thanks to the analytical techniques
developed for coupled phase oscillators.50 Specifically, next gener-
ation neural mass models describe the dynamics of networks of
spiking neurons in terms of macroscopic variables, such as the pop-
ulation firing rate and the mean membrane potential, and they
have already found various applications in many neuroscientific
contexts.202–211 Resuming the terminology introduced in Sec. III B,
here, we investigate the dynamics emergent in next generation neu-
ral mass models when populations of neurons adapt to changes
in the environment by modifying their intrinsic or extrinsic prop-
erties. In particular, we present an overview of the emergence of
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collective dynamics (e.g., synchronous, bursting neural dynamics) in
next generation neural mass models that arise from spike-frequency
adaptation or post-synaptic plasticity.

Spike-frequency adaptation is a widespread neurobiological
phenomenon, exhibited by almost any type of neuron that generates
action potentials. It occurs in vertebrates as well as in invertebrates,
in peripheral as well as in central neurons, and may play an impor-
tant role in neural information processing. As it will be clarified
in the following, all biophysical mechanisms that can cause spike-
frequency adaptation include a form of slow negative feedback to
the excitability of the cell; therefore, spike-frequency adaptation
represents an intrinsic mechanism to adaptation. More in detail,
experimental work suggests that it is a result of different balanc-
ing currents triggered at a single cell after it generates a spike.212,213

Three main types of ionic adaptation currents that influence spike
generation are known: voltage-gated potassium currents, which are
caused by voltage-dependent, high-threshold potassium channels;214

the interplay of calcium currents and intracellular calcium dynam-
ics with calcium-gated potassium channels,215 and the slow recovery
from inactivation of the fast sodium channel.216 As a result of these
cellular mechanisms, many neurons show a reduction in the firing
frequency of their spike response following an initial increase when
stimulated with a square pulse or step.

Short-term plasticity161,217–220 refers to a phenomenon in which
synaptic efficacy changes over time in a way that reflects the
history of presynaptic activity, thus resulting to be an extrinsic
mechanism of adaptation (see Sec. III B). Two types of short-
term plasticity, with opposite effects on synaptic efficacy, have
been observed in experiments: short-term depression and short-
term facilitation. On one hand, synaptic depression is caused by
the depletion of neurotransmitters consumed during the synaptic
signaling process at the axon terminal of a pre-synaptic neuron,
and it has been linked to various mechanisms, such as receptor
desensitization,221,222 receptor density reduction,223,224 or resource
depletion at glial cells involved in synaptic transmission.32,225 On the
other hand, synaptic facilitation is caused by the influx of calcium
into the axon terminal after spike generation, which increases the
release probability of neurotransmitters. Short-term plasticity has
been found in various cortical regions and exhibits great diversity
in properties.226–228

In the context of spike-frequency adaptation, first efforts in
the direction of applying a neural mass model were made in a
network of coupled linear integrate and fire neurons, employ-
ing the Fokker–Planck formalism and an adiabatic approximation
given long spike-frequency adaptation timescales.229 Analyzing this
mean-field description, Gigante et al. were able to identify differ-
ent types of collective bursting. Recently, it has been shown that
an excitatory next generation neural mass equipped with differ-
ent short-term mechanisms of global adaptation can give rise to
bursting behaviors.209 Moreover, in Ref. 230, the authors have stud-
ied the effect of this adaptation mechanism on the macroscopic
dynamics of excitatory and inhibitory next generation neural mass
models by including in the original neural mass model proposed
in Ref. 200 an additional collective afterhyperpolarization current,
which temporarily hyperpolarizes the cell upon spike emission. In a
single population spike-frequency, adaptation favors the emergence
of population bursts in excitatory networks, while it hinders tonic

population spiking for inhibitory ones. When considering two neu-
ral masses, symmetrically coupled in the absence of adaptation, it
is possible to observe the emergence of macroscopic solutions with
broken symmetry: namely, chimera-like solutions in the inhibitory
case and anti-phase population spikes in the excitatory one. Here,
the addition of spike-frequency adaptation leads to new collec-
tive dynamical regimes exhibiting cross-frequency coupling among
the fast synaptic time scale and the slow adaptation one, rang-
ing from anti-phase slow–fast nested oscillations to symmetric and
asymmetric bursting phenomena.

In the context of short-term plasticity, a fundamental imple-
mentation has been first done by Mongillo et al. in Ref. 186 to
explain the mechanisms underlying working memory. Working
memory is the ability to temporarily store and manipulate stimuli
representations that are no longer available to the senses. In partic-
ular, in the model suggested by Mongillo and co-authors, synaptic
facilitation allows the system to maintain an item stored for a cer-
tain period in working memory, without the need for an enhanced
spiking activity. Furthermore, synaptic depression is responsible for
the emergence of population bursts, which correspond to a sub-
population of neurons firing almost synchronously within a short
time window.231,232 In this context, the bursting activity allows for
item retrieval. The working memory mechanism is investigated in
Ref. 186 by means of a recurrent network of spiking neurons, while
a simplified heuristic firing rate model is employed to gain some
insight into the population dynamics. A next generation neural mass
model encompassing short-term synaptic facilitation and depres-
sion has been recently developed to revise the synaptic theory of
working memory with a specific focus on the emergence of neural
oscillations and their relevance for working memory operations.207

In particular, Taher and co-authors in Ref. 207 consider multiple
coupled excitatory populations, each coding for one item, and a
single inhibitory population connected to all the excitatory neu-
rons. This architecture is justified by recent experimental results
indicating that GABAergic (i.e., inhibitory) interneurons in mouse
frontal cortex are not arranged in sub-populations and that they
densely innervate all pyramidal (i.e., excitatory) cells.233 The role of
inhibition is to avoid abnormal synchronization and to allow for a
competition of different items once stored in the excitatory popula-
tion activity. Furthermore, in order to mimic synaptic-based work-
ing memory, only the excitatory–excitatory synapses are assumed
to be plastic displaying short-term depression and facilitation (at
the contrary with what is shown in Sec. III B where examples of
short-term plasticity in inhibitory-to-excitatory synapses are also
considered). As a result, memory operations are joined to sustained
or transient oscillations emerging in different frequency bands,
in accordance with experimental results for primate and humans
performing working memory tasks.234–237 Due to the possibility of
reproducing working memory operations associated with popula-
tion bursts delivered at different frequencies, the neural mass model
with short-term plasticity presented in Ref. 207 can represent a first
building block for the development of a unified control mechanism
for working memory, relying on the frequencies of deliverance of
the self-emerging trains of population bursts. However, a develop-
ment toward realistic neural architectures would require to design a
multi-layer network topology to reproduce the interactions among
superficial and deep cortical layers.238
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Spike-frequency adaptation and post-synaptic plasticity can be
modeled, respectively, as an additive and a multiplicative term in
the evolution equation of the mean membrane potential in the exact
neural mass model. The novelty of this neural mass model, besides
not being heuristic, but derived in an exact manner from the micro-
scopic underlying dynamics, is that it reproduces the evolution of
the population firing rate as well as of the mean membrane poten-
tial. This allows us to get insight not only on the synchronized
spiking activity, but also on the sub-threshold dynamics and to
extract information correlated to local field potentials and electroen-
cephalographic signals, which are usually measured to characterize
the activity of the brain at a mesoscopic/macroscopic scale. Even
though these adaptation mechanisms can express tremendously dif-
ferent timescales, ranging from a few hundred milliseconds (e.g.,
spike-frequency adaptation212) to days (e.g., postsynaptic receptor
density reduction224), the mean-field descriptions remain applica-
ble. However, note that a macroscopic model of synaptic plasticity
cannot express vesicle depletion at the presynaptic site,211 as intro-
duced for single cell models in Ref. 239. Finally, thanks to the
fact that adding spike-frequency adaptation leads to new collective
dynamical regimes exhibiting cross-frequency coupling among the
fast synaptic time scale and the slow adaptation one, the adaptive
mechanisms in the framework of exact neural mass models could
be useful to develop new models of self-organizing biological neu-
ral circuits that produce rhythmic outputs even in the absence of
rhythmic input. An example could be the central pattern generators,
which are responsible for the generation of rhythmic movements,
since these models are often based on two interacting oscillatory
populations with adaptation, as reported for the spinal cord240 and
the respiratory system.241

D. Therapeutic reshaping of plastic networks—By

Peter A. Tass

Regular deep brain stimulation is the gold standard for treat-
ing medically refractory Parkinson’s patients.242–246 In patients with
advanced Parkinson’s disease, it was shown that regular deep brain
stimulation plus medication was superior to medication alone.247

Notwithstanding its therapeutic efficacy,248,249 side effects are an
issue.250–253 In fact, regular deep brain stimulation may cause char-
acteristic side effects denoted as deep brain stimulation-induced
movement disorders.254,255 Treatment efficacy is another limitation.
Regular deep brain stimulation administered to the standard tar-
gets, subthalamic nucleus, or globus pallidus internus is not effective
for the therapy of gait and other so-called axial symptoms, e.g., bal-
ance and posture impairment, and hardly improves or even worsens
speech as well as affective and cognitive symptoms.256–259

Abnormal neuronal synchrony is a hallmark of Parkinson’s
disease.260 Based on computational modeling, it was suggested to
specifically counteract abnormal neuronal synchrony by desynchro-
nizing stimulation with phase-dependent stimulus delivery261 or by
administering compound stimuli, which cause desynchronization
irrespective of the initial dynamic condition.262,263 By design, coor-
dinated reset stimulation employs comparably weak, phase resetting
stimuli and does not require sophisticated calibration procedures.263

Accordingly, it was selected for pre-clinical studies (animal experi-
ments) and clinical studies. Initially, coordinated reset stimuli were

suggested to be delivered in a demand-controlled manner in a
closed-loop setting, e.g., by delivering coordinated reset stimuli
whenever a neuronal population gets resynchronized or by adapt-
ing the amplitude of the coordinated reset stimuli to the amount
of synchrony.263 At that time, no implantable pulse generators for
coordinated reset stimulation were available for clinical tests.246,264

Engineering-based concepts led to the development of closed-loop
brain stimulation devices that recorded muscular or neuronal activ-
ity to suppress unwanted neuronal activity whenever detected.265,266

Routine clinical applications of closed-loop deep brain stimulation
still require a number of issues to be resolved.267

In contrast, based on principles of adaptive dynamical systems,
a qualitatively different stimulation approach was computationally
developed.268 Adaptivity is a fundamental feature of the nervous
system and, in fact, the entire body to cope with complex physio-
logical processes subjected to environmental changes; see Secs. III A–
III C, III E, and III F. By the same token, adaptive as well as maladap-
tive, i.e., less favorable responses to pathological changes, are key to
disease mechanisms. For instance, in Parkinson’s disease, a lack of
dopamine initiates a cascade of functional and structural changes.269

To specifically counteract disease-related adaptive changes, synaptic
plasticity159,191 (see also Secs. III B and III C), specifically spike-
timing-dependent plasticity,14,27,162,163 was incorporated in neuronal
network models used to design therapeutic stimulation, giving rise
to a radically new stimulation and treatment concept.268

It was observed that coordinated reset stimulation can shift
a network from an unfavorable, synchronized attractor to a more
favorable, desynchronized attractor (Fig. 5).268 From then on, coor-
dinated reset stimulation and further variants were computation-
ally developed and optimized to robustly cause an “unlearning”
of pathological synchrony and synaptic connectivity, in this way
causing long-lasting therapeutic effects.268,270–277 A series of compu-
tational studies revealed novel stimulus response characteristics of
neural networks with spike-timing-dependent plasticity:

• Rebound of synchrony after cessation of stimulation: Directly
after cessation of coordinated reset stimulation, synchrony may
reemerge and then spontaneously fade while further approach-
ing the desynchronized attractor.270

• Cumulative effects: Effects of coordinated reset stimulation may
accumulate over time,278 and stimulation pauses may even
improve the outcome.108

• Acute vs long-term effects: Acute stimulation effects (observed
during stimulation) and long-term effects (emerging when the
system relaxes into a stable state after cessation of stimulation)
may differ substantially.272,274 One can even decouple neurons,
i.e., reduce their synaptic weights, without desynchronization
during stimulation.274 In fact, acute effects do not necessarily
serve as predictive markers for a long-term outcome.272,274

• Transition to non-invasive stimulation: Long-term effects are
favorable because they enable to reduce stimulation time and,
hence, potentially reduce side effects. However, a profound
advantage of this type of stimulation is that it does not
require implants to permanently deliver stimulation. Rather,
as predicted theoretically,279,280 non-invasive stimulation can be
delivered occasionally or regularly for a few hours. Non-invasive
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FIG. 5. Schematic illustrating how desynchronizing stimulation induces long-last-
ing therapeutic effects by leveraging plasticity. Spike-timing-dependent plasticity
is a fundamental plasticity mechanism of the nervous system, which adapts
the synaptic strengths based on the relative timings of post- and presynap-
tic spikes.14,27,163 Neural networks with spike-timing-dependent plasticity typi-
cally display bi- or multi-stability of stable states with stronger synchrony and
synaptic connectivity and stable desynchronized states with weaker synaptic
connectivity,16,268,270,272,274,278 as illustrated by a simple double-well potential
here. These states serve as models for pathological and physiological con-
ditions. Coordinated reset stimulation may shift the network into the basin of
attraction of a stable desynchronized state, in this way causing a long-lasting
desynchronization.268

therapies are typically less risky and more appropriate for larger
patient populations.

• Functional restoration: Not only stimulation-induced unlearn-
ing of abnormal synaptic connectivity and neuronal
synchronization,268 but also reshaping network connectivity
by differentially up- or downregulating different synaptic
connections276 may contribute to restoration of function.

• Different plasticity mechanisms: In Parkinson’s disease patho-
physiology, both spike-timing-dependent plasticity and struc-
tural plasticity281,282 are important269 and may induce different
stimulation responses.283,284

These computationally derived predictions and results enabled to
design appropriate protocols for pre-clinical and clinical studies.

Invasive coordinated reset studies: Coordinated reset deep brain
stimulation was successfully tested in Parkinsonian monkeys.280,285–287

For instance, a few hours of coordinated reset deep brain stimula-
tion led to therapeutic effects lasting for one month.280 In addition,
cumulative and long-lasting desynchronizing and therapeutic effects
were observed in Parkinson’s patients treated with coordinated reset
deep brain stimulation.264

Non-invasive coordinated reset studies: Vibrotactile coordi-
nated reset fingertip stimulation was developed to provide patients
with a non-surgical and non-pharmacological treatment option.288

To this end, instead of administering electrical bursts through depth
electrodes, weak, non-painful vibratory bursts were non-invasively
delivered in a coordinated reset mode to patients’ fingertips.288

A first in human study289 as well as pilot studies290 showed that
vibrotactile coordinated reset stimulation is safe and tolerable and

revealed a statistically and clinically significant reduction of Parkin-
son’s disease symptoms off medication together with a significant
reduction of high beta (21–30 Hz) power in the sensorimotor cortex.
Remarkably, also, axial symptoms, difficult to treat with regular deep
brain stimulation, responded well to vibrotactile coordinated reset
in these studies.289,290 For illustration, see patient videos in Ref. 290.
Of note, Parkinson’s disease patients improved during a month-
long vibrotactile coordinated reset treatment when evaluated after
medication withdrawal, indicating a substantial improvement of
the patients’ conditions.290 These findings indicate that a vibro-
tactile coordinated reset treatment might even have an impact on
metabolic and degenerative processes,290,291 e.g., by slowing or even
counteracting degeneration-related processes, e.g., vicious circles
giving rise to oxidant stress and mitochondrial impairment, caus-
ing a bioenergetic crisis and the death of dopamine neurons in the
substantia nigra.292–294

In summary, instead of simply suppressing unwanted neu-
ronal activity, based on principles of adaptive dynamical systems,
appropriately designed stimulation techniques intend to induce sus-
tained therapeutic effects by moving affected neural systems to more
favorable attractors (Fig. 5).

E. Music and adaptivity—A physical culture theory—By

Rolf Bader

Understanding music is an interdisciplinary task.295 Musical
instruments are built such that we can listen to them, actively play
them, use them in social contexts, or use them in terms of individ-
ual demands and tasks. Therefore, scientific disciplines, such as the
physics of musical instruments, music psychology and neuromusi-
cology, music sociology, or political science, must interact to arrive
at a holistic understanding of music. Furthermore, the role of music
in culture, technology, economy, ethnicity, or its interactions with
natural resources, such as wood or alternative material for musical
instrument building, needs to be considered.

Therefore, music is a constant adaptation process. Listeners
adapt to new musical pieces. Musicians adapt to audiences, new
musical instruments available, or new ideas of compositional tech-
niques. Instrument builders adapt to contemporary sound and per-
formance demands, new materials, or new technologies. Society
adapts to new musical pieces, genres, or ways of music presenta-
tions, such as mass media or streaming platforms. Such adaptations
are processes, including changing strategies, emotional reactions, or
the development of new abilities. The participants of such adapta-
tions might welcome and deal with or might try to reject and oppose
new developments.

In contemporary research, each scientific discipline uses its
own methods for understanding and predicting music.295 Music psy-
chology often uses statistics or Bayesian methods. Musical acoustics
involves mainly analytical equations and discretization methods,
such as finite-element or finite-difference methods. Music ethnol-
ogy is still dominated by heuristic and historical methodology, while
computational or analytical ethnomusicology also includes math-
ematical modeling, e.g., of tonal systems. In all fields, machine
learning methods have become more and more important like con-
nectionist models are nearly always used for composition (see, e.g.,
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Briot et al.296 for an overview) or self-organizing Kohonen maps297

are often used for the analytical purpose.298–300

The methodologies used, therefore, strongly depend on the
subfields, but some also intertwine, e.g., in the field of psycho-
acoustics, relating physics to perception, using algorithms calculat-
ing loudness, brightness, pitch, spatial audio, or the like. Still, to
arrive at a common, robust, suitable algorithm able to model music
in a global, holistic way in the future, also including extra-musical
players, such as ecology, economy, or politics, a common ground is
needed, not debatable among the very diverse disciplines involved.
For example, a physical culture theory suggests music as an adap-
tive system to consist of impulses, physical energy bursts sent out,
returning with a specific damping, thereby causing new impulses.301

In its most general form, the impulse pattern formulation can be
written as a system parameter g representing an impulse sent out
by one subsystem. This impulse is reflected at n other subsystems
with damping parameters α and βk for each reflection point k, such
as302,303

g+ = g − ln

(

1

α

(

g −

n
∑

k=1

βke
g−gk−

))

. (19)

The system parameter g is updated at each iteration step to
g+, taking the most recent g and the previous gk− into considera-
tion. The logarithm reflects the exponential damping found in most
systems. Adaptation is present for g+ = g; e.g., with musical instru-
ments, g can be taken as a periodicity of a musical tone. During the
initial transient phase, g+ ! = g, and the system struggles, leading
to a complex initial transient sound. After the initial phase, a sta-
ble periodicity is reached, and a musical pitch is heard. For example,
with a guitar, two subsystems are present, the string and the gui-
tar body, both with their own eigenfrequencies. Still, when playing a
note, the string’s vibration takes over the guitar body’s vibration; i.e.,
the body adapts to the string’s pitch. Therefore, the impulse pattern
formulation is able to model the guitar tone very precisely, which is
especially reflected in the length and complexity of the initial sound
phase.302

Such an impulse pattern formulation algorithm is scale-free
and, therefore, able to model and predict very small networks as
well as overall or general behavior fast and precise in musical
acoustics303,304 or music perception and action.305 Such a self-
organizing system is found as a basis for all musical instrument fami-
lies. Moreover, it is the basis of brain dynamics306 and all interactions
in society or politics.

For such a system to work for aesthetic and artistic matters,
consciousness and conscious content, such as experiencing sound,
vision, emotion, or any kind of cognition, need to be incorporated.
The physical culture theory assumes conscious content to be spa-
tiotemporal electric fields in the brain, complex enough to arrive at
experiences of all kinds. Such a spatiotemporal field again is noth-
ing but a complex impulse pattern. Brain dynamics is, therefore,
no longer taken as an interplay of bottom-up and top-down pro-
cesses but as a complex, self-organizing system. Localization of brain
regions processing certain tasks, such as audition, vision, or think-
ing, is still evident in this picture, as auditory input enters the brain
through the ear, cochlear, and auditory pathway to end in the audi-
tory cortex (as, e.g., in the auditory oddball paradigm; see Fig. 4 and

Secs. III B and III F). Still, already within this brain network, cir-
cular neural processing is often present, nearly directly connecting
the cortex to the cochlear in the inner ear and back up to the cortex.
Therefore, adaptation of the brain to an external input is an active
process involving the whole brain, although the input of sensory
information can clearly be located.

In such global musical networks, stable, bi-stable, bifurcat-
ing, complex, or chaotic scenarios occur.302 In terms of musical
instrument sounds, a stable musical pitch is only established after
a complex initial transient sound phase. Each new tone of a melody
needs to undergo such changes. This also holds for brain activity.307

In ensemble playing, the interaction of musicians reacting to co-
musicians’ performances is also undergoing such complex changes.
Therefore, the whole system is a constant interplay of surprise and
adaptation to changing scenarios. Although such adaptation might
work, leading to a steady state, it also might fail to arrive at more
extended times of chaos, noise, or bifurcating sounds. Adaptation
and disruption are, therefore, two essential and ever-repeating sides
of music on all levels, with sound, musical pieces, musical genre
formation, or music history.

F. Adaptation in auditory cortex explained by

modulations of synaptic coupling—By Aida Hajizadeh

Most sounds, such as speech and music, evolve and unfold in
time, and yet, the brain perceives them as one whole continuous
entity (see also Sec. III E). For this, the brain needs to exhibit a
memory mechanism whereby incoming stimuli are represented and
integrated with the trace of the stimuli extending to the immedi-
ate past. This ability is termed temporal integration. While source
localization and spectral analysis are suggested to be the task of sub-
cortical areas, temporal integration of sounds is proposed to occur
in the auditory cortex.308 In an attempt to understand how auditory
cortex performs temporal binding, it was shown by intracranial and
extracranial measurements that neural responses in auditory cortex
are context sensitive.309,310 That is, the neural response to a stimu-
lus is modified when the same stimulus is presented in the context
of different stimuli where this sensitivity is a function of both tem-
poral occurrence and spectral content of the preceding stimuli.311–313

The simplest form of context sensitivity in the auditory cortex occurs
when the same stimulus is presented repetitively with a constant
stimulus onset interval. The result is a gradual reduction of the
magnitude of the neural responses and is termed adaptation. Adap-
tation is stimulus specific and a function of the interval between the
stimulus onset interval.314

The stimulus-specificity of adaptation was shown in odd-
ball paradigms, where the repetitive presentation of a frequent
standard stimulus is interrupted by an infrequent deviant stimu-
lus (see also Fig. 4 in Sec. III B). The magnitude of the neural
responses to the standards is smaller than the magnitude of the
responses to the deviants.309,312 This is known as stimulus-specific
adaptation and the mismatch responses in invasive and noninva-
sive measurements, respectively.311,312 Despite decades of research
on adaptation and its relevance for stimulus-specific adaptation and
mismatch responses, understanding how adaptation takes place in
auditory cortex remains challenging. Already single neurons, due to
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their intrinsic properties, show adaptation, which is termed spike-
frequency adaptation (see also Sec. III C).314 Adaptation is observed
in the auditory nerve fibers of the cochlea as well as in the infe-
rior colliculus and thalamus, which act as relay stations between
the cochlea and the auditory cortex. There are reasons why adap-
tation in auditory cortex is neither only the result of single neurons
adapting to the stimulus statistics nor just inherited from the sub-
cortical regions.157,314 The time scales at which single neurons in
different stations along the auditory pathway exhibit adaptation are
different from those occurring in the auditory cortex.314,315 Unlike
in the nonlemniscal pathway, adaptation does not occur in those
subdivisions of the inferior colliculus and thalamus in the lemnis-
cal pathway, which target the primary auditory cortex (i.e., the core
area).312,314 Along the auditory pathway, adaptation manifests itself
in more complex ways with its time scales in the auditory cortex
adapting to the time scales of the stimulation.312,314

Neurons in the brain form networks and do not appear in
isolation. The contact points between neurons are synapses whose
dynamics are highly plastic. One prevailing view on the underly-
ing mechanisms of adaptation in auditory cortex is that it is due
to modulations of synaptic coupling between neurons. However,
what accounts for modulations of synaptic coupling is an ongo-
ing debate.316,317 Short-term synaptic depression has been hypoth-
esized to be one plausible physiological mechanism176,318–320 (see also
Secs. III B and III C). This type of synaptic plasticity, which occurs
due to the repetitive stimulation of the pre-synaptic neurons, is
mainly based on vesicle depletion and desensitization of release sites
and calcium channels on the synapses of the pre-synaptic neurons.161

Short-term synaptic depression occurs at time scales that are similar
to the time scales of context sensitive responses, and it has a high
functional relevance for temporal filtering,321 gain control,219 and,
although counterintuitively, efficient information transfer between
neurons.322

In our research, we implemented dynamics of short-term
synaptic depression in a computational model whose network
structure is based on the anatomy of the mammalian auditory
cortex.323–325 The auditory cortex of mammals is characterized by the
hierarchical core-belt–parabelt structure, where each of these three
areas is subdivided into tonotopically organized fields.326,327 The
model comprises mean-field excitatory and mean-field inhibitory
cell populations, which are characterized by nonlinear firing rates.
The interconnection between cell populations is modulated by
short-term synaptic depression according to the spectrotemporal
pattern of the stimulation. The linearized form of the state equa-
tions together with the slow–fast approximation of the equation
for short-term synaptic depression allows for the analysis of the
model dynamics in terms of damped harmonic oscillators, i.e., nor-
mal modes.324,325 We could show that the properties of the normal
modes (i.e., frequency, phase, initial amplitude, spatial wave pattern,
and decay rate) are functions of the macro- (gross anatomy) and
micro-structure (synaptic weight values) of the auditory cortex net-
work as well as of the spectrotemporal pattern of the stimulation. In
this approach, the auditory cortex is viewed as a spatially extended
structure, and the activity elicited by an external stimulus propagates
in time and space. The dynamics of short-term synaptic depression,
which locally traces the stimulus history at the synapses, determine
the oscillations that are spread over the entire auditory cortex. In

this view, local and global population activities that are revealed by
intracranial and extracranial recordings, respectively, emerge from
the constructive and destructive interference patterns of superim-
posed normal modes. This contrasts with the traditional view where,
for example, an electromagnetic activity in the brain measured by
means of magnetoencephalography reflects the summed activity of
discrete local generators distributed over the auditory cortex. In
the normal-mode view, adaptation in the auditory cortex can be
described as modulations of the properties of these normal modes
due to the modulations of synaptic coupling, where the reduction of
a response magnitude is just a by-product.325

IV. ADAPTIVITY AND ARTIFICIAL LEARNING

In this section, different authors reflect on the meaning of
adaptivity in the context of artificial learning. Among other topics,
fundamental open problems in machine learning are discussed, as
well as some perspectives on how machine learning can be used to
solve physics problems and to create new control strategies for non-
linear (chaotic) systems are given. Toward the end of this section,
the role of artificial learning to understand and control complex
many-body systems and cooperative behavior is discussed.

A. Adaptivity is the key to success of neural

networks—By Sebastian Goldt

Deep neural networks have powered a series of breakthroughs
in machine learning over the last ten years. Since their early success
in computer vision,328–332 they have set new standards in natu-
ral language processing333–336 and the playing of complex games,
such as Go337,338 or Poker.339–341 Deep learning also increasingly
impacts the natural sciences;342 for example, deep neural networks
recently helped predict the 3D-structure of a nearly every human
protein343 in a breakthrough for structural biology. Further applica-
tions of machine learning to solve physics problems are also given in
Sec. IV B.

While neural networks used in machine learning are inspired
by biological neural circuits, such as the ones described in Secs. III B
and III C, the neurons in machine learning are much simpler than
biological neurons. Yet, it turns out that a different form of adaptiv-
ity is behind the success of deep learning. We illustrate this point
using the classic machine learning task of recognizing whether a
given image shows a cat or a dog. Given an image x, represented
by an array of pixel values, the classical approach was to com-
pute a vector x̃ of features344–346 that represents the image, which
is then fed into a classifier. Features could be the location of edges
in an image or the correlations between patches of the same image.
These features were designed a priori and required extensive domain
knowledge.

The key idea of deep learning is instead to learn the rele-
vant features directly from data. Therefore, rather than computing
a feature vector using a predefined set of transformations, we try
to learn a function fθ (x) that maps the raw images x directly to a
“label” y = ±1, indicating whether the image shows a cat or a dog.
A neural network is a particular functional form for fθ (x), usually
consisting of a series of alternating linear transformations and point-
wise non-linear functions.347 The adjustable parameters θ , called
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weights, determine what the transformations compute exactly. They
are found by maximizing the prediction accuracy of the network on
a given set of images , which is called “training” the network.348 In
practice, simple first-order optimization methods, such as stochastic
gradient descent, work best.349,350 Training a neural network is, thus,
a general-purpose procedure to obtain features that are well-adapted
to the input data and the task at hand.

From a theoretical point of view, the success of this approach
is surprising for several reasons. For example, fitting a function in a
high-dimensional space, such as the space of natural images, suffers
from the curse of dimensionality: the number of samples required
to estimate such a function accurately scales exponentially in the
input dimension.351 Many current research activities, for example,
in statistical physics,342,352–354 are currently working to reconcile the
success of neural networks with the curse of dimensionality.

One key to this puzzle is that images are not as high-
dimensional as they seem. Most of the points in the high-
dimensional input space do not represent images (at least not to a
human observer) and instead look like random noise. The points
that do represent real images tend to concentrate on a lower-

dimensional manifold in input space, sketched as a two-dimensional
curved surface in Fig. 6. While the manifold is not easily defined, it
is tangible: its dimension has been estimated numerically355–359 and
found to be 10–100 times smaller than the image dimension.

It is difficult to analyze the impact of the low intrinsic dimen-
sion of images on neural networks theoretically, because we lack
the mathematical tools to reason about real-world data. A series
of works, therefore, introduced models of data with low intrinsic
dimension, such as object manifolds,362 the hidden manifold,360,363

or the spiked covariate model.364,365 Each of these models offers a
controlled environment in which the adaptivity of neural networks
can be studied, using tools from statistics or statistical physics. One
result of these studies is that neural networks can indeed adapt
to lower-dimensional manifolds in their data better than classical
methods of machine learning, such as kernel methods.364,366–371

These results set the blueprint for a research program that
aims to understand the interplay of neural networks and the data
on which they operate. What are the (potentially) low-dimensional
structures in other data modalities, such as the human language or
amino acid sequences, that neural networks can exploit?

FIG. 6. The manifold structure of realistic images. Each black dot indicates a point in a high-dimensional space, which could be an input for neural networks. In the eye of
a human observer, most inputs in this space resemble random noise, such as the “images” shown on the left. Neural networks exploit the fact that realistic images tend to
concentrate on a lower-dimensional manifold in input space, sketched here as a two-dimensional curved surface. Figure adapted from Goldt et al., Phys. Rev. X 10, 041044
(2020). Copyright 2020 American Physical Society.360 Images are taken from the ImageNet361 data set [Deng et al., “ImageNet: A large-scale hierarchical image database,”
in 2009 IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2009), pp. 248–255. Copyright 2009 IEEE.].
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B. Machine learning applications in physics—By

Alireza Seif

Machine learning tools have found extensive use in the study
of physical problems.342 While it is not possible to provide an
exhaustive list of these applications in this Perspective, we high-
light a few examples related to statistical physics, namely, learning
and sampling from equilibrium distributions,372 classifying phases
of matter,373,374 estimating free energy differences,375 identifying the
direction of time’s arrow,376 and estimating entropy production.377

For a comprehensive review of machine learning in physical sci-
ences, readers may refer to Ref. 342. However, the relationship
between physics and machine learning is not one-sided. Tools from
theoretical physics have illuminated how machine learning tools
function352 (see also Sec. IV A). In the following, we examine these
two directions through the lens of adaptivity.

First, we examine how machine learning can be applied to solve
physics problems, with a focus on the role of adaptivity. In particu-
lar, we consider supervised learning tasks where input–output pairs
are provided, and the objective is to train a neural network to accu-
rately predict the target output value given an input. As discussed
in Sec. IV A, adaptivity plays a crucial role in training the networks.
In the optimization process, the network’s weights are adjusted to
minimize the difference between the predicted and target output val-
ues so that the network can make accurate predictions. However,
as we discuss in this section, the network’s prediction can be fur-
ther enhanced by adapting to the history of previous inputs. This
additional degree of adaptivity is particularly useful when working
with sequential data. Recurrent neural networks allow for this type
of adaptive inference by using an internal state that depends on the
input at the previous step. Given a sequence of input tokens xt ∈ R

nv

and the hidden state ht ∈ R
nh at time step t, this dependency can be

captured as378

ht = f(xt, ht−1; θ), (20)

where f represents a neural network parameterized by θ . In the most
basic form, the output of the network yt can be calculated by apply-
ing another parameterized function to ht. While in principle, these
networks can capture long-term dependencies in a sequence, it has
been shown that training them can be challenging due to vanishing
or exploding gradients.379 More complicated constructions of recur-
rent neural networks, such as long short-term memory networks,
solve this problem using a self-loop that allows the gradient to flow
for longer.380 Modern machine translation tools build on these net-
works to map sequences in one language to sequences in another
(seq2seq).334

Among many applications of these models in physics, we
briefly discuss inferring force fields from the trajectory of particles381

and chaotic time-series forecasting.382 Reference 381 considers the
problem of inferring the force field in overdamped Brownian
motion. Specifically, the input xt represents the position of the Brow-
nian particle, and the output is the parameter(s) that describe the
functional form of the potential. For example, in the case of a har-
monic potential U(x) = 1

2 kx2, the output of the network at the final
step represents the inferred value of k. The recurrent neural network
is shown to outperform conventional methods with limited data
and can remarkably infer non-conservative time-dependent force

fields, which conventional methods cannot handle. Reference 382
focuses on forecasting the dynamics of chaotic systems following
the Kuramoto–Sivashinsky equation.383–385 The input is a discretized
scalar field in space at step t, and the desired output is the value of
the field at step t + 1. The authors use the framework of reservoir
computing386 (a recurrent neural network with an untrainable input-
to-internal-state mapping) to forecast the dynamics far beyond the
Lyapunov time. In addition, see Sec. IV C for a discussion on using
reservoir computing to control chaotic dynamical systems. In both
of these examples, the network’s internal state is adjusted based
on the input history [see Eq. (20)], allowing it to capture temporal
dependencies in the input data sequence.

The two examples discussed earlier demonstrate applications
of recurrent neural networks in solving physics problems. However,
it is also important to examine the reverse direction, where physics
problems can be used to better understand recurrent neural net-
works. Reference 387 provides a case study of this approach, where
a simple model for seq2seq tasks is used to investigate the impact of
the data distribution in learning using a physical problem. Specifi-
cally, it considers the stochastic switching-Ornstein–Uhlenbeck pro-
cess, which is a latent variable model that describes the trajectories of
a Brownian particle in a harmonic potential with a time-dependent
center that stochastically alternates between two values. The non-
Markovianity of the input sequence is controlled by varying the
distributions of waiting times between these alternations. The goal
is to infer the current location of the center from the particle’s past
trajectory. The authors use several machine learning models for this
task and demonstrate that increasing the memory of the learning
model always improves the accuracy of the predictions, whereas
increasing the non-Markovianity of the input sequences can either
improve or degrade performance. They also identify an intrigu-
ing relationship between the performance of a learning model and
distinct phases in the stationary state of the stochastic switching-
Ornstein–Uhlenbeck process. In this case, as the memory of the
learning model is increased, the network becomes more adaptable
to longer-term dependencies in the input sequence, which in turn
leads to improved performance.

The two-sided relationship between physics and machine
learning is still in its early stages of development, leaving plenty
of opportunities for further exploration. On the one hand, arti-
ficial intelligence can aid in discovering and explaining scientific
phenomena, with emerging techniques, such as natural language
processing models, potentially facilitating communication between
users and algorithms.388 On the other hand, statistical physics has
already been used to provide theoretical insights into the behavior
of deep learning,352 and the theory of adaptive systems could prove
particularly valuable in understanding the role of data structures and
the dynamics of learning in recurrent neural networks.

C. Controlling dynamical systems—By Daniel Gauthier

In this section, we consider controlling complex dynamical sys-
tems using a closed-loop feedback based on a machine learning
approach known as reservoir computing. Here, the concept of adap-
tivity appears in at least two guises: the dynamical system being
controlled, often call the plant, and the controller. For a plant to
be controlled to desired behavior, we need to have access to some
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FIG. 7. A complex dynamical system controlled using a closed-loop feedback.
The controller is designed using an adaptive machine learning approach.

signals generated by transducers attached to the plant that can be
used to infer its dynamical state and have access to one or more
parameters that adjust the state of the plant as illustrated in Fig. 7.

The controller needs to process plant signals and perform infer-
ence to estimate the state, compare this to the requested plant
behavior, and generate control perturbations that are applied to
the adjustable system parameters. For complex dynamical systems,
especially those that display chaos, the control perturbations are a
nonlinear function of the plant’s state and requested behavior and,
therefore, fall in the category of a nonlinear controller. Tradition-
ally, nonlinear controllers require an accurate model of the plant,
which often entails substantial effort from expert control engineers
and mathematical model builders.

One highly successful alternative that was developed decades
ago for controlling chaotic systems is to take advantage of unsta-
ble sets that are the backbone of the chaotic system in phase space,
such as unstable periodic orbits.389,390 A chaotic system naturally vis-
its these unstable sets, and control perturbations are designed using
a linear algorithm that is valid in a local neighborhood of these
sets. Controlling other behaviors, however, requires a fully nonlinear
controller.

One approach for realizing a fully nonlinear controller is to
use machine learning to learn a model of the plant,391 referred to
as nonlinear system identification in the control engineering litera-
ture. Artificial deep neural networks in a feed-forward geometry are
known to be universal approximators of functions (see Sec. IV A)
and, hence, should be able to learn how to map measurements and
requested state to control perturbations. Here, a multi-layer net-
work of artificial neurons with nonlinear input–output functions
is trained by adjusting the network link weights using supervised
learning. While there has been good success using this approach,
the amount of data needed to train the network can be substantial,
making it difficult for the controller to adapt to changes in the plant.

Reservoir computing is a fast and low-data machine learning
approach especially well suited for learning models of dynamical

systems392 because it is also a dynamical system and it holds great
promise for controlling dynamical systems. As seen in the lower
dashed box of Fig. 7, the reservoir computer consists of an input
layer (red squares), a pool of neurons (green dots, the “reservoir”),
and an output layer (black squares). The neuron dynamics are
described by a differential equation that is driven by a nonlinear
function of the signals from the input layer and the output of other
neurons in the reservoir and has a simple exponential time con-
stant. Thus, it has short-term memory that can be matched to the
plant dynamics. The link weights on the input layer and the internal
“reservoir” of neurons are not trained; they are assigned randomly
at the outset, and only the weights of the output layer are trained.
This dramatically reduces the size of the training data as well as the
training computation time. Furthermore, the neural network can
perform multiple tasks by combining a single reservoir with differ-
ent trained output layers. One approach for controlling dynamical
systems with a reservoir computer is to train it to learn the inverse
of a dynamical system in the presence of control;393 that is, we train it
to learn the perturbations required to guide the system to the desired
state sometime in the future. This approach works well for systems,
such as a robotic arm, that display constrained low-dimensional
behavior, but a parallel deep architecture appears to be required for
controlling complex systems that display chaos.394 The training data
required for reservoir-computing inverse control appear to be on the
order of 10 000 data points and modest computation time, suggest-
ing that it can be used for real-time adaption of the controller as the
underlying plant changes its dynamics because of non-stationarity
or a damage event.

An open question is whether the data requirements can be
reduced further so that a small microprocessor typically found on
internet-of-things devices can be used to retrain the controller. Our
recent work395 that reformulates the reservoir computer as delay
lines of the measured plant signals followed by a nonlinear output
layer may be promising for this application because it reduces the
amount of training data by a factor of ten or more. However, it is
not yet clear whether this new approach gives up some adaptivity.
We are working on extensions of this work to balance the desire for
fast training with wide adaptivity.

D. Modeling complex adaptive human–environment

systems with multi-agent reinforcement learning

dynamics—By Wolfram Barfuss

Rapid and large-scale collective action is required to enter sus-
tainable development pathways in coupled human–environment
systems safely away from dangerous tipping elements396 (also, see
Sec. V E). The question, however, of how collective or coopera-
tive behavior—in which agents seek ways to improve their welfare
jointly—emerges is unresolved.397 Evolutionary game theory has
produced a sound equation-based analytical understanding of the
mechanisms for the evolution of cooperation.398 Yet, this was pri-
marily done with highly simplified models, lacking environmental
context and cognitive processes.399 These elements are the center
of artificial intelligence and cognitive neuroscience research,400,401

which only recently emphasized the need for developing cooper-
ative intelligence.402,403 Moreover, analyzing systems composed of
multiple intelligent agents typically requires expensive computer
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simulations, which are not straightforward to understand.404–407

Thus, little is known about how cooperative behavior emerges
from and influences a collective of individually intelligent agents in
complex environments.

There is a unique opportunity for adaptivity in non-linear
dynamical systems to help solve this challenge. Based on the link
between evolutionary game theory and reinforcement learning,408,409

we can model a collective of reinforcement learning agents as
a dynamical system. Doing so provides improved, qualitative
insights into the emerging collective learning dynamics,410 enabling
equation-based analytical tractability of agent-based simulations.

Here, reinforcement learning is the central adaptive mech-
anism (cf. “Reinforcement learning is direct adaptive optimal
control”;62 also, see Sec. II C). Reinforcement learning is a trial-
and-error method of mapping observations to actions in order
to maximize a numerical reward signal. The challenge is that
those actions can change the environment’s state, and rewards
may be delayed. Reinforcement learning is not only an artifi-
cial learning algorithm,401 it also has wide empirical support from
neuroscience,153,411 psychology,412 and economics.413–416 It is, there-
fore, ideally suited to model coupled human-nature systems.

In their seminal work, Börgers and Sarin showed how one
of the most basic reinforcement learning update schemes, cross-
learning,413 can converge to the deterministic replicator dynamics
of evolutionary games theory.417 The relationship between the two
fields is as follows: one population with a frequency over pheno-
types in the evolutionary setting corresponds to one agent with a
frequency over actions in the learning setting.408 Since then, this
analogy has been extended to other reinforcement learning variants,
such as stateless Q-learning,418,419 regret-minimization,420 and ficti-
tious play.421 Of particular relevance to modeling coupled human-
nature systems is the dynamic formulation of the general and widely
used class of temporal-difference learning,422 which is able to learn
in changing state-full environments.

Typically, the learning dynamics are derived by performing
a mathematical separation of timescales of the interacting process
with the other agents and the environment and the process of adapt-
ing the agents’ policy to gain more reward over time.423 Under the
complete separation of timescales, the dynamics become determin-
istic. One can understand such learning dynamics as an idealized
model of the multi-agent learning process, in which agents learn as
if they have a perfect model of the current environment, including
the other agents’ current behavior.424

This learning-dynamic approach offers a formal yet practical,
lightweight, and deterministically reproducible way to uncover the
principles of collective cooperation emerging from intelligent agents
in changing environments. We briefly highlight three examples;
for instance, it was found that, in contrast to non-changing static
environments, no social reciprocity is required for cooperation to
emerge in changing environments.425 The individual attitude of how
much the agents care for the future alone can adjust the setting
from a tragedy of the commons to a comedy, where agents predom-
inantly learn to cooperate. However, for this mechanism to work,
the severity of an environmental collapse must be sufficiently severe.
Another work showed how the agents’ irreducible uncertainty about
the actual environmental state can induce a tipping point toward
mutually high-rewarding cooperation. However, this is only valid

when all agents are equally uncertain about the environment.426 The
last example highlights how the same temporal-difference learning
dynamics can be used to model agents that not only learn to react to
their physical but also to their social environment, which is likewise
a pathway to mutually high-rewarding cooperation.427

Such learning-dynamic studies focus on understanding the
underlying principles of collective cooperation from intelligent
agents in complex environments. Therefore, these models are
reduced as much as possible to capture only the most essential
features. However, evidence from deep multi-agent reinforcement
learning studies shows that sustainable and cooperative behavior
can likewise emerge from intelligent agents in high-dimensional
environments.428–430

The advantage of the learning-dynamics approach is that it
opens up all the tools of dynamical systems theory to the study of
collective learning; for instance, the learning dynamics have been
found to exhibit multiple dynamic regimes, such as the convergence
to fixed points, limit cycles, and chaos,419,422 critical transitions with
a slowing down of the learning processes at the tipping point,426

and the separation of the learning dynamics into fast and slow
eigendirections.426

Future work in many directions is required to build this
approach of adaptivity in non-linear dynamical systems into a
new way of modeling human–environment interactions and socio-
economic systems (see Sec. V). First, the presented learning dynam-
ics need to become applicable to the system with many agents, using
various types of mean-field approaches.431–433 Second, the learning
dynamics need to consider the effect of intrinsic noise, which can
substantially alter their collective behavior427,434 (see also Sec. II B).
Third, the learning dynamics needs to be advanced to be able to
model more refined notions of cognition, such as representation
learning, learning and using intrinsic world models, and intrin-
sic motivations (see also Sec. III). A social-ecological resilience
paradigm of multi-agent environment interactions, in turn, can
benefit such endeavors.435,436

E. Biomimetic intelligence for active matter—By

Giovanni Volpe

Over billions of years of evolution, motile micro-organisms
have developed complex strategies to survive and thrive in their
environment by integrating three components (Fig. 8): sensors, actu-
ators, and information processing. Their biochemical networks and
sensory systems are optimized to excel at specific tasks, such as to
climb chemical gradients,438 to cope with ocean turbulence,439 and
to efficiently forage for food.440,441 They have also acquired com-
plex strategies to interact with their environment and with other
micro-organisms, leading to the emergence of macroscopic collec-
tive patterns442 (also, see Sec. IV D). These patterns are driven by
energy conversion from the smallest to the largest scales and per-
mit micro-organisms to break free some of their physical limits;
for example, dense systems of bacteria develop “active turbulence”
at length scales where only laminar flows are expected from the
underlying physical laws.443,444

There are both scientific and technological reasons that
are driving the quest toward biomimetic artificial active matter.
Scientifically, biomimetic systems capable of harnessing energy and
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FIG. 8. Active matter with embodied intelligence. Bacteria, sperm cells, and ants are biological examples of active particles with embodied intelligence. They feature intelligent
behaviors that permit them to survive and thrive in their ecosystem thanks to the integration of sensors, actuators, and information processing. Their behaviors also adapt
to complex environments (e.g., foraging for food), and their dynamic interactions lead to collective emerging behaviors (e.g., swarming and hunting). The challenge is now to
draw inspiration from nature to create microscopic artificial active particles with embodied intelligence that mimic these adaptive and dynamic emerging behaviors. Adapted
from Cichos et al., Nat. Mach. Intell. 2, 94–103 (2020). Copyright 2020 Springer Nature.437

information flows are ideal model systems to investigate and test
physics far from equilibrium, which is one of the greatest challenges
for physics in the twenty-first century. Technologically, biomimetic
active particles hold tremendous potential as autonomous agents
for healthcare, sustainability, and security applications: for example,
enabling the targeted localization, pick-up and delivery of micro-
scopic objects in bioremediation, catalysis, chemical sensing, and
drug delivery.445

In the last two decades, the active-matter research field has tried
to replicate the evolutionary success of micro-organisms in artificial
systems.445 Researchers have replicated the actuators by developing
artificial active particles that extract energy from their environ-
ment to perform mechanical work.446,447 Albeit to a lesser extent,
they have also been able to replicate the sensors by making these
active particles adjust their motion properties (e.g., their speed) to
chemical, thermal, or illumination stimuli.448,449 However, these arti-
ficial particles are still largely incapable of autonomous information
processing, which is dramatically limiting the potential of artificial
microscopic active matter to provide scientific insight and techno-
logical applications.437 Thus, the active-matter research field is now
confronted with several open challenges to create truly autonomous
active particles.

1. Make active particles capable of autonomous
information processing

Currently available active particles lack the complexity neces-
sary for autonomous information processing. In fact, active particles
are still rather simple in shape and behavior.445 They are often
Janus microspheres or microrods with different materials on their
two sides, which can self-propel and sterically interact with each
other. This physical simplicity is a consequence of the relative sim-
plicity of the employed design and fabrication processes, which in
turn limits the range of behaviors achievable by the active parti-
cles. Despite this simplicity, the study of active particles has already
led to major breakthroughs, such as to understand how plank-
ton copes with turbulence439,450,451 and to program self-assembling
robotic swarms.452,453

Motile micro-organisms exhibit more powerful and flexible
strategies to survive and thrive in their environment. Even the
simplest motile bacteria have evolved intelligent behaviors by fol-
lowing powerful adaptive strategies encoded in their shape, bio-
physical properties, and signal-processing networks: not only can
they extract energy from their environment to move and interact
with other bacteria, but they can also extract information by sens-
ing their environment and adjust their behavior accordingly.438 The
challenge is now to make active particles capable of autonomous
information processing, such as living motile micro-organisms. This
can be addressed by pushing the boundaries of design and micro-
fabrication techniques to build microscopic active particles with
embodied intelligence (microbots).454 These microbots will be able to
sense their environment, to differentiate stimuli, and to adapt their
behavior toward determinate goals.

2. Optimize the behavioral strategies adopted by
individual active particles

The behavioral strategies that can be adopted by active par-
ticles are still very limited. There have been several studies on
the behaviors of active particles in response to the properties of
their environment;445,455–457 for example, the presence of periodic
arrays of static obstacles alters the preferential swimming direction
of self-propelling active particles, a fact that permits one to sort
microswimmers on the basis of their swimming style.456 However,
these behaviors are still rather simple and rely on in-built properties
of the active particles that cannot be changed at will or adapted to
different environmental conditions. This is a consequence of their
limited capability of gaining information about their environment
and reacting accordingly.

More complex behaviors have been achieved using micro-
organisms instead of active particles; for example, the presence
of obstacles in the environment has permitted to alter the path-
way toward the formation of multicellular colonies of bacteria.458

Also, genetically modified bacteria whose speed is controllable by
light have been arranged into complex and re-configurable density
patterns using a digital light projector.459,460 The optimal behav-
iors in complex environments are often not obvious; for example,
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let us consider the foraging problem,440,441 where an active parti-
cle performs a blind search to catch some sparse targets. When the
environment does not present spatial features, the number of caught
targets is maximum for a Lévy-search strategy440,441 (even though this
is still an active research field461). Surprisingly, in a porous medium,
the optimal strategy mixes Lévy runs and Brownian diffusion.462

The challenge is now to discover, understand, and engineer
intelligent behavioral strategies that can be autonomously adopted
by active particles with embodied intelligence. This can be addressed
by designing and engineering the behavior of microbots to enable
them to autonomously perform directed tasks in complex environ-
ments, such as efficient navigation, target localization, environment
monitoring, and conditional execution of actions.

3. Optimize the interactions between active particles

Currently, active particles cannot communicate with each
other beyond interacting through some simple physical interac-
tions. Natural systems, such as swarms of midges, schools of
fish, and flocks of birds, have evolved powerful sensing capa-
bilities to gain information about their environments and to
communicate.463,464 The underlying behavioral rules are often hard
to identify.437,442,465,466 Active-matter studies provide the testing
grounds for new non-equilibrium descriptions, which are by neces-
sity often computational.467 They are either based on hypothe-
sized mechanistic models for local interactions,442 upon coarse-
grained hydrodynamic approximations,468 or on basic fluctuation
theorems.469 The question is often how local energy input and physi-
cal interactions determine the macroscopic spatiotemporal patterns.
Answers may be sought, e.g., by computational techniques.470–473

Differently from computational studies, most active-matter
experiments rely on very simple steric and short-range physical
interactions. Even these simple interactions can lead to interest-
ing complex behaviors and self-organization whose onset is often
observed in artificial systems where increased energy input above a
threshold density drives a phase transition to an aggregated state.
An example of such behaviors is the formation of “living crystals,”
which are metastable clusters of active particles.474,475

Much more interesting behaviors are observed when the inter-
actions between the active particles can be tuned at will. This can be
achieved by externally imposing interaction rules on the active par-
ticles; for example, external feedback control loops have been used
to create information-based individual dynamical behavior476, or
interactions477 between active particles, which explicitly depends on
the information about the position of other particles. Such complex
forms of interaction can also be achieved using macroscopic robots.
In fact, the field of robotics can serve as a major source of inspira-
tion for the development of active matter at the microscale;453,478,479

for example, some robots (5 cm in diameter) have been programmed
to respond to sensorial inputs with a delay and have shown that, by
controlling the delay, we can control the aggregation vs dispersion
of the robots.480–482

The challenge is now to identify and engineer optimal interac-
tion rules that can be embodied in active particles interacting with
other particles and with their environment. This can be addressed
by programming microbots with embodied interaction strategies
beyond the simple steric and short-range interactions employed

by current active particles. This will permit researchers to realize
microscopic swarms of artificial active particles capable of collective
intelligent behaviors and to engineer microscopic ecosystems where
multiple species of microbots and particles interact.

V. ADAPTIVITY IN SOCIO-ECONOMIC SYSTEMS

In this section, we provide a perspective on adaptivity from
socio-economic systems, including topics, such as the conception
of modern power grids, adaptive social interactions, and the role of
adaptive mechanisms in epidemiological and climatic models.

A. Adaptive networks and their importance for

epidemiology—By Philipp Hövel

Network epidemiology is a prime example of adaptive net-
works at work. Many infectious diseases spread via direct con-
tacts. These contacts can be captured by social, transportation, and
other logistic networks. They provide a mathematical framework
to formalize the interaction of individuals (humans or animals)
and, hence, potential paths of disease transmission. Locally, e.g.,
within a population or between group individuals, the dynamics
of pathogens are often described by compartment models, such
as the widely used susceptible–infected–recovered model originally
introduced by Kermack and McKendrick.483 Adaptivity must be
considered if the state of the networked system, say, the number
of infected, triggers an adjustment of the network structure with
the aim to mitigate an outbreak and to contain the disease. This
closes the mutually influencing feedback loop of the dynamics on
and of networks as depicted in Fig. 9: (i) The network structure gov-
erns the spreading of the disease (dynamics). (ii) In turn, the current
state of the system leads to changes in the structure of interactions
(networks).

The dynamics-induced changes to the network are often akin
to control schemes that involve minimizing a goal function to reach
a target state.9 Similarly, non-pharmaceutical containment proto-
cols, which demand a reduction of social contacts or restriction
of movement, can be based on, for instance, the number of new
infections. Prominent cases, where such applications of adaptive
networks have been successfully implemented, include the H1N1
pandemics in 2009,484,485 the Ebola epidemic in 2014,486 and—of
course—the on-going SARS-CoV-2 pandemic.487–490 In these exam-
ples, one prominent path of transmission was the global airline
transportation network, which has been accounted for in many
studies.491–493

Extensive numerical simulations are able to explore possible
interventions and quantify their impact. Key findings might be

FIG. 9. Schematics of the interplay between dynamics and networks.
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that international travel bans yield a limited delay of spreading as
demonstrated for Ebola in 2014486 or the feasibility of zero-COVID
or low-incidence strategies.494,495 They are also able to provide insight
into less than optimal adherence to containment measures.490 In
any case, these studies are valuable tools for policy makers to reach
evidence-based and data-driven decisions and to inform the public
about their potential impact.

The concept of adaptive networks for the study of epidemic
spreading of infections diseases has a long history and dates back
beyond the most recent examples of public health emergency of
international concern. Rewiring of susceptibles to avoid contact with
infected has been studied, for instance, by Gross et al.98,99 They
employed a low-dimensional compartment model, which allowed
an exhaustive bifurcation analysis, and identified dynamical pat-
terns, such as first-order transitions and hysteresis. In short, as long
as a node remained healthy, its network neighborhood evolved grad-
ually. However, the moment an infection occurs, the degree of a
node drops rapidly, and the node finds itself isolated until recov-
ery. Note that due to the small-worldness of many social networks,496

there could be situations, where rewiring would potentially deterio-
rate the situation because it might create new shortcuts through the
network that could—unintentionally—bring nodes closer to other,
distant regions of infection.

Besides travel restrictions, surveillance and monitoring of inci-
dence numbers are key ingredients for a rapid identification of an
outbreak. For that purpose, the introduction of sentinel nodes on
temporal networks has proven to be insightful and demonstrated
in the case of animal diseases.90,497 These nodes should be mon-
itored because of their position in the network that allows early
detection and reliable identification of the origin of the outbreak
for many different initial conditions. Therefore, they provide helpful
and detailed clues where the network could be best adjusted. Simi-
larly, screening a fraction of incoming patients has been shown to be
effective as potential control measure nosocomial infectious diseases
and the spread via hospital-referral networks.498,499 The impact of a
rapid response has been exemplified during the early stages of the
COVID-19 pandemic, where—in mainland China—containment
policies effectively depleted the susceptible population and resulted
in a subexponential growth of infection cases.488 Upon success-
ful containment, restriction can be relaxed again, and the network
returns to its original state.

Adaptive networks are a special case of time-varying or tem-
poral networks, where every edge has a time stamp and is active for
a certain amount of time.500,501 In epidemiology, in particular, the
sequence of contacts is crucially important. Only time-respecting
paths contribute to the transmission of a pathogen and the spread-
ing of a disease. Any interaction with contacts/neighbors in the
social network before their infection carries no risk of transmission.
Luckily, concepts, such as network controllability,502 can be easily
extended for temporal and multiplex networks.503,504 From a math-
ematical point of view, the temporal nature of networks—including
changes of their structure due to adaptation—can be implemented
by time-dependent adjacency matrices, which give rise to modeling
frameworks for the spreading of epidemics, such as the individual-
based and pair-based models.505–508

To sum up, adaptive networks play a central role not only for
realistic investigations of spreading dynamics but can help to study

and design interventions for disease containment, mitigation, and
eradication. With a further increase of data availability (often in
real time), models of network epidemiology become more and more
realistic and informative in their predictive power. Future chal-
lenges include the integration of purely epidemiological models and
a mathematical framework for the dynamics of social behavior and
opinion formation. This would lead the way for a holistic description
of disease spreading on adaptive networks.

B. Coevolutionary network dynamics in social and

epidemic systems—By Jan Mölter

In the context of dynamical systems on networks, one man-
ifestation of adaptivity is in so-called adaptive or coevolutionary
networks.99,509

A network is a collection of entities together with a relation
between these entities that are generally represented as nodes and
links, respectively. In a dynamical setting, every node is a dynami-
cal system that not only depends on its internal dynamics but also
on the dynamics of its neighborhood in the network, i.e., the set of
nodes it is linked to. Constituting for an adaptive network is the
idea that the topology of the network and, therefore, the interac-
tions between the individual nodes of the network are not static but
rather also dynamic, coupled to the dynamics of the nodes. As such,
we have a closed feedback loop in which the topology of the net-
work influences the dynamics of the nodes and the state of the nodes
influences the dynamics of the topology.99 Combining the so-called
dynamics on the network with the dynamics of the network in that
way is what makes the system fully adaptive (see Fig. 9 in Sec. V A).

To make this more concrete, let us consider the paradigmatic
example of the adaptive voter model,511,512 which is an extension
of classical models of opinion or consensus formation.513,514 In this
model, one considers a population in which every individual sub-
scribes to one of two contradictory opinions and in which the social
relationships are encoded in some social network. As for the dynam-
ics, one assumes that at each time step, individuals either adapt their
opinion to the opinion of individuals in their neighborhood or that
they break off their relationship with individuals of opposing opin-
ions and rather connect with others of the same opinion. While
the former corresponds to the dynamics on the network, the lat-
ter corresponds to the dynamics of the network. Depending on the
relative strength of these two processes, in expectation, the popula-
tion eventually reaches either a dynamic equilibrium characterized
by non-vanishing prevalence of pairs of connected individuals with
opposing opinions or a static equilibrium where the underlying
social network fragments so that in every component, only one
opinion prevails.511,515,516

Another paradigmatic example besides the adaptive voter
model is that of an adaptive susceptible–infected–susceptible (SIS)
epidemic.98 One considers again a population on an underlying
social network that encodes the relationship between individu-
als. Every individual is then exposed to an SIS epidemic, mean-
ing that individuals start off as susceptible, become infected at
some rate when individuals in their neighborhood are infected, and
upon recovery at another rate are susceptible again.517 In addition
to these epidemic transitions, one allows, similar to the adaptive
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voter model, that susceptible individuals can break off the relation-
ship with infected individuals and instead connect to a susceptible
individual.98 Now, for the SIS epidemic and in expectation, it is
well-known that at a critical infection rate, the system exhibits a
supercritical transcritical bifurcation and beyond which the system
eventually reaches an endemic dynamic equilibrium as opposed to
the epidemic dying out. In contrast, due to the adaptivity, this bifur-
cation can turn from supercritical to subcritical, the consequence
being that a region of bistability emerges and the transition to an
endemic equilibrium is not continuous anymore.98,518

While these examples both illustrate the idea behind adaptive
or coevolutionary networks in the sense that dynamics on the net-
work and of the network depend on each other, they also highlight
the fact that adaptivity can induce fundamental changes in the phe-
nomenology. This suggests that, when developing models of the
natural world, it can be paramount to take adaptive dynamics into
account.

Recognizing the importance of adaptive networks, many
research studies have been done focused on different aspects of the
phenomenology that comes with adaptivity or extending existing
models by introducing adaptivity. Hence, in the following, we are
going to highlight some works from the last decade—without any
claim to comprehensiveness.

In relation to the adaptive voter model that we have introduced
before, it has been reported that if one considers directed as opposed
to undirected networks in an adaptive voter model, fragmentation
might occur far below the critical value due to the formation of
self-stabilizing structure.519,520 Moreover, there has also been work
extending the model to allow for a continuum of opinions (see
also Sec. V C), which in many cases is a more realistic assumption,
demonstrating the emergence of communities with diverse opinions
rather than leading to fragmentation.521,522

Further investigations in the adaptive SIS epidemic and adap-
tive epidemics, in general, have led to studies about the bifurcation
behavior523 and the epidemic threshold itself524 as well as the dynam-
ics near this threshold with an emphasis on early-warnings signs.525

In the context of a pandemic (see also Sec. V A), adaptive epidemics
have also been studied to assess the relationship between contain-
ment strategies of quarantining and social distancing.526 Besides
rewiring as a mechanism for adaptivity,98,527 others have considered
network growth due to birth and death processes,528 the latter in
response to the epidemic upon being infected, and activation and
deactivation of links following an adaptive strategy.529

Apart from the adaptive voter model and adaptive epidemics,
another frequently studied model system is that of coupled phase
oscillators110,530 with adaptive coupling strengths (see also Secs. II A
and II D). The main feature one is interested in these systems is
the emergence of fully or partly synchronous states. Importantly, it
has been shown that certain adaptivity rules promote the explosive
transitions into synchrony.531 Moreover, others have reported that
adaptivity can be used to control cluster synchronization9 or that
slow adaptation leads to the emergence of frequency clusters.34,35

In recent years, there has been an increasing interest in gen-
eralizing the notion of networks to higher-order networks, i.e.,
simplicial complexes or more generally hypergraphs. Instead of
only dyadic relations, these structures can also capture higher-
order interactions. Consequently, evolutionary games532 as well

as consensus formation in the form of an adaptive voter
model have been investigated on simplicial complexes as well as
hypergraphs.533,534 Due to their much more complex topology, these
structures promise a much richer phenomenology while at the same
time being considerably more complicated to handle so that it will
be interesting to see what the coming years will bring.

C. How social dynamics and networks adapt to

growing connectivity—By Philipp Lorenz-Spreen

Online communication can be understood as an adaptive, non-
linear system, all the more so because it increasingly involves many-
to-many interactions and is, thus, a highly coupled system. In my
research on self-organized online discourse, I interpret adaptivity
as the process of changing social systems through external influ-
ences, such as technological developments. Information technology
has made various aspects of our lives more dynamic, both in spa-
tial and temporal dimensions. Connections with others can be made
across spatial and sociodemographic constraints, and messages can
be recorded and spread across the globe in seconds.

However, these increased dynamics and the resulting adapta-
tions do not happen without values: As old boundaries are over-
come, new ones emerge, if only because of finite amounts of avail-
able attention resulting from very simple limits on human process-
ing capabilities, but also because of the implementation and com-
mercial incentive structure of the technology. Here, I will present
two mechanisms we have recently proposed for how social systems
adapt to these changes and how online platforms shape this process
along commercial interests since there is no apparent, neutral sta-
tus quo in which social systems would evolve. To this end, I want
to focus on two key questions that an individual decision maker
faces online and their downstream consequences for macroscopic
dynamics and the shape of public discourse.

First, connectivity is increasing through online platforms, and
new connections can and are easily made. Since the famous six
degrees of separation535 on the U.S. social network, networks seem
much better connected; Facebook reports 3.5 degrees of separation
on its friendship graph.536 Nevertheless, there are consistent reports
of segregated, homophilic network structures on nearly all online
platforms, as well as related trends of increasing polarization (see
Ref. 537 for a recent overview). The mechanism that might resolve
this apparent paradox may lie behind the question of whether we
change our opinions according to our friends or whether we change
our friends according to our opinions. In classical models of opinion
dynamics, the network structure is fixed and the core assumption is
a constructive process of an opinion change in a social interaction.538

In the long run, this process would predict convergence to a global
consensus opinion with increasing connectivity; only under the
assumption of disconnected networks or limited trust are discon-
nected opinions conceivable, let alone an outward or distancing
movement of these clusters possible. We have recently proposed
an alternative mechanism that describes the dynamics of an agent’s
opinion oi(t),539

ȯi = −oi + K

N
∑

j=1

Aij(t) tanh(αoj), (21)
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which describes a process of mutual reinforcement of opinions
within groups of shared stance [i.e., if sgn(oi) = sgn(oj)]. The addi-
tive term tanh(αoj) moves both opinions in the same direction if
they have the same sign and moves them toward the neutral state 0
if they have a different sign. Who is interacting with whom is gov-
erned by the time-dependent adjacency matrix Aij(t), which only
has a non-zero entry if an interaction happens between i and j
at time t. Its structure dynamically adapts to changing opinions,
hence co-evolving and following a probability distribution ruled by
homophily,540

pij =
|oi(t)− oj(t)|

−β

∑

j |oi(t)− oj(t)|−β
, (22)

which is a term that might be partly driven by algorithmic recom-
mendations suggesting like-minded others as interaction partners
on social media. This combination helps to explain the potential
emergence of growing polarization dynamics even under increas-
ing connectivity [i.e., if the average path length of Aij(t) decreases, at
least for controversial topics (i.e., high α)]. For more details, please
see Ref. 539, and an extension into multi-dimensional opinion
spaces, see Ref. 541.

Second, the increasing availability of information poses a chal-
lenge to the allocation of attention. So how does public discussion
adapt to the increasing speed of available information? To describe
this process, we quantified and modeled the dynamics of public
interest for individual topics in various domains.542 The main result
can be described as an acceleration of the dynamics of public interest
in a topic and a narrowing of the amount of time spent on each topic,
while the overall amount of attention spent on a topic remained
stable over the years. For a mechanistic understanding of these
dynamics, we modeled them as an adaptation of a Lotka–Volterra
process for species competing for a common resource, with finite
memory,

ȧi = rpai



1 − rc

∫ t

−∞

e−α(t−t′)ai(t
′)dt′ − c

N
∑

j=1,j6=i

aj



 , (23)

where ai(t) describes the dynamics of the collective attention or pub-
lic interest to a topic i. It depends on a growth term rpai with an
exponential growth rate rp if it is undisturbed. However, two terms
are slowing and eventually reversing the growth process. That is,
rc

∫ t

−∞
e−α(t−t′)ai(t

′)dt′, which grows proportionally with the atten-
tion to the topic itself by exhausting the available resources at rate rc,

and c
N
∑

j=1,j6=i

aj, which describes the constantly ongoing competition

with all other topics j for that common resource. This we believe
captures the essence of the idea of competitive attention economy
originally formulated by Ref. 543 and describes well the empirical
observations. It also captures the economic incentive structures to
produce information faster in this competitive situation to have an
advantage for gaining public interest.

In summary, I believe that these mechanisms may capture two
adaptive mechanisms of social systems in response to increasing
interconnectedness and information availability that are driven by
fundamental limits of human cognition, namely, the ability to main-
tain a certain number of social contacts as well as to process a finite

amount of information in parallel, as well as economic incentives to
capture those. Future research in this area should aim to put those
assumptions of mechanism of social dynamics on an empirical,
probably experimental, footing to understand the causal drivers of
how social systems adapt to changes in our world, e.g., technological
and political changes.

D. Energy transition and moving toward the

CO2-neutral power grid—By Mehrnaz Anvari

The important role played by electricity in the daily life and
activities causes a serious dependency of modern society on the
reliable functionality of the power grid. Moreover, because of the
interconnection of the power grid to other societal networks and
systems, such as transportation,544 telecommunication,545 and health
systems,546 it is of great importance that the power grid adjusts
itself to changing conditions or, indeed, mitigates any internal and
external perturbations and fluctuations, as generally discussed in
Sec. II A for dynamic networks. Any failure in the power grid can
quickly spread not only within the grid itself, but can set off a chain
of failures, as a domino effect, in other social networks and sys-
tems. During energy transition and moving toward a CO2-neutral
power grid, fossil fuels sources should be replaced by renewable
energy sources, such as wind, sunlight, water, and geothermal heat.
The need for rapid CO2 reduction is comprehensively discussed in
Sec. V E. Among renewable energy sources, wind and solar power
are sources inherently time-varying. This means that a constant
generator power in Eq. (11) in Sec. II D will be replaced by irreg-
ular, hardly predictable wind and solar power that may constitute
serious threats for power grid stability. Furthermore, the pattern
of electricity consumption is changing due to the exploitation of
green energy sources in other sectors, such as transportation547 and
heating.548 Therefore, for being able to plan and operate future-
compliant electricity grids with a continuously increasing share of
renewable energy sources, it is vital to recognize the new origins of
fluctuations in both supply and demand side, along with their sta-
tistical and stochastic characteristics to be able to adapt the power
grid or to mitigate these fluctuations and, thus, maintain the energy
balance in the grid.

The identification of these characteristics, along with the
empirical data, enables us to develop valid data-driven models to
describe the underlying system dynamics. Last, the combination of
data-driven models and the complex network science empowers us
to indicate the impact of new sources of both supply and demand on
the current power grid and, therefore, to determine how the power
grid structure and control systems should be adapted in the future
to keep the energy balance and, consequently, the stability in the
system.

In the following, we will review briefly some recent works
related to the data analysis and data-driven models as well as their
combination with the complex network science leading to a deep
understanding of power grid dynamics.

1. Data analysis

Wind and solar power are highly dependent on weather condi-
tions and, therefore, can ramp up or down in just a few seconds. In a
power grid with a high integration of variable energy sources, these
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extreme short-time fluctuations not only influence the energy avail-
ability, but also the stability of the power grid. The analysis of the
data of wind and solar power recorded in different regions around
the world demonstrates multiple universal types of variability and
nonlinearity in the short-time scales.549–552 Importantly, consider-
ing the aggregated variable energy sources of even country-wide
installation of wind and solar fields shows that the data are still non-
Gaussian and includes intermittent fluctuations.549 Indeed, this is the
direct consequence of the long-range correlations of the wind veloc-
ity and the cloud size distribution that are approximately 600 and
1200 km, respectively.553,554 The footprint of these short-time inter-
mittent fluctuations has been recently monitored in the power grid
frequency variations.555

The analysis of the highly resolved electricity consumption
data of households that consume 29% of all electricity in Euro-
pean Union556 shows that these data are highly intermittent. The
intermittent fluctuations of electricity consumption cannot be cap-
tured from the data with a resolution of 1 h or even 15 min.557–559

The variability of energy sources, along with the uncertainty of the
electricity consumption, can make it more difficult to balance sup-
ply and demand. Therefore, as the share of feed-in is increasing, a
deeper understanding of the variable energy source dynamics as well
as the advanced approach of balancing demand and supply by load
shifting is required.560,561

2. Data-driven models

Identifying the stochastic behavior of the short-time variable
energy sources and electricity consumption fluctuations allows us
to construct a dynamic equation that governs these stochastic pro-
cesses. The dynamic equation should include two main terms as
follows:

Ẋ(t) = F(X, t)+ G(X, t), (24)

where F(X, t) is the deterministic term showing the trend of a
stochastic process X(t) (which is here a variable source of energy or
electricity consumption) vs time, and G(X, t) is the stochastic term
modeling the extreme fluctuations and, indeed, non-Gaussianity
in the considered process. Equation (24) is known as a stochas-
tic differential equation, which is a non-parametric model. With
the term “non-parametric,” we mean that all of the functions and
parameters in the model can be found directly from the empiri-
cal time series. Recently, the jump-diffusion process562,563 and the
superstatistics method564 have been introduced to model short-term
variable energy sources and electricity consumption fluctuations,
respectively. Moreover, in Ref. 564, a data-driven load profile that
is consistent with high-resolution electricity consumption data is
obtained. This data-driven load profile outperforms the standard
load profile used by the energy supplier,565 and it does not require
microscopic parameters for consumer behavior, consumer appli-
ances, house infrastructures, or other features that other models
depend on.566

The data-driven models allow us not only to generate time
series with identical statistics to empirical ones, but also by adjusting
the parameters in the stochastic models, to consider the response of
the power grid and control systems to different circumstances.

3. Complex network science

From a structural view point, the power grid is a complex net-
work consisting of many units and agents that interact in a nonlinear
way. Due to economic factors, power grids often run near their oper-
ational limits. The nature of renewable energies will add more and
more fluctuations to this complex system, causing concerns about
the reliability and stability of the power supply.567–569 Therefore, the
probability of having grid instabilities will increase, which may result
in more frequent occurrences of extreme events, such as cascading
failures resulting in large blackouts. Any strategy under discussion,
such as upgrading the existing power grid, the formation of virtual
power plants combining different power sources, introducing new
storage capacities, intelligent “smart grid” concepts, etc., will fur-
ther increase the complexity of the existing systems and have to be
based on the detailed knowledge of the dynamics of variable energy
sources and consumer variable sources of energy. The data-driven
models and the generation of data sets imitating the characteristics
of the real data sets empower us to consider accurately the inter-
play of the network structure and features with supply and demand
fluctuations and, therefore, resulting in deep insight into how the
future structure and control systems should be designed to mitigate
the intermittent fluctuations and allows us to increase the share of
variable sources of energy in the power grid without any restriction.

E. Adaptability of the Earth system: Past success and

present challenges—By Jürgen Kurths

The Earth system is a highly complex system with various
interactions, including positive and negative feedbacks. Its repre-
sentation is sometimes even called a horrendogram. However, it is
also an open system that corresponds with its closer and farther sur-
rounding. All these properties are crucial for the ability to adapt in
response to external as well as intrinsic changes and perturbations.

There are outstanding examples of adaptive behavior in the
history of the Earth system: About 66 000 000 years ago, a rather
large asteroid struck Earth and formed the Chicxulub impactor
crater with a diameter of about 180 km in the peninsular Yucatan
in Mexico.570 This external shock induced titanic changes on the
surface and in the atmosphere as megatsunamis, giant wildfires
and a rapid strong decrease of the temperature. More impor-
tantly, it is now well accepted that it was the main cause of the
Cretaceous–Paleogene extinction event, a mass extinction of 75%
of plant and animal species on Earth, including all non-avian
dinosaurs. However, it is important to emphasize that the Earth sys-
tem was not destroyed due to this giant event, but it adapted and
reached another stable regime after some time whose global cli-
mate was rather similar to the former one.571 Another example of
a shock-like but intrinsic event was the Toba supervolcanic erup-
tion about 74 000 years back in Sumatra.572 It changed the climate
situation drastically and, in particular, induced a strong tempera-
ture decrease 3−5◦C. However, the Earth system again adapted and
reached via rather large fluctuations a stable climate regime whose
global temperature was, however, clearly below the former one.573

There are also recurrent-like strong influences on the Earth sys-
tem over broad scales in time. On the one end, we have as long-term
factors the Milankovic cycles, which are due to complex variations
in eccentricity, axial tilt, and precession of the Earth’ motion in the
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solar system leading to main components of 41 000 years, 95 000
years, and others. These orbital forcing components have a strong
influence on long-range climate dynamics, as the occurrence of
glacials and interglacials. On the other end, recurrent patterns, such
as El Niño Southern Oscillations (ENSO) in the range of 3–7 years,
have a powerful impact on the onset and intensity of monsoons and
the formation of extreme climate events. However, the Earth system
has been able to adapt to all these recurrent events and acts in sta-
ble regimes, which can even become different, e.g., switching from
glacial to interglacial.

However, one component of the Earth system has substantially
increased its impact in the more recent past, the humans. The huge
amount of greenhouse gas emissions, such as CO2 and methane,
is the most striking expression of this tremendous anthropogenic
activity. There is clear evidence and broad acceptance that this has
already caused distinct global warming and various other strong
changes in the Earth system.575 Due to several reasons, the kind of
adaptation of the Earth system in response to these emissions is hard
to evaluate. One crucial uncertainty is the future development of
these emissions despite the immense efforts for their serious reduc-
tion, e.g., via the UN Climate Change Conferences of the Parties
(COP).

Therefore, typical scenarios of future Earth system’s adap-
tion in dependence on different emission amounts are estimated
based on combined models and measured data. However, there
are challenging problems in modeling of the corresponding pro-
cesses and data acquisition. A very promising approach to treat
these tasks is based on the study of tipping elements because the
Earth system comprises a number of such large-scale subsystems,

which are vulnerable and can undergo large and possibly irreversible
changes in response to anthropogenic perturbations beyond a criti-
cal threshold.574,576 The whole system of tipping elements, including
their interactions, can be well described as a complex network in
order to understand the spreading of tipping; i.e., will the tipping of
one element exert only local effects or will it induce a cascading-like
dynamics?577 This is a typical multistable system where phenom-
ena, such as partial synchronization, are typical (see also Sec. II D).
Additionally, intrinsic and external noise may strongly influence the
dynamics of the Earth system (see also Sec. II B). We know the
main elements of this network because they have been identified
and described, such as dieback of the Amazon forest or melting
of poles (see Fig. 10). However, the kind of interactions as well
as the intrinsic dynamics at each tipping area are only very partly
known.

To treat the first problem, connections between the Amazon
forest area and other tipping points have been recently uncovered
quantitatively by analyzing near-surface air temperature fields.578

This way, teleconnections between the Amazon forest area and the
Tibetan plateau as well as the West Antarctic ice sheet have been
identified. In other studies based on conceptual models for selected
tipping elements with complex structure–function interrelations as
treated in Sec. II A of this Perspective, it has been shown that
the polar ice sheets could be typically the initiators of tipping cas-
cades, while the Atlantic Meridional overturning circulation acts as
a mediator.577 However, these studies are in the beginning, and there
are several crucial problems to solve until getting a reliable pre-
dictability of tipping dynamics and, hence, on evaluating in detail
the adaptability of the Earth system, in particular, to anthropogenic

FIG. 10. The location of climate tipping elements in the cryosphere (blue), biosphere (green), and ocean/atmosphere (orange), and global warming levels at which their
tipping points will likely be triggered. Pins are colored according to our central global warming threshold estimate being below 2◦C, i.e., within the Paris Agreement range
(light orange, circles); between 2 and 4◦C, i.e., accessible with current policies (orange, diamonds); and 4◦C and above (red, triangles). Figure from Armstrong McKay et al.,
Science 377, eabn7950 (2022). Copyright 2022 American Association for the Advancement of Science.574
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influences. A promising way to retrieve these interactions will be the
application of modern machine learning methods (see Sec. IV).

However, it is evident that the greenhouse gas emissions have to
be strongly reduced. In Sec. V D of this Perspective paper, problems
and approaches for reaching this ambitious goal are discussed.

To summarize, the Earth system is an adaptive one as is obvious
from the past. We have now clear evidence that the huge anthro-
pogenic influences create a new kind of perturbation, which has the
power to induce a novel pathway of adaptation. This will end for
sure in some stable regime, but it is very questionable whether we
can live there.

VI. CONCLUDING REMARKS

The notion of adaptivity is used in a variety of contexts, from
nonlinear dynamics over socioeconomic systems to cognitive sci-
ence and musicology. This article presents various viewpoints on
adaptive systems and the notion of adaptivity itself from different
research disciplines aiming to open the dialogue between communi-
ties.

The article shows that the terminology and definition of “adap-
tivity” may vary among the communities. While “adaptability” refers
generally to the ability of a system to amend its properties accord-
ing to dynamic (external or intrinsic) changes, the specific details of
adaptive mechanisms depend on the context and the community,
for example, how and which part of a system can amend (adapta-
tion rules) or what strategies enable the perception (or sensing) of
such changes. In addition, the mathematical framework for describ-
ing adaptive mechanisms and adaptive systems also varies across
communities.

On the other hand, various commonalities become appar-
ent throughout this article. For example, a common starting point
in many contexts is descriptions based on networks, where the
notion of adaptivity is well established. Adaptive networks are
applied in numerous fields, such as power grids, neural systems,
and machine learning. Another commonality across disciplines is
the link between adaptivity and feedback mechanisms, which are
ubiquitous in both natural systems and engineering.

We believe that the similarities and differences provide oppor-
tunities for further cross-fertilization between the research com-
munities centered around the concept of adaptivity as a common
mechanism; for example, adaptive networks can serve as a powerful
modeling paradigm for realistic dynamical systems, possibly appli-
cable to even more systems, e.g., in the context of cognitive sciences,
musicology, or active matter. Furthermore, a great opportunity lies
in utilizing the mechanisms that have emerged in nature as inspira-
tion and guiding principles to engineer artificial (intelligent, coop-
erative) systems and to develop control strategies. In this spirit, for
example, the cooperative behavior of animals may guide the way
to engineer robots capable to perform collective motion reminis-
cent of swarms of insects or schools of fish or the development
of new machine learning algorithms may potentially profit from a
deeper understanding of the brain provided by the field of neuro-
science. Indeed, it has long been recognized that “The adaptiveness
of the human organism, the facility with which it acquires new rep-
resentations and strategies and becomes adept in dealing with highly

specialized environments, makes it an elusive and fascinating target
of our scientific inquiries and the very prototype of the artificial.”1

This article follows the workshop on “Adaptivity in nonlinear
dynamical systems,” which brought together specialists from various
disciplines to share their views on the abstract concept of adaptivity.
During the presentations and the coffee breaks, there was a lively
exchange of ideas that highlighted the great interest in this topic.
We hope that this Perspective article will be a first step in promoting
knowledge transfer between disciplines.

In order to conclude this Perspective article, we collect the cur-
rent open research questions for each section to stimulate future
research on adaptivity in the different fields represented in this
collection of perspectives and beyond.

• How does a mathematical theory of adaptive systems, which
includes cutting-edge applications, such as, e.g., adaptive net-
works, look like?

• How can knowledge about adaptive mechanisms be used to
better understand and influence processes in neuronal, physi-
ological, and socio-economic systems?

• Can the knowledge about neural plasticity of the human brain
be used to inspire the development of new artificial learning
algorithms?

• What are the capabilities of modeling real-world dynamical
systems by using adaptivity?

ACKNOWLEDGMENTS

J.S., R.B., and S.A.M.L. thank the Joachim Herz Founda-
tion for funding an interdisciplinary and international work-
shop on “Adaptivity in nonlinear dynamical systems,” which
was held from 20 to 23 September 2022 and provided a plat-
form for discussions that resulted in this article. We further
thank the Potsdam Institute for Climate Impact Research for
supporting and hosting the workshop. J.S. acknowledges fund-
ing support by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation)—through the project 429685422.
R.B. acknowledges funding support by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation)—through the
project 440145547. S.A.M.L. acknowledges funding support by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation)—through the project 498288081. I.F. acknowledges fund-
ing from the Institute of Physics Belgrade through a grant by the
Ministry of Education, Science and Technological Development
of Republic of Serbia. P.H. acknowledges further support by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under project ID 434434223—SFB 1461. J.M. acknowledges
funding support by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation)—through the project 458548755.
P.L.-S. acknowledges financial support from the Volkswagen
Foundation (grant “Reclaiming individual autonomy and demo-
cratic discourse online: How to rebalance human and algorithmic
decision-making”). P.A.T. acknowledges funding support by the
John A. Blume Foundation and the Vaughn and Nancy Bryson fund.
G.V. would like to acknowledge funding from the H2020 European
Research Council (ERC) Starting Grant ComplexSwimmers (Grant
No. 677511), the Horizon Europe ERC Consolidator Grant MAPEI

Chaos 33, 071501 (2023); doi: 10.1063/5.0147231 33, 071501-29

© Author(s) 2023

 22 Septem
ber 2023 07:24:25

https://aip.scitation.org/journal/cha


Chaos PERSPECTIVE scitation.org/journal/cha

(Grant No. 101001267), and the Knut and Alice Wallenberg Foun-
dation (Grant No. 2019.0079). S.G. acknowledges co-funding from
Next Generation EU, in the context of the National Recovery and
Resilience Plan, Investment PE1 - Project FAIR “Future Artificial
Intelligence Research”, co-financed by the Next Generation EU [DM
1555 del 11.10.22].

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Jakub Sawicki, Rico Berner, and Sarah A. M. Loos contributed
equally to this paper.

Jakub Sawicki: Conceptualization (equal); Writing – original draft
(equal); Writing – review & editing (equal). Rico Berner: Con-
ceptualization (equal); Writing – original draft (equal); Writing –
review & editing (equal). Sarah A. M. Loos: Conceptualization
(equal); Writing – original draft (equal); Writing – review & edit-
ing (equal). Mehrnaz Anvari: Writing – original draft (equal).
Rolf Bader: Writing – original draft (equal). Wolfram Barfuss:
Writing – original draft (equal). Nicola Botta: Writing – original
draft (equal). Nuria Brede: Writing – original draft (equal). Igor
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