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ABSTRACT2

A novel method for improving plant disease classification, a challenging and time-consuming3
process, is proposed. First, using as baseline EfficientNet, a recent and advanced family of4
architectures having an excellent accuracy/complexity trade-off, we have introduced, devised5
and applied refined techniques based on transfer learning, regularization, stratification, weighted6
metrics and advanced optimizers in order to achieve improved performance. Then, we go further7
by introducing adaptive minimal ensembling, which is a unique input to the knowledge base of8
the proposed solution. This represents a leap forward, since it allows improving the accuracy with9
limited complexity using only two EfficentNet-b0 weak models, performing ensembling on feature10
vectors by a trainable layer instead of classic aggregation on outputs. To our knowledge, such11
an approach to ensembling has never been used before in literature. Our method was tested on12
PlantVillage, a public reference dataset used for benchmarking models’ performances for crop13
disease diagnostic, considering both its original and augmented versions. We noticeably improved14
the state of the art by achieving 100% accuracy in both the original and augmented datasets.15
Results were obtained using PyTorch to train, test, and validate the models; reproducibility is16
granted by providing exhaustive details, including hyperparameters used in the experimentation.17
A Web interface is also made publicly available to test the proposed methods.18

Keywords: Plant Diseases, Image Classification, Deep Learning, Adaptive Ensemble, Convolutional Neural Networks19

1 INTRODUCTION

Early detection of plant stress is one of the most crucial practices in agriculture (Nagaraju and Chawla,20
2020). Biotic stress in plants is caused by living organisms, specifically viruses, bacteria, fungi, nematodes,21
insects, arachnids, and weeds, while abiotic stress is caused by environmental factors such as drought, heat,22
cold, strong wind, flooding and nutrient deficiencies. In agriculture, both kinds of stress are a significant23
cause of crop yield and quality loss leading to serious monetary harm when limits for the occurrence of24
the stress are exceeded (Pantazi et al., 2020; Kashef, 2020). Although, over the years, genetics has made25
available cultivars that are increasingly resistant to various types of stress, the issue of yield and quality26
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losses remains crucial at a global scale, especially since climate change leads to the co-occurrence of abiotic27
and biotic stresses (Pandey et al., 2017). Even today, the majority of the inspections are done manually28
by direct visual analysis, which may not make it easy to identify the disease and its type. Indeed, farmers29
use their naked eyes for plant inspection, which needs constant observation, high skills and experience.30
Some of them are supported by guidelines with basic concepts and aiding materials (pictures/notes to31
identify symptoms and patterns of stress) that are relevant to distinguish between biotic and abiotic injuries32
and determine the possible cause and solution to adopt. At other times, farmers might require technical33
support to achieve a formal and complete diagnosis. In all these cases, the methodologies adopted are34
time-consuming and expensive (Zhang et al., 2020), often not viable for large farms or not affordable for35
small farms. Even the identification of weeds typology - broadleaf or grassy - is difficult in their early36
stages (from germination to the development of the first four/six leaves), i.e. exactly when it would be37
the most suitable time to counter them. This issue has increased the importance of automated infection38
recognition and compelled researchers to devise methods or systems that can more accurately diagnose39
the problem (Ma et al., 2017). In addition, the increased public concern about environmental conservation40
coupled with the need for more efficient agriculture necessary to cope with the simultaneous increase in41
population and reduction of available land) demands the introduction of new cost-effective and sustainable42
methods and solutions to support farmers in their daily work. In this context, machine learning techniques43
can finally trigger a revolution for the timely suppression of organisms harmful to plants and keep the use44
of chemical treatment and other forms of intervention to economically and ecologically justified levels.45

Computer vision-based methods are now being considered as a key enabler in this revolution. The46
problem has a relatively long history, including several attempts based on the use of particular imaging47
technologies such as thermal and stereo images (Prince et al., 2015), colour and depth images (Rousseau48
et al., 2012) or even fluorescence imaging spectroscopy (Wetterich et al., 2013) coupled with ad hoc49
image processing pipelines. Such advanced imaging modalities might provide very specific and accurate50
analysis suitable for particular, especially high-revenue, crops in precision agriculture. However, standard51
RGB images might be preferable for the broader adoption of vision-based methods for fighting plant52
diseases even in low-resource and low-income areas of the world. Progresses in artificial intelligence and53
their excellent classification capabilities on standard images have encouraged several research lines. For54
instance, neural networks for plant disease classification have been used before (Huang, 2007) making55
use in most of the cases of handcrafted features and conventional computer vision pipelines. Indeed,56
independently of the application domain, typical computer vision techniques are composed of a pipeline of57
phases that almost equally contribute to the quality of the final result. In the case of image classification,58
in particular, the phases are (i) preprocessing for improving the image quality (e.g. denoising, colour59
enhancement/balancing); segmentation for isolating the foreground from the background, to focus only60
on the useful information;feature extraction for obtaining only the relevant information of the foreground61
represented in a numeric vector (i.e. feature vector), mostly performed by a domain expert, and (iv)62
classification for learning and performing a mapping between the input feature vector and output classes.63

In the last years, the paradigm shift proposed by deep learning (LeCun et al., 2015), consisting in a way64
to perform representation learning i.e. obtaining the data feature vector without involving a domain expert,65
has allowed embedding and automatically performing all the phases described above.66

Convolutional Neural Networks (CNNs or ConvNets) represent the Deep Learning in the scope of67
Computer Vision and are state of the art (SOTA) in most tasks (Khan et al., 2020). Even if there are many68
CNN archetypes, all of them are essentially composed by stacking a variable number of modules (that69
usually share parameters to reduce complexity) consisting of the following layers applied sequentially:70
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• convolutional layers: they apply several adaptive filters to regions of the image obtaining their abstract71
representation;72

• pooling layers: they perform aggregations which have the twofold effect of summarising data, picking73
only relevant elements, leading to dimensionality reduction;74

• non-linear activation layers: they are used to obtain a more powerful and expressive representation,75
reaching different levels of abstraction.76

At the end of an architecture composed of the layers as mentioned above, one or more fully connected layers77
can be stacked. This organization allows automatic preprocessing, segmentation and feature extraction78
whilst classification/regression is feasible, putting a dedicated output module at the top of the architecture.79
The very first conceived CNN was LeNet (LeCun et al., 1989) more than thirty years ago. Again, only in80
the last ten years CNNs have been experiencing massive use and success, frequently improving the SOTA81
on different tasks (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015; He et al., 2016; Szegedy et al.,82
2015; Howard et al., 2017; Hu et al., 2018; Wang et al., 2020).83

CNNs have been adopted to tackle the problem of plant disease classifications. For instance, (Wang84
et al., 2017) have applied transfer learning and fine-tuning of general-purpose architectures to provide85
fine-grained disease severity classification in the case of the apple black rot images dataset, obtaining a best86
90.16% performance using VGG16. Similarly, (Ferentinos, 2018) used AlexNet and GoogleNet, training87
the models with the use of an open database of 87,848 images, containing 25 different plants in a set of 5888
distinct classes of [plant, disease] pairs, achieving the best performance of 99.53%. For the training and89
validation of deep learning paradigms, a number of datasets are available (Lu and Young, 2020). However,90
all of them have some limitations e.g. in size, variety of plants, diseases coverage and extrinsic shooting91
conditions (i.e. varying illumination and backgrounds). Among them, PlantVillage (Hughes and Salathe,92
2015) has emerged as a de facto open reference datasets for plant disease classification and, as such, it93
is considered has a benchmark in this paper, although it shares limitations of other datasets and, notably,94
the presence of standard backgrounds instead of real-world ones. It should be noticed that a large-scale95
benchmark dataset has been recently proposed (Liu et al., 2021), together with a new approach to disease96
recognition. Still, such a dataset is not freely available and has not yet gained reference value. In general,97
previous methods addressing the classification of PlantVillage images achieve good performance, however98
they often do not sufficiently address the efficiency and complexity of the employed paradigms. Indeed, in99
order to achieve more significant penetration and broader adoption of the methods, the proposed paradigms100
should be capable of running on low resource hardware, especially on smartphones, even in the absence of101
remote clouds.102

In view of the above consideration, in this work we propose a new approach to plant disease classification103
based on adaptive minimal ensembling. The main contribution is represented by a novel approach to104
ensembling: different weak classifiers are trained and then combined to obtain a new combined classifier.105
The novelties of the proposed approach are at least twofold: from one side, we propose a fully trainable106
combination layer, granting end-to-end differentiability of the global architecture; then, in our approach, the107
combination layer does not act on the output layers of the weak classifiers as in other classical approaches,108
but the weak classifiers are truncated before. Namely, the final fully-connected layers of each weak classifier109
are removed, and the combination happens directly at the deep feature level.In addition, such an approach110
is brought into practice adopting a family of SOTA models, namely EfficientNet (Tan and Le, 2019),111
known for their optimal complexity/performance trade-off, for each weak classifier. EfficientNet is refined112
by applying advanced techniques on data and processing, significantly improving the classification task.113
Namely, besides using ensembling, we perform transfer learning from ImageNet and introduce a novel114
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optimizer as well as a novel validation scheme together with other minor tricks. From an experimental115
point of view, the paper provides an advance since it shows that adaptive minimal ensembling can be used116
to reach top performance with a minimal computational burden compared to other promising schemes in117
the literature. Indeed, improving state of the art, we achieve 100% accuracy on the PlantVillage dataset118
using an ensembling of only two weak classifiers (and thus minimal) while at the same time requiring119
less computational resources of the previous methodologies tested on PlantVillage dataset. As a final120
contribution, carrying out the experiments both on the original PlantVillage dataset and on its augmented121
version, we show that our method based on minimal ensembling is less sensitive to data augmentation with122
respect to other methods reported in the literature, in which performance significantly drops when training123
is not performed on the augmented dataset.124

The paper is organized as follows. In Section 2 we describe our designing strategy in detail ( including the125
proposed models and the validation phases), focusing on novelty aspects of the solution. The experimental126
setup is then introduced in Section 3 in which the number and typologies of experimental runs, including127
hyperparameters and other details, are reported in order to guarantee reproducibility. In Section 4 the128
obtained experimental results are reported and discussed, while Section 5 ends the paper with ideas for129
future research.130

2 MATERIALS AND METHODS

Among the pool of CNN architectures available in the SOTA for image classification, it was decided to use131
the EfficientNet (Tan and Le, 2019) family as core component in this work. This was motivated by several132
factors.133

First, as the name suggests, EfficientNet improves the classification quality without having huge134
complexity with respect to the models having similar classification performances. EfficientNet family135
consists of 8 progressively improved versions (b0-b7) with limited complexity growth, all of them having136
the inverted bottleneck MBConv (first introduced in MobileNetV2) as core module, which expands137
and compresses channels reducing the complexity of convolution. The real novelty introduced is the138
way EfficientNets perform scaling of the network to achieve optimal performances given a predefined139
complexity. In the CNN literature, there are 3 main types of scaling as shown in Fig.1:140

• depth scaling, which consists in increasing the number of layers in the CNN; it is the most popular141
scaling method in the literature and allows to catch features at more levels of abstraction;142

• width scaling, means increasing the number of convolutional kernels and parameters or channels,143
giving the model the capability to represent different features at the same level;144

• input scaling, means increasing the size/resolution of the input images, allowing to capture more145
details.146

Each of these scaling can be set manually or by a grid search, but there are two problems with the traditional147
scaling method: first they increase the model complexity, usually exponentially, with tons of new parameters148
to tune and, second, after a certain level, experiments show that scaling does not improve performances.149
The scaling method introduced in the paper is named compound scaling and suggests that strategically150
performing all scaling together delivers better results, because it is observed that they are dependent.151
Intuitively, Tan and Le (2019) introduce a compound coefficientϕ representing the amount of resources152
available to the model and find the optimal scaling combination using that amount of resources following153
the rules:154
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Figure 1. Example of scaling types, from left to right: a baseline network example, conventional scaling
methods that only increase one network dimension (width, depth, resolution) and in the end the EfficientNet
compound scaling method that uniformly scales all three dimensions with a fixed ratio. Image taken from
the original paper (Tan and Le, 2019).

depth: d = αϕ width: w = βϕ resolution: r = γϕ155

such that α · β2 · γ2 ≈ 2 and α ≥ 1, β ≥ 1, γ ≥ 1156

In this way, the total complexity of the network is approximately proportional to2ϕ (see the original paper157
for more details). In the following sections, our strategy is illustrated, highlighting the differences from the158
previously cited works.159

2.1 Input preprocessing160

In many applications, the models are not fed directly with the images provided by the datasets, but161
images are preprocessed to improve the performances. In our study, since the image quality of the dataset162
of interest is already sufficient, we opted not to perform any image enhancement nor further augmentation163
because an augmented version of the dataset already exists.164
The only preprocessing we applied is the normalization, in order to have all data described under the same165
distribution (pixel values in the [0, 1]range and centred around the mean) which improves stability and166
convergence of the training.167

2.2 Transfer learning168

Transfer learning (Weiss et al., 2016) is the technique of taking knowledge gained while solving one169
problem, and applying it to a different but related problem. In this case, like the most cases for image170
classification, the stored knowledge is brought by pre-trained models from ImageNet (Deng et al., 2009)171
task, since it has more than 14 million images belonging to 1000 generic classes (including plants).172

2.3 Avoid overfitting173

In order to prevent overfitting (i.e. avoid the model being too specialized to the data from the training set174
with poor performances on unknown data), during training we use early stopping (i.e. training is interrupted175
after no improvements on the validation set after a certain number of epochs, called patience, is achieved)176
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and regularization (i.e. adding noise to the loss, usually proportional to the norm of the model parameter177
vector, in order to keep parameters with low values).178

2.4 Ensembling179

Ensembling is the technique that combines several base models, called weak, in order to produce one180
optimal model to achieve a better performance than any of the constituent models alone (Opitz and Maclin,181
1999). The works (Dong et al., 2019; Sagi and Rokach, 2018) provide a comprehensive study on different182
ensembling methods supported by empirical results. Instead of performing a sort of validation to obtain the183
best combination of ensembling, we adopt the following heuristic choices:184

• ensemble main category: due to its simplicity, we decided to use bagging, which consists in training185
several independent weak models on different subsets of data. Since randomness (Ho, 1995) and186
heterogeneity (Gashler et al., 2008) are known to lead to good quality ensembling, subsets are picked187
totally random;188

• ensemble size: the work in (Bonab and Can, 2016) provides the number of weak models to use for189
obtaining the ideal ensemble model, however the work in (Bonab and Can, 2019) proves that a small190
number of weak models is enough to achieve high performances with low complexity. We thus decided191
to consider an ensembles size equal to 2 (i.e. the ensemble is composed of two weak models only,192
being therefore minimal).193

• combination type: the typical way of combining weak models is to perform voting/averaging as shown194
in Fig.2 (predicting the output from all weak models and then picking the most frequent output/average195
of outputs), respectively for classification/regression. However, in previous work, the ensemble is only196
a static aggregator. In our method, we opted to perform an adaptive combination of the weak models; in197
addition, instead of combining the outputs (Fig.3) of weak models, the features that the CNNs extract198
from the input (Fig.4) are combined. In this way, the complexity of the ensemble is further reduced199
without diminishing its power and expressiveness. Indeed the combination layer is of the same type of200
the output layer as the weak models (i.e. Linear + LogSoftmax) and keeping both would introduce201
an unnecessary redundancy. In particular, the mechanism adopted for the fusion of the ensemble is202
performed first by concatenating the characteristics and then applying a linear transformation to match203
the output size (i.e. we perform a kind of weighted sum on the concatenated features).204

• weak models training: even if the work in (Sollich and Krogh, 1995) shows that overfitted weak models205
might also lead to a good adaptive ensemble, we decided to train the weak models avoiding overfitting206
to save precious training time and to have weak models of higher quality.207
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Figure 2. Ensemble by voting - the final label is obtained picking the most frequent label among the weak
models. In this way, the weak models are independent and the ensemble is effective with a high number of
heterogeneous weak models. Weak models are CNN architectures, since now represented by the sequence
of Feature Extractor + Output module.
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Figure 3. Ensemble by output combination - an additional combination layer is fed with the outputs of
the weak models and combines them, in this way the weak models are no longer independent and the
combination layer can be trained to better adapt to data.

2.5 Validation phases208

The validation of each single model is divided into two main phases: first end-to-end training is performed209
and then followed by output module fine-tuning. For the first phase, transfer learning starting from the210
ImageNet pre-trained model is applied, introducing a new output module to adjust the output size from211
the 1000 classes in ImageNet task to the number of classes in the PlantVillage dataset. A training phase is212
performed using AdaBelief (Zhuang et al., 2020) optimizer which guarantees both fast convergence and213
generalization. The parameters used in AdaBelief are the default ones, i.e. learning rate equal to 5 · 10−4,214
betas (0.9, 0.999), eps 10−16, using weight decoupling without rectifying. After such training is concluded,215
the second phase starts: all the internal layers (i.e. the layers performing feature extraction) of the model216
obtained with the previous step are frozen and a new training by Stochastic Gradient Descent (SDG) with217
learning rate 3 · 10−3 and momentum 0.9is performed. This leads to the fine-tuning of the output module218
of each classifier.219
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Figure 4. Our ensemble method - is an optimized version of the method shown in Fig.3 because we avoid
redundancy and reduce complexity deleting the output module (dark gray filled) of weak models and
feeding the combination layer directly with the features extracted by each weak model. Feature extraction
modules (light gray filled with dashed borders) have the parameters frozen during ensemble training.

These steps conclude the validation phase for each single model. When going further to ensembling, each220
resulting single model is regarded as a weak model of a combined classifier and an additional dedicated221
pipeline is introduced for training the ensemble. First, the two best performing models are selected and222
truncated dropping their output module, which is replaced by a common combination layer. Then, ensemble223
fine-tuning (i.e. only the adaptive combination layer is trained) is performed using the same optimizer224
setting of the first validation phase. The reasons why we perform a dedicated pipeline for ensemble are225
described in Section 3.3.226

2.6 The PlantVillage Dataset227

The PlantVillage dataset (Hughes and Salathe, 2015) is a dataset for multiclass image classification tasks228
having 55,448 images (61.486 in its augmented version) divided into 39 classes representing background-229
only (out of domain images e.g. animals, buildings), healthy and diseased plants.230
Table 1 shows that images span 14 plant species: Apple, Blueberry, Cherry, Corn, Grape, Orange, Peach,231
Bell Pepper, Potato, Raspberry, Soybean, Squash, Strawberry, Tomato and contains images of 17 fungal232
diseases, 4 bacterial diseases, 2 mold (Oomycete) diseases, 2 viral diseases and 1 disease caused by a mite233
(some examples are shown in Fig.5).234

235

3 EXPERIMENTAL SETUP

In this section we describe the design choices justified by prior observations. All the reported experimnetal236
results were obtained using the PyTorch (Paszke et al., 2019) open-source machine learning framework.237

A somewhat non-conventional training/validation/test splitting has been used in the experiments to238
reproduce the conditions closest to the work in ( Ümit Atila et al., 2021) representing the SOTA for239
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Class Name Class Frequency
Apple scab 630
Apple black rot 621
Apple cedar apple rust 275
Apple healthy 1645
Background without leaves 1143
Blueberry healthy 1502
Cherry powdery mildew 1052
Cherry healthy 854
Corn gray leaf spot 513
Corn common rust 1192
Corn northern leaf blight 985
Corn healthy 1162
Grape black rot 1180
Grape black measles 1383
Grape leaf blight 985
Grape healthy 1162
Orange haunglongbing 5507
Peach bacterial spot 2297
Peach healthy 360
Pepper bacterial spot 997

Class Name Class Frequency
Pepper healthy 1478
Potato early blight 1000
Potato healthy 1000
Potato late blight 152
Raspberry healthy 371
Soybean healthy 5090
Squash powdery mildew 1835
Strawberry healthy 1109
Strawberry leaf scorch 456
Tomato bacterial spot 2127
Tomato early blight 1000
Tomato healthy 1591
Tomato late blight 1909
Tomato leaf mold 952
Tomato septoria leaf spot 1771
Tomato spider mites 1676
Tomato target spot 1404
Tomato mosaic virus 373
Tomato yellow leaf curl virus 5357

Table 1. Class labels distribution of PlantVillage dataset. Some diseases are typical of particular plant
phenotypes, there are also healthy leaf and background-only images. The frequency values refer to the
standard dataset, while in the case of its augmented version only the classes with size less than 1000 were
augmented to reach 1000 images (classes having more images are not modified).

PlantVillage while doing this work. More in detail, datasets have been splitted into training (90%),240
validation (7%) and test (3%). While obviously splits have the same sizes of previous papers, however, since241
the picks are random, the actual elements in each subset may vary. Moreover we performed stratification242
(i.e. preserving the classes ratio). Besides the non-conventional split, in the result and discussion section, a243
classic split is also considered to show the suitability of our strategy also in this case.244

3.1 Loss and Metrics245

Training Loss: due to the multiclass nature of the problem, the Cross-Entropy Loss (which exponentially246
penalizes differences between predicted and true values, expressed as probability of class belonging) is247
used. For this reason, the model output has size 39 (i.e. number of classes) and each element output[i]248
represents the probability that the input model belongs to class i.249

Validation and test metrics: for the validation set evaluation, we decided to use the Weighted F1-score250
because this takes into account both correct and wrong predictions (true/false positive/negative) and251
weighting allows to manage any imbalance of the classes (more representative classes have a greater252
contribution). On the other hand, in order to compare our resultsto make comparisons with previous works,253
we used accuracy to evaluate the test set.254

3.2 Hyperparameters255

In order to save time, after an initial coarse search, we fixed some hyperparameters:256

• early-stopping patience set at 10: because deep models have relatively fast convergence and they257
usually start overfitting after convergence, so there is no need to have much patience;258
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Figure 5. Some PlantVillage image examples. From top to bottom: 3 examples of background, 3 examples
of healthy leaves and 3 examples of diseases.

• batch size set at 32: because it is the maximum size allowed on the GPUs we used to perform model259
training and lower values showed no improvement (and would make training slower). Stratification260
even inside the batches would have been desirable but this is possible only if the batch size is greater261
than the number of the classes, which is not our case;262

• input image size fixed to 256: in order to preserve input image quality, larger size would ruin the263
images, lower size would reduce details;264

• mean and standard deviation used for normalization:265

µ = [0.4683, 0.5414, 0.4477] σ = [0.2327, 0.2407, 0.2521] for augmented dataset266
µ = [0.4685, 0.5424, 0.4491] σ = [0.2337, 0.2420, 0.2531] for dataset267

Moreover, we observed that regularization was not needed during the end-to-end training phase, and, in268
some cases, it even led to worse results. Regularization is then used only in weak models (not used for269
ensemble) fine-tuning step, with following hyperparameters:270

• regularization type: Lasso (L1), Ridge (L2)271

• regularization factor (λ): 0, 10−4, 5 · 10−4, 10−3.272

For each combination we used 3 different random seeds in order to obtain different model parameter273
initialization values, and different train/valid/test splits (useful to obtain random heterogeneous weak274
models for ensemble).275
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Considering each dataset, we had the following combinations:276

• end-to-end phase: 8 (EfficientNet architectures ranging form b0 to b7) × 3 (random seeds) = 24277
combinations;278

• fine-tuning phase: 24(end-to-end phase results)× 2(regularization types)× 4(regularization factors)279
= 192combinations;280

Since there are two datasets (standard, augmented), the total number of runs is equal to 2 × (192) = 384,281
excluding ensembling which is addressed in Sec. 3.3 below.282

3.3 Adaptive minimal ensembling, improving performances with minimum complexity283

The last experimental step is to evaluate the performances of ensembling. We opted to perform this step284
using only EfficientNet-b0 as weak models and not the full family of weak models trained in Section 3.2.285
This choice was motivated by two observations: first of all, the performances of all EfficientNet variants286
after the end-to-end phase are very similar as we show in Table 2, but b0 variant is much simpler (≈ 5M287
parameters vs ≈ 66.7M parameters of b7), so we decided to investigate on the simplest type of ensemble,288
even in terms of number of parameters (and not just in terms of ensemble size using only 2 weak models).289
Moreover we skipped the fine-tuning phase as it is used to optimize those parameters that are removed290
during ensembling because they are redundant (notice however the we performed fine-tuning anyway291
before, in order to collect experimental results to allow fair comparison and show the improvements292
ensembling can offer over single models). For the ensemble phase we followed another validation scheme293
that is, for each version of the dataset, the following:294

1. five end-to-end training of EfficientNet-b0 with different initializations and data splits, results in Table295
4;296

2. no fine-tuning because the parameters involved in this phase would be removed during ensemble;297

3. five fine-tuning of minimal ensemble composed of the two best weak models obtained at the point 1,298
using different initializations and data splits.299

In this way only 10 runs per dataset are performed, which are drastically fewer than 192 as described in300
Section 3.2 and every run is much faster. All training runs had the same configuration: AdaBelief optimizers301
with learning rate 5 · 10−4, betas (0.9, 0.999), eps 10−16, using weight decoupling without rectifying and302
Weighted F1-score as validation metric.303

It must be noted that using different seeds for each validation phase, both for end-to-end and for ensemble304
fine-tuning, produces different dataset splits: this can be therefore viewed as a cross-validation and, by305
averaging the values in Table 5 we obtain the same results proving that our solution is consistent.306

4 RESULTS AND DISCUSSION

Every validation step results in incremental improvements: we discuss them one by one in the following.307
308

End-to-end phase: as shown in Table 2 results are very similar, moreover considering both datasets there309
is no architecture being always the best/worst in both cases. It is also important to say that already in this310
phase we improved the SOTA: indeed, the best results until this work were obtained by (Ümit Atila et al.,311
2021) with Validation Accuracy 97.62% and Test Accuracy 98.31% for the standard dataset, Validation312
Accuracy 98.97% and Test Accuracy 99.38% for the augmented dataset. We relate this improvement to our313
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design choices: AdaBelief optimizer, performing stratification during dataset, using Weighted F1-score as314
validation metric and using normalization parameters taken from datasets instead of ImageNet defaults.315

Original Augmented
Model Test Valid Train Test Valid Train

EfficientNet-b0 99.6995 99.8454 99.9960 99.7832 99.8374 99.9982
EfficientNet-b1 99.5793 99.8454 100.000 99.8916 99.8141 99.9928
EfficientNet-b2 99.5192 99.7681 99.9140 99.7832 99.8374 99.9982
EfficientNet-b3 99.6394 99.8712 99.9860 99.8374 99.9303 99.9964
EfficientNet-b4 99.6995 99.8454 99.9980 99.5664 99.8606 99.9982
EfficientNet-b5 99.7596 99.7939 99.9920 99.9458 99.8606 99.9982
EfficientNet-b6 99.7596 99.8712 99.9880 99.7290 99.8141 99.9675
EfficientNet-b7 99.5192 99.8454 99.9960 99.8916 99.9303 99.9982

Table 2. Table with best Weighted F1-score results, for each EfficientNet variant, after first phase of
validation (i.e. end-to-end training). The values of the best architectures are in bold.

Fine-tuning phase: as shown in Table 3, EfficientNet-b7 is the best architecture in both datasets. In316
major cases this phase led to no improvements, in a few cases it improves performances on training data317
without getting worse on validation/test (i.e. improvements without overfitting). The improvements are318
more noticeable for the standard dataset (because in the first phase results were lower) especially for b7319
variant obtaining improvements overall. We observed no differences among different regularization types320
and factors, but it was needed (because with λ = 0we got no improvements).321

Original Augmented
Model Test Valid Train Test Valid Train

EfficientNet-b0 99.6995 99.8454 100.000 99.8916 99.8838 100.000
EfficientNet-b1 99.6995 99.8969 100.000 99.8916 99.8374 99.9982
EfficientNet-b2 99.5793 99.8712 100.000 99.7832 99.9303 99.9982
EfficientNet-b3 99.7596 99.8712 99.9900 99.8374 99.9303 99.9964
EfficientNet-b4 99.6995 99.8454 99.9980 99.5664 99.8606 99.9982
EfficientNet-b5 99.7596 99.7939 99.9920 99.9458 99.8606 99.9982
EfficientNet-b6 99.8197 99.8712 99.9900 99.7290 99.8141 99.9675
EfficientNet-b7 99.8197 99.8712 100.000 99.8916 99.9303 100.000

Table 3. Table with best Weighted F1-score results, for each EfficientNet variant, after second phase of
validation (i.e. end-to-end training + fine-tuning). The values of the best architectures are in bold.

Ensemble: this phase gave a huge peak of improvement in both dataset, obtaining a perfect 100% accuracy322
on both versions of the dataset (Table 5) being much less complex (10M vs 66.7M total parameters of323
EfficientNet-b7 as shown in Table 7).324

325
326

We lastly summarize the design choices and the improvements they led to.327
328

Transfer learning: helped to speed up and optimize (because training from scratch done in the preliminary329
analysis always led to poor results) the end-to-end training phase;330
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Original Augmented
Model Test Valid Train Test Valid Train

EfficientNet-b0 99.8197 99.9485 100.000 99.7832 100.000 100.000
EfficientNet-b0 99.8197 99.8969 100.000 99.6748 99.8838 100.000
EfficientNet-b0 99.7596 99.8454 100.000 99.8374 99.8374 99.9980
EfficientNet-b0 99.7596 99.7423 100.000 99.8374 99.6515 100.000
EfficientNet-b0 99.5793 99.9227 99.9960 99.7832 99.6747 100.000

Table 4. Table with Weighted F1-score of the models (best to worst) of the 5 end-to-end training runs
using EfficientNet-b0 variants only that will be the weak models of the simplest ensemble.

Original Augmented
Model Test Valid Train Test Valid Train

EfficientNet-b0 ensemble 100.000 100.000 100.000 100.000 100.000 100.000
EfficientNet-b0 ensemble 100.000 100.000 100.000 100.000 100.000 100.000
EfficientNet-b0 ensemble 100.000 100.000 100.000 100.000 100.000 100.000
EfficientNet-b0 ensemble 100.000 100.000 100.000 100.000 100.000 100.000
EfficientNet-b0 ensemble 100.000 100.000 99.9980 100.000 99.9768 100.000

Table 5. Table with the Weighted F1-score of the 5 ensemble runs (best to worst) composed of the two
best EfficientNet-b0 variants.

Model Dataset
Original Augmented

Mohanty et al. (2016) (GoogleNet) 99.3500% -
Too et al. (2019) (DenseNets-121) 99.7500% -
Chen et al. (2020) (MobileNet-Beta) 99.8500% -
Ümit Atila et al. (2021) (EfficientNet) 99.9100% 99.9700%
End-to-end (ours) 99.9729% 99.9904%
Fine-tuning (ours) 99.9856% 99.9919%
Minimal ensemble (ours) 100.000% 100.000%

Table 6. Table comparing accuracies (measured as correct prediction over the whole dataset) of the SOTA
models on PlantVillage task. Since the end-to-end phase our work was shown to improve the SOTA.

Adabelief optimizer: allowed to reach lower minimal points due to its high convergence speed without331
losing generalization power (previous SOTA work used Adam);332

Stratification and weighted F1-score: reduced the problems due to high data imbalance, indeed in the333
augmented dataset there is less imbalance and with the same condition there are better performances on it334
(previous SOTA work used normal accuracy);335

Regularization: harmful during end-to-end training but essential during fine-tuning, even if there is no336
seeming difference among regularization types or factors (previous SOTA work does not seem to use337
regularization);338

Ensembling: using two weak models is enough to have meaningful improvements if the models are339
heterogeneous enough (i.e. trained on different subset of data) even if they are very simple. This avoids340
overfitting since training of weak models increased the base quality and reduced overall execution time.341
Last but not least, performing ensembling on features instead of outputs further reduced the complexity342
and deleted redundancies.343
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Model Dataset
Original Augmented

Mohanty et al. (2016) (GoogleNet) ≈ 7M -
Too et al. (2019) (DenseNets-121) ≈ 7.9M -
Chen et al. (2020) (MobileNet-Beta) ≈ 3.7M -
Ümit Atila et al. (2021) (EfficientNet) ≈ 30.5M ≈ 19.5M
End-to-end (ours) ≈ 43.2M ≈ 66.7M
Fine-tuning (ours) ≈ 66.7M (100k) ≈ 66.7M (100k)
Minimal ensemble (ours) ≈ 10M (100k) ≈ 10M (100k)

Table 7. Table comparing complexity (measured as number of parameters) of the SOTA models on
PlantVillage task. The minimal ensemble is the least complex because even if it has 10M paramenters it can
be considered as 5M because the weak models are independent and can be executed in parallel. Moreover,
during training only the 100k parameters of the combination layers are trained.

344
Now we consider the comparison between our solution and the models representing the SOTA on the345
PlantVillage task over the years: Table 6 and Table 7 show that our design choices, different from previous346
works (i.e. AdeBelief optimizer, stratification, weighted-F1, regularization) improved performances if we347
consider single models. Our minimal ensemble method introduced in this work had a twofold improvement:348
perfect accuracy score without increasing model complexity. Moreover, the feature extractor modules349
are frozen making the real trainable parameters number very low even in the ensemble (100k trainable350
parameters over the 10M in total), and the execution of weak models can be performed in parallel since351
they are independent (so, the execution time for a 10M parameters ensemble is close to the execution time352
of a single 5M parameters model).353

As said before, we performed a split to make a fair comparison with the SOTA (i.e. 90% train, 7% validation354
and 3% test). However, to prove its robustness, our solution has also been tested using a traditional 80/10/10355
split: few weak models were trained and then two best were used to run some ensemble fine-tuning, for356
each dataset version. The results in Table 8 prove that our solution is suitable also for traditional data splits.357

Original Augmented
Model Test Valid Train Test Valid Train

EfficientNet-b0 weak1 99.8738 99.8557 100.000 99.8536 99.8536 100.000
EfficientNet-b0 weak2 99.8377 99.9278 100.000 99.7886 99.9187 100.000

Ensemble (weak1 + weak2) 100.000 100.000 99.9864 100.000 100.000 100.000

Table 8. Table showing the accuracies of the two weak models and the fine-tuning ensembling them, using
a traditional 80/10/10 split.

A Web application was also implemented to show the results, allowing to pick an image from the datasets358
and showing its classification and probabilities; this is publicly accessible at the following address:359
http://plantvillage.isti.cnr.it:9090.360

5 CONCLUSION

Identifying plant diseases and devising optimal adaptive countermeasures can bring significant improvement361
in crop quality and yields. In this context, expert systems based on artificial intelligence can be a valid aid362
to farmers, yet there are still no operational services for most crops. This paper contributed to the creation363
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of artificial intelligence modules for plant disease classification with high accuracy and efficiency. Indeed,364
it has been described how specific target design choices can lead to a relevant performance improvement365
over an already top-rated solution without efficiency loss. The first improvement of the state of the art366
was reached by using a different optimizer (i.e. Adabelief) in combination with techniques to deal with367
unbalanced data (i.e. stratification and Weighted F1-score). A family of classifiers based on the EfficientNet368
architecture has been proposed with similar accuracy but increasing complexity.369
The second gain in performance was obtained by introducing a minimal adaptive ensemble model using370
the combination of the features of two least complex weak models: while the number of total parameters371
doubled with respect to the least complex model, perfect accuracy was achieved. To our knowledge, none372
of the above mentioned techniques have been ever used before. Doubling the number of total parameters,373
however, did not increase the total complexity for two reasons: first, only a tiny part of parameters is trained374
during the ensemble training step (100k over 10M), and, second, the weak models can process input in375
parallel (therefore the overall execution time is very close to the execution time of a single weak model).376
In addition, by minimal ensembling, the performances gap between original and augmented datasets are377
reduced; it could be argued that this type of ensembling can be helpful in cases where data balancing378
and augmentation are not feasible or not convenient in terms of computational time/resources. These379
perspectives will be studied in the future, considering other disparate domains and reference benchmarking380
datasets. In particular, we are currently investigating the use of adaptive minimal ensembling and the381
gains it is possible to achieve both in absolute average precision and in the ratio between precision and382
complexity, towards a more sustainable use of artificial intelligence.383
Regarding the precision agriculture domain, having achieved top performance on the  de facto benchmarking384
dataset, the research will pursue the possibility to provide operational service to farmers to identify and385
recognize plant diseases. To this end, a participatory approach is being followed to gather a large dataset in386
the specific domain of durum wheat crop culture from pictures taken in the field by farmers, also using387
mobile devices. This initiative is leading to a realistic and more complex dataset to champion the methods388
proposed in this paper.389
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