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ABSTRACT

Computing structures based on Residue Number Sistems
are very interesting because addition and multiplication are
fast and modular and are well suited for VLSI implementa-
tion. In this paper the problem of multiplying two integers
in residue represengation is faced with and a new modulo m
multiplier 1is defined. Such a multiplier can be integrated
on a single chip with present VLSI technology and exhibits,
for example,; an expected response time of about 150 nseconds
to multiply integers ranging up to 10" using five B8-bit
moduli. It allows any choice of moduli values and has con-
siderably low complexity figures,; if compared with ROM-based
structures, which are generally considered the most suited
for RNS-based systems.

Finally, new direct and reYerse converters between
binary positional representatién a;d residue representations,
exploiting the multiplier structure defined, are presented.
They are the best solutions known under a wide range of

hypotheses about RNS’s,



I. Introduction

Computing by means of residue number systems (RNS) has
been interesting many authors for a long time [1, 2, 3, 4,
35, 61. This interest has arisen because RNS-based arithmetic
units are fast and simple,; at least for addition and multi-
plication. 1In fact, in residue arithmetic, these operations
are carry-free, 1.e. each residue digit of the result is
only determined by the corresponding digits of both
operands.

Special RNS-based hardware structures have been
designed for particular applications (e.g., discrete Fourier
transform processors and digital filters [7, 8, 9, 101).

In the past, the use of RNS-based arithmetic units was
limited by the inherent difficulty of achieving the same
level of performance for operations such as divisions and
sign and magnitude detection, which cannot be carried out
separately for each residue digit,; and alsoc by the heavy
hardware requirements generally assumed for all operations,
mainly in the form of large stored tables € 1, 7, 11 1. In
the last few years, however, VLSI technologys permitting the
integration of complex circuits on a single chips; has con-
tributed towards making such architectures increasingly
viable [12, 3, 1.

In this paper, the problem of multiplying two integers



in residue representation is examined, and a new modulo m
multiplication structure is defined, with the following
characteristics:

a)l with the current VLSI technology:; the whole structure
can be integrated in & single chip;

b) a typical total response time to multiply integers
ranging up to 10“’ using five B-bit modulil is expected
to be within about 1350 nanoseconds; in pipeline, an
interval of 70-100 nanoseconds can be achieved;

c) with respect to.table look-up based structures, when
moduli larger than 236 must be chosen,; the defined
structure becomes a mandatory choices

d) unlike some previously known modulo m; multipliers; any
cthoice is permitted for the moduli values;

e) complexity figures are exhibited which are considerably
lower than those for ROM-based structures in terms of
area, whereas the response time remains of the same
complexity; this result 1is independent of the number
and the magnitude of moduli.

This last feature sets our structure against solutions
based on table look-up techniques which are generally con-
sidered the most suitable to implement RNS-based digital
systems with a large number of moduli.

Finally, new direct and reverse converters between

binary positional number representation and residue number



representation will be designed exploiting the VLSI multi-
plier structure defined. Both VLSI converters represent the
best solution known for the particular problem, either in
terms of area complexity or in terms of time complexity: for
the area this is true at least as long as the number s of
moduli, considered as a function of the number n of bits in
the positional representation, respectively ranges in
[Q(const),biloggn)) and [S(CDnst),Skloggn/loglogn)); on the
other hand, for the time this result holds for any choice of

S .

11. Residue Number Systems (RNS)

Let X be a non-negative integer number, O$XSEM—1,

represented in the weighted binary system as

m-b .
veewsb ab 3 = § bJa’ . bJ-e(O,l;}

(g

{b,, ‘,bM_L
J':O

In a residue number system, X is represented by s resi-
1

due digits O :

IAY
X = {0(.,0(2,...,0(5}

where



A= Xy, = x—LN/m,-:] )

LX/mLJ denotes the largest integer not exceeding X/m_ ., and
{m.} is the set of moduli. If numbers m, are pairwise rela-
tively primes it can be shown [131 that there 1is a unique
representation for each number X in the range

s
ogx¢ M m =M.

Ar
As

=}

In this paper; we assume that

$
|
n = Er and EmermL< Ewr

L =1
This means that we consider an RNS which has a range of
representation, at most, twice as redundant as the binary
range. Moreover, for any pair of integers X,Y, the following

relations hold:

PXE YL = b v ! » VI A =11%0 a1 Vi ; .
1’_ MA» IWQ~ Wv m o L AL AMV
Consequentlys arithmetic operations can be performed

separately for each modulus,; and hence fast parallel arith-

metic units based on RNS’s can be implemented.



It is easy to show that results obtained in this paper
also hold for digital systems in which signed arithmetic is
used. In fact, assuming M to be even for the sake of simpli-
citys an implicit sign representation can be takens; by asso-

-1 m-\

ciating to any number X, -2 < x&e -1 a number N in the

range [O;M) defined by the relation:

In this ways signed arithmetic operations can be carried out
in the residue %Drm without the necessity for sign
knowledges which is difficult to obtain rapidly in RNS’s.
Moreover after the RNS~-to-positional conversions the
resulting non-negative number N, C)$hl(Vh carrvies an impli-
cit representation of the sign of the actual result X, which

can be obtained in its range [-M/2, M/2) as follows:

X = N, if N {M/2
X = N-M, if N M/2

I1I. Modulo m; multiplication

Let X, Y be two integers such that OSX',Y(M and let us



denote their correspanding RNS representations by
(™ %oy unny X} and ﬁ‘,@z,...,@S}, respectively. Let us also
suppose M to be sufficiently large to permit the representa-
tion of P = X.Y. To obtain the RNS representation of product
P, products 'W;=!d;%gumu, i=l,ss; must be evaluated. Of
course, % and @; are represented by means of g;=fiog mg\
binary digits; consequently, gb, digits are needed to
represent each product P, = %,ﬁ;.

Since

T.= po— k. o.m. (1)

where k;=tp;/m%J, the problem of performing modulo m, multi-
plication 1is reduced to evaluating constant k., and carrying
out the operations required by relation (1). In our
approach, the integer constant k: is replaced by an integer

E; which can be obtained in a more straightforward way and

which can assume two values: k or k; -1.

Let us approximate the fractionalkvalue 1/m: using a

%4

number obtained by truncating its representation at the

~first r; fractional bits; let t; be such a number. Then

\
\

t, {i/m, e+ 2 0

S (2)



Multiplying inequalities (2) by P,s we obtain:

-/L/L
Pt SR /m, Pyt +p, B

As a consequence; the maximum error E, generated by approxi-
—-.‘YLI
mating p, /m; by p&t; is less than p.a v. If error E; is to

be below one,; a number T must be chosen which satisfies the

relation

In fact, wunder this assumption and considering that

Zb.
p. <2 * ,we have

Denoting the value LthQJ by E;, we can write

ko= Lp;,/m;,_] "'LPL"L*ELJ = )}L* Frac“pﬁ;)*ﬁp)

=k, +| Fract(p t )+E; | = k, + El »

where Fract(z) denotes the fractional part of the real

number 2. As O Fractip.t;)+E, <2, quantity E! belongs to



{0,132,

Finally, product‘ﬂ; can be obtained from eqg.{(1}) as

T,= pLkom~ Elm 3)

Considered as an algorithm, the evaluation of 7,
corresponds to computing expression g;—Egm; and testing the
result: if it is less than m- it will be correct; other-

wise, a subtraction of m; must be carried out to obtain ﬂl.

IV. An example

Consider the RNS based on moduli m,=7, m,=11, m =13.
The range of the one-to-one representation of any positive
integer X is [0, 7x11x13 =.1001).

Let X=37,; Y=12 be two numbers to be multiplied; in

decimal notation their RNS expressions are:

37 = {(2,4,113 and 12 = {(5;1,12%

Conversely, the base 2 representations of the residue
’ )

digits of X and Y are:



37 = {010,0100,10113 and 12 = {(101,0001,11002}

Each residue digit has been expressed in a field of b,
bits, i.e. of the length required by the corresponding
modulus value; i.e. b, = 3, b,= 4 and b5= 4. Multiplying the

1 2

proper residue digits we obtain

p, = %03, = 010x101 = 001010

P, = %@, = 0100x0001 = 00000100
93 = Ay by = 1011x1100 = 10000100
Choosing r, =6, 5_=8, 15 =8, the values of fractions

t/m. 5 truncated over r; digits, can be taken as constants

t sy according to equation (2), so that:

A

t, = .001001

t, = .00010111
t; = .00010011
Consequently, values E;are:

ke =lp,t,} =1001010x.001001] = 0001
kK, = | pyt, | =[00000100%.00010111]= 00000
ky =| P, t; | =|10000100%.00010011|= 01001

and then:



001010-(0001x111) = 001010-0000111 = 011 3
00000100-000000000 0100 3

nn
it

since these results are less than m, =7 and m, = 11, they
coincide with @ and T, , respectively.
For ﬂg, we have:
P —Esm% = 10000100-(01001x1101) =
J : = 10000100-001110101 = 1111 ;
as this result is greater than m3; = 1101y, in this case a

further subtraction of Mg is needed to obtain the correct

! Peamd -
value of TE (EJ = 1):

TB = 1111-1101 = 0010.
The triple (3;4,2) so evaluated 1is the correct RNS
representation of the product XY = 37xie = 444,
It is worthwhile observing that the values resulting

from the subtraction p, —k,m; must always be positive and
below 2m;, i.e. b;+1 bits are sufficient for their represen-

tation. Consequently, only the b:+1 less significant bits of

p, and of _Eém; can be considered lto evaluate T .

10



V. Description and evaluation of a modulo m multiplier

architecture

The algorithm for the modulo m;, multiplication
presented in Section 111 can be implemented using the struc-

ture shown in Fig. 1.

At first, residue digits <x;and($;, represented by b,
bits, are multiplied and value p, is obtained at the 2b_-bit
long output of MULTIPLIER1; P, is then multiplied by ¢t

which is the approximated value of 1/m;, and the result is a
product number R, of 4b; bits. Bits {(eb.s...y 3b 3} of R,
contain the total representation of k_.; which can be finally
multiplied by -m;  to obtaiﬁ the correction term C.s b, -bit
long. ADDER1 generates the difference P;“;gm;’ which
requires b° bits for its representation. Depending on the
sign bit value of the difference D -m., performed by ADDERZ,
the value D, or D -m, is selected as the correct value of
w,. -

It should be recalled that, as D, differs from the
correct result either by zero or by\m¢, be+1l bits are suffi-
cient for its representation and consequently bits
{be+1s...,2b.~13 of input data of ADDER! can be ignored.

To evaluate the design performance in terms of response

time, let us refer to a reasonable choice of an RNS to

11



represent integers in a range such as 0‘$)(§ 10" . For exam-

ple,‘ the RNS based on the set of moduli
(255,254,853,231,247) may be an acceptable choice. In this
cases, b,=8By 1i=1,...:3; and three parallel multipliers 8x8,
16x1é6; and 8xB, as MULTIPLIER1, MULTIPLIER2 and MULTIPLIERS3
respectively, are required. Total response times of about
1530 nseconds can be achieved using commercially available
multipliers with a multiplication time below S0 nseconds
(e.g.; the recent Weitek 16x16 integer multiplier WTL 2516C
has a vresponse time of 38 nseconds). In addition to the
three multipliers, oéher LSI units are neededs and they can
be accomodated in a single custom chip. In fact, the total
number of connection lines, excluding the supply and control
wiresy, is 530, which is compatible with current dual-in-line
packages. On the other hand, the whole structure could also
be integrated on a single VLS1 chip.

The proposed structure can be easily adapted for pipe-
line operations; simply adding buffer‘registers at the out-
put lines of each multiplier. In this way a pipeline inter-
val in the range of 70-100 nsecpnds\can be achieved.

Alternatively, modulo m; multiplication can be imple-
mented exploiting table look—up technigques. Referring to the
previous example,; the 1& bits of ¢ and (g;form the address
of a é4-kword ROM, each word containing a possible B-bit

result for'ﬂ;. Using commercial devicess the total response

12



time can be brought close to 150 nseconds, comparable with
the total response time determined abaove, and only one chip
is needed to implement the multiplier .

It is easy to see that, when RNS’s with moduli smaller
than Eg are chosen,; the ROM based solution is favoured, both
with respect to the total response time and the number of
chips needed. 1t should be remembered, in facts, that the
total number of moduli increases as the mean modulus value
decreases in order to keep M as large as necessary. Con-
versely, as the RNS moduli magnitude exceeds al? s the memory
dimensions become so large that table look-up technigues are
impractical, whereas the advantages of the structure in Fig.
1 are maintained. Indeed,ldoubling b, in the above example;,
which would reguire a memory as large as 40946 M-words, 16—
bit long, simply means substituting MULTIPLIER2 by a struc-
ture consisting of two adders and four multipliers equal to
the one replaced, according to the logic organization shown
in Fig. 2. The four multipliers can work in parallel and
thus either the total response time or the pipeline interval
will only be increased by two addition times.

In [121 a VLSI residue arithmetic multiplier, which is
suitable for residue systems with large moduli values, and
which also exploits commercial multipliers, is described.
This multiplier consists of four pipeline stages, and,; as in

our structure in Fig. 1, the pipeline interval 1is mainly

13



determined by the multiplication time. The number of circuit
elements is also either of approximately the same order as
ourss, or slightly higher. The difference between the VLSI
multiplier presented in [121 and our proposal is that the
former was conceived for RNS’s based on moduli e“-1,e”,a“+1,
which were chosen to ensure efficiency in scaling opera-
tionss whereas the latter has no design constraints on the
number and values of the RNS moduli. Of course, unless these
same moduli as in [12]1 are used in our designs the methods
suggested for a generic RNS must be used for overflow detec-
tion and scaling, Qhen this is reqguired by the data dynamic
range [13].

To complete the evaluation of the proposed architec-
ture, we now intend to consider its possible implementation
in large VLSI residue arithmetic units, by computing its
order of complexity in terms of silicon area and execution
time.

We refer to a VLS5I model of compﬁtation which is by now

generally accepted [14,15,16]1 and is based on the following

assumptions: \

a) wires have minimal width X =f87const);

. . . . /\9, 2
by one bit of stored information requires area (N
c) the distance between parallel wires is b’(k);
d) only two wires may craoss at any pointg

14



e) wires run horizontally and vertically;

) any transistor needs a minimal transit time
T ={)(const) to change its state;

g) to propagate a binary change along a wire takes 3’rz>;
to meet this assumptions wires of lengthr%(L) can be
driven by drivers with area A=:T<)\>x3(u'.

Furthermore, we assume that

m, =4t (m), 1£igs

i.e., that all moduli chosen are of the same order of magni-

tude. Recalling that
5
m M4}
2 £ I m. 2
LvzA
it follows that; for large n,
2’ﬂ ='skm5), n 4 s logm.
The latter relation shows that the sum of the field lengths
of the weighted representations of X, » for large n, is
about equal to the length of the positional representation

of X. Moreover, this relation states a functional dependence

among ny, s, and my and thus allows a caomplexity evaluation

15



in terms of the two parameters n and s only.

To evaluate the total area required to implement the
structure of Fig. 1, it is convenient to refer to Fig. 3,
where the dimensions of each element are shown as functions
of the size of m. As a VLSI integer multiplier, the network
described in {173 has been chosen, which is (area).(timef’—
optimal within the range of computation times
Th= LV (lognm, (VA3 and exhibits an area
ﬁl(n/TH)x(n/TM)), where n is the length of the operands.
In this networks; each operand is subdivided into Tm strings
of n/TM bits which are vieQed as binary numbers sequentially
fed to the inputs. In our case, the multiplier layout needs
an area AM= 9((logm/Tn)x(logm/TM)) and TN ranges in
t 9"<1ogmgm> ; 3’(\/’1‘0‘5&)3.

Adders can be implemented by means of the structure
proposed in 181, which, in our case; has an area
AAzg}((logm/ﬂd)xlog(logm/Tn)) and a time
Tp = 3(Tn+log(logm/TM)). Consideringithe allowed range of Ty,
Tp reduces to 9TTM).

Of course, the complexity of MULTIPLEXER, in terms of
area or of time, can be ignored;

Because data are processed in strings, the structure of
Fig. 1 was slightly modified: delays were inserted in paths
which connect not adjacent successive devicess in order to

operate everywhere with relatively consistent strings.

16



Finally, delays were also inserted at both inputs of multi-
plexer, because the decision about what input is correct
depends on the sign bit, which will be ready with the last
string.

Observing Fig. 3, two remarks are relevant: first,
adders are as wide as multipliers, but their depth is always
less. Consequently,; they can also be ignored in evaluating
the overall complexity. The second remark is that the
whole connection area has the same complexity figure in both
dimensions as the multipliers in Fig. 3; because input data
to adders must be permuted in order to satisfy constraints
imposed by the chosen VLSI adder [181].

As a conclusion, the modulo m, multiplier described has
the same complexity figures as the integer multiplier in
{173 and exhibits the same behaviour: in fact it reqguires
input data and yields output data subdivided in TH strings;
input strings are sequentially processed.

We now intend to relate the previously obtained com—
plexity figures to the number n of bits necessary to
represent integers in the overall #ange £o,M through the
RNS parameters s and m; in order to evaluate the complexity
of the overall VLSI RNS multiplier, which consists of s
modulo m, multipliers. It is worthwhile considering that

the choice of s and m is essential for the performance of

any computing system based on RNS arithmetic. Consequently,

17



this choice cannot depend only on optimization constraints

of the multiplier design. In Table I A(n) and T(n) are given

for the overall VLSI RNS multiplier, according to several

hypotheses o©on s and logm. Note that the hypothesis in the

last entry of Table I must be considered as an asymptotic
hypothesis because it is impossible to keep logm constant as

N increases arbitrarily; in fact, for any constant k>O, the

numbers below k form a finite set.
It can also be observed that the total width of the

VLST RNS multiplier has the same complexity figure for all
hypotheses,; i.e. SYn/TH); this is a consequence af the
balancing between the string length for each module and the
number of moduli. On the other hand, both RNS multiplier
depth and execution time monotonically decrease with the
average length logm of the moduli.

It is interesting to compare the complexity figures of
our RNS multiplier with the simple RNS multiplication struc-
ture which can be obtained using a table look-up technique
for each module. The whole input field must be considered
in this case and one ROM of f}(m)\words of r&?logm) bits |is
necessary for each module. This ROM is addressed by the
»9(10gm)~bit operands. We can assume that the access time
is T = ‘3(loglogm). Table 11 gives complexity figures under

the same hypotheses as in Table I. A comparison with Table

1 is straightforward. While choosing the lower extreme

18
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complexity in the range of T(n) in Table 1 leads to the same
time behaviour for both structures (one using multipliers
and the other ROM’s), the former structure exhibits an area
complexity considerably lower than the latter for any value
of Ti(n). However, the gap reduces as the number of moduli
grows., The two structures require areas of the same com-
plexity only in the last hypothesiss; whichy; o©on the other
hand, is not a practicable design for large values of n.
This comparison evidences that the described RNS multiplier
has better complegity figures than ROM-based RNS multi-
pliers, even though table look-up techniques are generally
considered the most suited to implement RNS’s with a large
number of small moduli. Note that the similar comparison
previously carried outs which stated m =28 as a bound below
which ROM-based multipliers are more convenient, refers to
structures designed under the last hypothesis in Tables I

and I1.

VI. Conversion from positional to residue number system

representation and viceversa

Any VLSI implementation of RNS multiplication, as well
as of other residue arithmetic operations,; would be gen-

erally embedded in a larger VLSI system, devoted to particu-

19



lar applicationss which exploits the characteristics of
RNS’s to achieve high levels of efficiency or reliability
[?13.

To interact with an environment in which data are
represented by means of a binary positional system, direct
and reverse conversions must be performed. A number of VLSI
converters have been recently proposed in the literature
[4,5561. The modulo m:; multiplication algorithm described in
Section II1 suggests straightforward ways to perform the
direct and the reverse conversion and to design their VLSI
implementation. These implementations will be proved to be
the fastest known residue converters.

In fact, let X be an integer such that O SX {M; with

assumptions similar to those in Section III; it is

and

. = X—Eim;—Esm;

A~

where E;=LX.tLJ and EL takes values O or 1 if 1/m; is
approximated by means of the sum of a proper subset of the

first n={]ogM1 negative powers of two.

20



Since ¢ =i &' . s the relation

holdss however, as the value of EL is unknowns a possible
procedure to determine x. consists in evaluating the expres-

sion

=<
|
~)

b+ 'R b.+|"mL=Z}¢+l
and in testing the result: if this is greater than or equal
to m-, m: must be subtracted from it, otherwise it is the

correct residue digit.

In Fig. 4 the VLS5l structure to generate a residue
digit is shown, together with the dimension of each ele-
ment as a function of m.; and n=riogMj. As in the case of
Fig. 3, the largest element in the structure is the integer
multipliers; which in this case ocgupies éy((n/TH)x(n/TH)),

0.
where TM ranges between fﬁlogn) and 'J(Vﬁ). Since s struc-—
tures are required to calculate all residue digits of X, the
total conversion area is A=‘.(Sn1/T&), and the total time is
TH’ see Table II11.

This VLS1 structure represents the best solution known

for the positional to residue conversion problem; both in

21
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terms of area complexity and in terms of time complexity:
for the time aspect this assertion holds for any choice of
sy for the area it is true under the hypothesis that the
number s of moduli is in the range ['97const),;)(1093n)). In
fact, compare the area complexity expression A= stnz/ieg?n)
with the corresponding expression for the structure proposed

in £53]:

Q.
A’=/9(sn(log(n/5))((n/s)+loglogn)) .

It is easy to see that, when =4 ranges in
[falcon5t>,§f(log3n)), A is a Tfunction of n with a lower
order of complexity than A’, This comparison has been car-
ried out for TH= Sklogn), but it can be verified that for Tﬁ
increasing towards Yn the area complexity evaluated for
s=%(logxn) decreases. Consequentlys the range of s for which
the new converter will be effective extends beyond loggns
possibly keeping also the time complexity low.

On the other hand, a simple residue to positional VLSI
i

converter can be designed observing that [19]
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where p, are constants which depend on the values of the
selected moduli. In this case, s modulc M multiplications
followed by s additions must be performed; s multipliers
such as those proposed in Section 3 can be adopted for the
former computations, whereas the latter would require modulao
M adders. The additions can be carried out by means of a
tree of binary adders arranged in logs levels followed by a
structure which converts the resulting sum; expressed in a
field of n+logs bits,; to a modulo M integer. This structure
is the same as that ﬁsed to generate a single residue modulo
m, digit from any integer X, except for its size.

In Fig. 5 the global VLSI converter is depicted. Adders
are designed as proposed in (1815 they have been also used
in the multiplier layout. The area of the residue to posi-
tional converter in Fig. 5 is easily evaluated as the sum of
three contributes; i.e. the areas of the s modulo M multi-
pliers, the area devoted to the adder tree; which is mainly
determined by the communication paths, and the area of the

modulo (M+s)—~to-modulo M converter:

\
i

2
E}(s(n/T + 5 logs(n/T“) + (n/T“) ) =
%)(s logs (n/T )

and the time is:
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T = 9YTn+1ogs log(n/TM) +T”)

We recall that input residue digits are processed by
subdividing them into Ty strings, each n/T,1 -bit wide, and
making the whole structure operate in pipeline. Hence, the
way that the time complexity expression has been derived
takes into account the contributes of the multiplication
phase, the addition phase and the conversion phases respec-
tively (see Table 1V).

In this case too, the proposed solution is the best
solution known to solve the residue to positional conver-—
sion,; either referring to the time complexity, or to the
area complexity: for the time it is true for any choice of s
except for the asymptotic hypothesis s= 9(n),
logm= Slconst )y when both exhibit the same time perfor-
mance; as far as the area is concerned, the comparison
between expression A= 3(510g5(n1/1§gzn)), which holds for
Tﬂz SKlogn), and A’= 91n2logn> 5]y shows that, when s
ranges in [SKCOSt),Sflog n/loglogn)), A is a function of n
with a lower order of complexity than A’. Moreovers, con-
siderations similar to those expressed for the direct
conversion about Ehe possible increasing of Ty towards Yn

can be generalized to this case.

Finally, it can be inferred that the VLSI structures
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proposed for direct and reverse conversion and for modulo m,
multiplication are very good designs for any permitted value
of TH’ when 5==87c0nst). In fact, an ATz—optimal integer
multiplier could be constructed by putting in a cascade a
binary to residue converter,; s modulo m multipliers and a
residue to binary converters; all with the same value for Ty.
The overall area is A= QY(n/TH)x(n/T”)) and the total time
range is [logn,V?]. This integer multiplier is an optimal
design since it reaches the lower bound on complexity

2
AT =5Lin%) 153,

VII. Conclusions

We have presented a method to compute modulo m; multi-
plication; which requires only a few binary multiplications
on data which are at most 2 Eog mi\ -bit long.

Using this methéd, an arithmetic structure has been
designed, tailored for a possible RNS choice allowing a sin-
gle chip integration; this structure has been compared with
solutions based on table lookJup techniques and with
Tavlor’s residue multiplier which uses the triple of moduli

A

M M
2 -1, 2 , 2 +1.

The proposed multiplier has also been evaluated accord-

ing to the complexity theory of VLSI algorithms,; in order to

t
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evidence its advantagess; when large RNS’s are used.

The method has also suggested new solutions to the
problem of direct and reverse conversion from positional to
residue representation of integers.The VLSI complexity of
such solutions has been evaluated and they have been proved

to be the best known,; under a wide range of assumptions.
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