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A B S T R A C T

Fully decentralized learning is gaining momentum for training AI models at the Internet’s edge, addressing
infrastructure challenges and privacy concerns. In a decentralized machine learning system, data is distributed
across multiple nodes, with each node training a local model based on its respective dataset. The local
models are then shared and combined to form a global model capable of making accurate predictions on
new data. Our exploration focuses on how different types of network structures influence the spreading of
knowledge – the process by which nodes incorporate insights gained from learning patterns in data available
on other nodes across the network. Specifically, this study investigates the intricate interplay between network
structure and learning performance using three network topologies and six data distribution methods. These
methods consider different vertex properties, including degree centrality, betweenness centrality, and clustering
coefficient, along with whether nodes exhibit high or low values of these metrics. Our findings underscore the
significance of global centrality metrics (degree, betweenness) in correlating with learning performance, while
local clustering proves less predictive. We highlight the challenges in transferring knowledge from peripheral
to central nodes, attributed to a dilution effect during model aggregation. Additionally, we observe that central
nodes exert a pull effect, facilitating the spread of knowledge. In examining degree distribution, hubs in
Barabási–Albert networks positively impact learning for central nodes but exacerbate dilution when knowledge
originates from peripheral nodes. Finally, we demonstrate the formidable challenge of knowledge circulation
outside of segregated communities, and discuss the impact of class cross-correlations.
1. Introduction

The modern technology ecosystem is experiencing a dramatic shift
characterized by the exponential growth of devices at the Edge of
the network, together with the enormous expansion of data that they
create. The most popular network paradigm for AI is currently a
centralized one, that involves transferring data collected at the edge
towards big data centers, where data are processed and large-scale AI
models are trained. These trained models are then deployed to furnish
AI-based services. Despite proving effective, this centralized approach
raises several concerns related to data privacy and ownership. Even
with the prospect of benefiting from centralized AI-based services, data
generators at the network’s edge are becoming less eager to disclose
their private data to third parties. These worries are fueling a paradigm
shift from centralized AI systems to decentralized ones.

To address these issues, solutions based on decentralized AI systems,
such as Federated Learning (FL) [1], have been proposed. In FL, the
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idea is to avoid the transfer of raw data, keeping the data locally at the
edge devices. Specifically, the devices collaboratively train an AI model
without sharing any raw data with each other. They only share the
parameters of the AI models that are trained locally. These parameters
are then aggregated to produce a better and capable global model that
is iteratively refined through successive rounds of collaboration.

The standard definition of the FL framework assumes a starred net-
work topology, where a central server orchestrates the entire process,
coordinating the operations of the participating devices. However, the
presence of a centralized controller introduces some challenges. It could
potentially serve as a single point of failure, a potential bottleneck when
the number of involved devices reaches millions, and an impediment to
spontaneous, direct collaborations among users. In response to these
challenges, a rising trend is emerging in favor of supporting fully
decentralized variations of FL. Decentralized Federated Learning (DFL)
represents an alternative to centralized Federated Learning. In DFL the
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connectivity between devices is represented by a generic graph, and the
devices involved in the learning process typically collaborate only with
their neighbors. The lack of a central controller overcomes the single
point of failure problem but introduces other aspects that need to be in-
vestigated. Specifically, we claim that, in this scenario, the information
locality and the network topology strongly affect the dynamics of the
learning process, i.e. how fast and effective the spreading of knowledge
about the class labels is.

While previous work [2] assumes that the network topology can be
controlled by the network operator and optimized to make the learning
process more efficient or scalable, we argue that complete decentral-
ization can only be achieved by letting user devices spontaneously
organize themselves. This implies that the network topology, in these
settings, cannot be controlled by the operator. For example, an edge
between two nodes in the graph may represent a trust relationship
or willingness to cooperate. If the edges are weighted, the strength of
the weights expresses the intensity of trust or cooperation. With this
approach, users are free to cooperate with whomever they want, and
the operator has no control over the cooperation patterns. Although
this scenario poses a challenge from a learning perspective, it also fully
exploits the human-centric, impromptu potential of fully decentralized
learning systems.

Given these considerations, the primary research question addressed
in this paper concerns the impact of network topology on the learning
process within a fully decentralized learning system. Specifically, we
examine a scenario where a group of devices collaborates to train a
unified AI model in a completely decentralized environment, connected
to each other through a complex network topology. Following the DFL
framework, each participating device receives a set of models from its
graph-connected neighbors. At first, these models undergo an initial
aggregation step with the local model, usually through a weighted
average, resulting in a refreshed aggregate model. Subsequently, this
aggregated model is updated via a number of local training epochs
performed on local data. The newly updated models are then shared
with neighboring devices, and this iterative process continues until a
stopping condition is met.

In this paper, we examine three network topologies: Erdős-Rényi,
Barabási-Albert, and Stochastic Block Model. Through simulations, we
analyze how their underlying network structures impact the learn-
ing process, considering various non-IID data partitioning scenarios,
three different datasets and two different neural network architectures.
Specifically, we assume that a subset of nodes possesses more knowl-
edge than others, represented by classes unavailable on other nodes. We
identify this subset of nodes based on the highest or lowest values of
properties such as degree centrality, betweenness centrality, and clus-
tering coefficient. These properties capture the significance of nodes in
the network and the connectivity within their local neighborhoods. The
main take-home messages from our analysis are the following.

• The initial data distribution on high vs low degree nodes plays a
key role in the final accuracy of a decentralized learning process.

• When high-degree nodes possess more knowledge, such knowl-
edge spreads easily in the network.

• Vice versa, when low-degree nodes have more knowledge, knowl-
edge spreads better when the network is less connected (at first
counterintuitive, but connectivity dilutes knowledge in average-
based decentralized learning).

• When users are grouped in segregated communities, it is very
difficult for knowledge to circulate outside of the community.

• When considering different centrality measures, the system’s per-
formance exhibits a direct correlation with global centrality met-
rics. In contrast, centrality measures centered on local structure
are not robust indicators of system performance.

• Unbalanced data split in decentralized learning scenarios may
amplify cross-correlation effects among classes. In such cases,

having more data samples may not necessarily be better than
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having fewer data samples for the cross-correlated classes. While
these effects are not significantly dependent on the network topol-
ogy, they can radically impact the performance of decentralized
learning.

The remainder of this paper is organized as follows. We present
a literature review in Section 2. Then, we provide the basics of De-
centralized Federated Learning in Section 3. In Section 4, we discuss
the network topologies that we have chosen for our analysis. The
detailed settings of our experiments are discussed in Section 5. Then,
we discuss our findings for Erdős-Rényi (Section 6.1), Barabási-Albert
(Section 6.2), as well as a comparison between the two (Section 6.3).
The case of segregated communities with SBM is presented in Sec-
tion 6.4. The effect of class cross-correlation is discussed in Section 6.5.
Finally, Section 7 concludes the paper.

2. Related work

DFL extends the typical settings of FL, e.g., data heterogeneity and
non-convex optimization, by removing the existence of the central
parameter server. This is a relatively new topic gaining attention from
the community since it fuses the privacy-related advantages of FL
with the potentialities of decentralized and uncoordinated optimiza-
tion and learning. In [3], the authors define a DFL framework for a
medical application where a number of hospitals collaborate to train
a neural network model on local and private data. They make use
of a decentralized Federated Learning setting where multiple medical
centers can collaborate and benefit from each other without sharing
data among them. In [4] the authors propose a Bayesian-like approach
where the aggregation phase is done by minimizing the Kullback–
Leibler divergence between the local model and the ones received
from the peers. All these approaches are still considering that the
nodes perform just one local update before sharing the parameters
(or gradients) with the peers in the network. This aspect is relaxed
in [2,5]. In [5], the authors propose a federated consensus algorithm ex-
tending FedAvg from [1] in decentralized settings, mainly considering
industrial and IoT applications. The authors propose a consensus-based
serverless Federated Learning approach to tackle the issues that stem
from massive IoT networks. The proposed FL algorithms leverage the
cooperation of devices that perform data operations inside the network
by iterating local computations and mutual interactions via consensus-
based methods. The proposed methodology is validated on an IIoT
scenario typical of a 5G network infrastructure. A slightly different
approach has been proposed by authors in [6]. They propose a variation
in FL where the central server role is rotated among the participants,
they refer to it as flying master, which is dynamically selected. They
demonstrate a significant reduction of runtime using their proposed
flying master FL framework compared to the original FL over real
5G networks. The work in [2] proposes a Federated Decentralized
Average based on SGD in their research, where they incorporate a
momentum term to counterbalance potential drift caused by multiple
updates, along with a quantization scheme to reduce communication
requirements. Finally, [7] addresses the heterogeneity and initialization
problems of fully decentralized federated learning by proposing a novel
learning strategy based on distance-weighted aggregation of models
and knowledge distillation.

The approaches described so far assume that data remain within
their hosting nodes, and models received from one-hop neighbors are
aggregated with the local one. However, a complementary perspective
was proposed a decade ago in a different domain, that of P2P net-
works [8]. P2P networks implement an overlay network where virtual
links determine communication paths. The overlay topology is typically
controlled by the algorithm used to establish it, while nodes can appear
or disappear based on their usage patterns. In [8], an overlay network
of this type is considered, and the authors propose a decentralized

learning strategy based on the concept of multiple models taking
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random walks over the network, and being trained using an online
learning algorithm on each local dataset of the nodes they traverse.
This framework leverages the gossip protocol for the model distribu-
tion, which traditionally involves nodes randomly communicating with
their neighbors to exchange information. In their setup, local datasets
contain one data point each, and the network topology assumes that
90% of the nodes are online at any time (the session duration follows
a lognormal distribution). The local models are linear SVMs. There
are significant differences in our settings: in our decentralized learning
scheme, models are anchored on specific nodes and always trained on
the same local data. Our topologies and data distributions are more
complex and varied, and our local models are neural networks. Nev-
ertheless, the work in [8] presents an interesting and complementary
perspective to the approaches described at the beginning of the section
and should be studied separately in future work.

In addition to the algorithmic-oriented contributions described
above, there have been efforts to analytically characterize decentralized
learning as a function of the graph topology. In [9], the authors in-
troduce a comprehensive analytical framework that integrates various
decentralized SGD methods. This paper develops a framework that
supports local SGD updates, synchronous updates, and pairwise gossip
updates within a network topology (the DFL algorithm applied in this
article). It offers universal convergence rates for solving both convex
and non-convex problems. This analysis operates under less stringent
assumptions than earlier research about network properties assump-
tions. Nevertheless, a fundamental assumption is that the mixing matrix
(i.e., the topology-dependent matrix that drives the model exchanges)
is symmetric and doubly stochastic, a condition not inherently met by
general complex network topologies. In our study, which is simulation-
driven and not theoretical, we do not constrain the properties of
the mixing matrix associated with the graph. In addition, while [9]
focuses on the convergence properties, we are also interested in the
transient regime of the learning process. In their exploratory study
on the influence of network connectivity in decentralized SGD [10],
the authors examine the generalization and stability of decentralized
stochastic gradient descent (D-SGD). They provide a theoretical frame-
work that correlates the network’s topology with the generalizability
of D-SGD, focusing on how the spectral gap affects learning outcomes.
Unlike our paper, which considers more complex scenarios, the authors
of [10] base their assumptions on an IID data distribution across nodes
and restrict their analysis to simple network topologies (ring, grid,
exponential, fully-connected).

In previous works, we have focused on the impact of different
complex network topologies on the performance of DFL. Specifically,
in [11], we started the exploration of such a relationship by observing
how the data distribution, when carried out prioritizing low or high-
degree nodes, affects the accuracy of the learning process for a set of
standard network topologies such as Erdős-Rényi, Barabási-Albert, and
Stochastic Block Model. In this paper, we proceed further to investigate
the relationship highlighted in [11], considering additional datasets
and centrality metrics for data assignment, and focusing on idempotent
Erdős-Rényi and Barabási-Albert graphs (this enables direct comparison
between the topologies, as explained in Section 5.1). In [12,13], we
explore a problem that is orthogonal to the one addressed here, namely,
the impact of network disruption on the evolution of the learning
process. Specifically, we investigate a scenario where nodes (in a
single Barabási-Albert graph) are ‘‘lost’’ during the learning process,
potentially leading to the loss of valuable knowledge held by these
nodes compared to the ones remaining active. Although related, these
two problems are distinct and complementary.

3. Decentralized Federated Learning

Decentralized Federated Learning (DFL) is a decentralized machine
learning solution that does not rely on a central coordinator. It consists
of a variation of Federated Learning (FL) that operates in a fully
 t
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decentralized setting where there is no central server. In this scenario, a
number 𝑁 of devices have to accomplish a distributed and collaborative
learning task under the very same settings of federated learning [14].
Basically, in Decentralized Federated Learning, there is no central entity
that coordinates the nodes: the orchestrator can either not exist at all
as a central entity, or its role can be rotated among the participants. In
a fully decentralized setting, the communication network is essentially
peer-to-peer. The decentralized learning algorithms designed for such
a system are typically composed of two main blocks: one step for the
local training of the model using local data and one step devoted to
the exchange and aggregation of the models’ updates. These steps go
on iteratively for 𝑛 communication rounds. Here, we focus on the most
popular decentralized learning approach, which we refer to as DecAvg.
DecAvg is the decentralized equivalent of FedAvg [1], and it has been
often used in the related federated and decentralized literature [2,5,15,
16]. DecAvg combines reasonable effectiveness with simplicity, making
it a suitable choice for our work. In fact, our aim is not to introduce
a novel state-of-the-art decentralized learning solution but rather to
assess a well-established method across various network topologies.

The communication network connecting the 𝑁 devices can be rep-
resented as a graph. Therefore, we model the network connecting the
nodes as ( , ), where  denotes the set of nodes and  the set of
dges. We denote with 𝜔𝑖𝑗 the weights on the edge between nodes 𝑖

and 𝑗 which would represent the trust between the two nodes. The self-
trust 𝜔𝑖𝑖 is a pseudo-parameter with which we capture the importance
placed by node 𝑖 on itself. We assume that only nodes sharing an edge
re willing to collaborate with each other. Note that matrix 𝛺 = {𝜔𝑖𝑗}

is not generally symmetric. For this reason, certain theoretical results
obtained in [9] may not hold in our case.

Each node 𝑖 ∈  is equipped with a local training dataset 𝑖
(containing tuples of features and labels (𝑥, 𝑦) ∈  × ) and a local
model ℎ𝑖 defined by weights 𝐰𝑖, such that ℎ𝑖(𝐱;𝐰𝑖) yields the prediction
f label 𝑦 for input 𝐱. Let us denote with  =

⋃

𝑖 𝑖 and with  the
abel distribution in . In general, 𝑖 (i.e., the label distribution of
he local dataset on node 𝑖) may be different from  . This captures
realistic non-IID data distribution. At time 0, the model ℎ(⋅;𝐰𝑖) is, as

usual, trained on local data, by minimizing a target loss function 𝓁 –
i.e., 𝐰𝑖 = argmin𝐰

1
|𝑖|

∑
|𝑖|
𝑘=1 𝓁(𝑦𝑘, ℎ𝑖(𝐱𝑘;𝐰𝑖)), with (𝑦𝑘, 𝐱𝑘) ∈ 𝑖.

We assume that nodes entertain a certain number of communica-
tion rounds, where they exchange and combine local models. At each
communication round, a given node receives the local models from its
neighbors in the communication graph, and averages it with its local
model. Specifically, at each step 𝑡, the local model of the given node and
the local models from the node’s neighbors are averaged as follows:

𝐰𝑖(𝑡) ←
∑

𝑗∈ (𝑖) 𝜔𝑖𝑗𝛼𝑖𝑗𝐰𝑗 (𝑡 − 1)
∑

𝑗∈ (𝑖) 𝜔𝑖𝑗
, (1)

where we have denoted with  (𝑖) the neighborhood of node 𝑖 including
tself and 𝛼𝑖𝑗 is equal to |𝑗 |

∑

𝑗∈𝑖 |𝑗 |
(and captures the relative weight of

he local dataset of node 𝑗 in the neighborhood of node 𝑖). Once the
ggregation of models is performed, the local model is trained again
n the local data.

From Eq. (1) we can see that the aggregation step takes into consid-
ration only the 1-hop neighboring nodes of the i-th node (including the
ode itself). As a result, the topology determines the paths along which
nformation, or ‘‘knowledge’’, travels and influences the speed and
fficiency of information dissemination. The structure of the network,
uch as its degree distribution, clustering coefficient, and connectivity
atterns, can impact the performance and effectiveness of decentralized
ederated algorithms. Thus, it is reasonable to expect the network
opology to play a crucial role in DFL. This is the rationale for analyzing

he impact of network topology in such settings.
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4. Network topologies

In this paper, we analyze three different network topologies,
i.e., Erdős-Rényi (ER), Barabási-Albert (BA), and Stochastic Block Model
(SBM), to investigate how their properties impact on the diffusion of
knowledge during a fully decentralized learning process. We consider
non-directed graphs, assuming that node communication is always
bidirectional.

The ER model is a model for generating random graphs with a
homogeneous structure, where nodes are connected to each other with
a fixed probability. ER is defined by two parameters: 𝑁 , the number
of nodes in the network, and 𝑝, the probability of an edge existing
etween any two nodes in the network (regardless of their degree).
he ER model shows a phase transition when the fixed probability 𝑝
pproaches the critical value 𝑝∗ = ln(𝑁)∕𝑁 [17]. Specifically, the value
∗ is a sharp threshold for the connectedness of the network: for values
f 𝑝 above 𝑝∗ the network goes from presenting isolated nodes to almost
urely be made of a unique connected component such that all nodes
re reachable within a finite number of hops.

The BA is an algorithm for generating random scale-free networks,
.e., networks with a power-law (or scale-free) degree distribution,
sing a preferential attachment mechanism [18]. In the BA model,
odes are connected preferentially based on their degree. Specifically,
he probability of an edge forming between two nodes is proportional to
he nodes’ degree, which leads to the emergence of a scale-free degree
istribution. Since the degree distribution follows a power law, few
odes have a very high degree while most nodes have a low degree.
his can result in a structure with few well-connected hubs, which are
nown to facilitate information flow across the network. A BA network
s defined by two parameters: 𝑁 , the number of nodes in the network,
nd 𝑚, the number of edges added to the network for each new node
hence, the minimum degree of nodes).

The SBM is a probabilistic model for networks that exhibit a modu-
ar structure, i.e., the SBM generates a network with a clear community
tructure where nodes are grouped together based on their connectivity
atterns [19]. Nodes belonging to the same group are more closely
onnected to each other than to nodes in another group. Formally,
he SBM is defined by the following parameters: 𝑁 , the number of

nodes in the network; 𝐵, the number of communities (called blocks);
𝑛1, 𝑛2,… , 𝑛𝐵 , the sizes of the blocks where 𝑛𝑖 is the number of nodes
in block 𝑖; 𝑝𝑖𝑗 , the probability of an edge existing between a node in
block 𝑖 and a node in block 𝑗 (with 𝑝𝑖𝑖 the probability of links inside
the block).

These three models capture important properties of complex net-
works. ER networks, which are random and well-mixed, provide in-
sights into how information propagates in networks without a pro-
nounced structure, with homogeneity in terms of degree and low
clustering coefficient. While ER networks rarely mirror topologies ob-
served in real large-scale socio-physical systems, it has been argued that
they could approximate some ad-hoc wireless/sensor networks [20] or
social random encounter networks (where people that do not know
each other in advance start interacting). In addition, they provide a
popular benchmark and optimal mathematical tractability [21]. BA
graphs are characterized by a highly skewed degree distribution with
few high-degree nodes and many low-degree nodes. The presence
of nodes with a high degree can enhance rapid dissemination, con-
tributing to efficient diffusion, but may overshadow the contribution
of low-degree nodes. Since real networks such as the Internet, the
World Wide Web, air transportation, and social networks often ex-
hibit a power-law degree distribution [21], the BA model, with its
preferential attachment mechanism, is considered an excellent gener-
ative graph model to replicate these realistic topological structures.
Finally, SBM introduces the concept of community structure. In many
real networks (e.g., collaboration networks, social networks), in fact,
nodes also organize themselves into densely linked groups [22]. SBM

graphs feature a well-defined community structure that allows us to d
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Table 1
Equivalent values of 𝑝 for the ER networks idempotent to the
corresponding BA networks.
ER-idem(𝑚 = 2) ER-idem(𝑚 = 5) ER-idem(𝑚 = 10)

𝑝 = 0.0396 𝑝 = 0.0960 𝑝 = 0.182

investigate how knowledge spreads within and between communities.
In practice, depending on the specific application, we expect a realistic
communication graph behind decentralized learning tasks to blend, to
different degrees, the preferential attachment element of BA with some
community structure.

5. Experimental settings

5.1. Network settings

In this paper, we consider unweighted graphs with 100 nodes,
where edges are generated as follows.
Barabási-Albert. Three different cases regarding the parameter of
preferential attachment are chosen: 𝑚 = 2, 5, 10, leading to networks
with increasingly higher node degrees, as illustrated in Fig. 1.
Erdős-Rényi. In order to draw direct comparisons against BA net-
works, for each BA graph we generate the corresponding idempotent
ER network,2 i.e., an ER network with the same number of nodes
and edges with respect to its corresponding BA network. To this aim,
for each BA network, we randomly reshuffled the links between the
nodes keeping the density of the original BA networks. The reshuffling
was done by employing the corresponding built-in function of the
graph-tool python library [23]. We denote with ER-idem(𝑚) the ER
idempotent to the BA graph with parameter 𝑚. The resulting networks
are illustrated in Fig. 2. In order to understand where the generated
ER graphs are positioned with respect to the critical threshold (see
discussion in Section 4), the equivalent 𝑝 values of the ER-idem(𝑚) are
hown in Table 1. For the 𝑚 = 2 case, the corresponding ER graph will
ave a 𝑝 value close to the critical one for the connectedness of the
etwork, which is 𝑝∗ = 0.046 (obtained from ln 100

100 [17]). For the other
networks, the values are well above the critical value for connectedness.
An increase in the values of 𝑝 when the number of nodes stays fixed
results in a higher density of edges, as shown in Table 2, which reports
the main network indices for the considered graphs.

The clustering coefficient is higher for BA while the average shortest
path length and the diameter tend to be higher for ER. Recall that a
higher clustering coefficient implies that neighborhoods are better con-
nected internally, while a higher average shortest path length implies
that it takes more hops, on average, to reach a generic node in the
graph (a similar consideration holds for the diameter).
Stochastic Block Model. Nodes are grouped into 4 communities (de-
noted as 𝐶1, 𝐶2, 𝐶3, 𝐶4) of equal size (25 nodes each). The probability of
extrinsic connections (𝑝𝑖𝑗 , 𝑗 ≠ 𝑖) is set to 0.01, whereas the probability
f intrinsic connections (𝑝𝑖𝑖) is set to 0.8 in one case and 0.5 in the
econd case. The resulting graphs are plotted in Fig. 3. The reason
or such values of intrinsic connectivity is to explore the impact of a
oosely or more tightly connected community structure. The level of
onnectivity obtained by the 𝑝𝑖𝑖 = 0.5 case represents a balanced or
oderate degree of interconnectedness within the communities of the
etwork. Whereas the intrinsic connectivity of 0.8 indicates a scenario
here the connections within the blocks are denser (closer to 1).

The degree distributions of the three network models are illustrated
n Fig. 4.

2 Note that this implies that the ER graphs considered in this paper are
ifferent from those studied in [11].



L. Palmieri et al.

Fig. 1. The three BA networks considered in our experiments, with increasing value of the preferential attachment parameter 𝑚. Vertices are colored based on their degree. The
color map is shown in the figure.

Fig. 2. The three different realizations of the Erdős-Rényi graph, idempotent to the corresponding BA graph with increasing value of the preferential attachment parameter 𝑚.
Vertices are colored based on their degree. The color map is shown in the figure.

Fig. 3. The two SBM graphs. Coloring is based on the data distribution as described in the body of the paper.

Fig. 4. Degree distributions for the analyzed networks. From left to right: Barabási-Albert, Erdős-Rényi and Stochastic Block model.
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Table 2
Summary statistics for the considered networks.

Barabási-Albert Erdős-Rényi SBM
𝑚 idem(𝑚) 𝑝𝑖𝑖
2 5 10 2 5 10 0.5 0.8

Number of nodes 100 100 100 100 100 100 100 100
Number of edges 196 475 900 196 475 900 624 1003
Avg degree 3.92 9.50 18.00 3.92 9.50 18.00 12.48 20.06
Density 0.0396 0.0960 0.182 0.0396 0.0960 0.182 0.126 0.203
Clustering coef. 0.164 0.213 0.296 0.0394 0.0900 0.194 0.424 0.747
Avg shortest path l. 2.85 2.17 1.85 3.49 2.28 1.85 2.56 2.30
Diameter 5 3 3 7 4 3 5 4
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5.2. Datasets and data distribution

For our experiments, we analyzed three different datasets: the
widely used MNIST image dataset [24], the EMNIST dataset [25] and
the Fashion-MNIST dataset [26]. This is done in order to verify that
the results are generally valid and are not hindered by the particular
choice of the dataset.

• MNIST: This dataset contains images of handwritten digits from
0 to 9 (10 classes). It has 60,000 samples for training and 10,000
for testing. Each image is grayscale and 28 × 28 pixels in size,
and the digits are written by different people in various styles.

• Fashion-MNIST: This dataset contains images of ten types of
clothing items (hence 10 classes). It has the same number of
training/test images as MNIST, and the images are also grayscale
and 28 × 28 pixels.

• EMNIST Letters: This dataset is a part of the larger EMNIST
dataset, which contains handwritten digits and letters. EMNIST
Letters focuses only on uppercase letters, and it has 26 classes (A
to Z) with 20,800 training samples and 3,280 test samples.

In increasing order of classification difficulty, the datasets are
anked as MNIST, Fashion-MNIST, then EMNIST Letters, due to the
ncreasing complexity of the corresponding images. The Fashion-MNIST
mages of clothing items tend to have more varied shapes and textures
han MNIST digits. EMNIST Letters have many more classes (26 vs
0), with many similar shapes and more potential for confusion. We
ncounter one such confusing case in our scenarios with the Fashion-
NIST dataset, where the Shirt class distorts the classification of
-shirt-Top, Pullover, and Coat classes. For ease of presentation, the in-
luence of these cross-correlations on decentralized learning is explored
eparately in Section 6.5. For the results in Sections 6.1–6.3, we simply
emove the offending Shirt class to show that when cross-correlation
s not significantly present, the trends are the same as with the other
atasets.

The goal of the analysis is to characterize the effect of the network
opology in the knowledge spreading process, i.e., the ability of nodes
o learn data patterns they have not seen locally, but that other nodes
n the network have seen. Therefore, we split the classes across nodes
s follows. Note that, on the assigned classes, each node gets the same
mount of images.
For ER and BA networks, we divide the classes into two groups: the

irst group (G1) is composed of the first half of the classes, e.g., for
NIST classes 0, 1, 2, 3, 4, and the second group (G2) of the other

alf of the classes, i.e 5, 6, 7, 8, 9. All nodes receive an equal share
selected randomly) of data from G1. Data from G2 are allocated only to
subset of nodes, selected as follows. For each type of network measure
onsidered, we examine two cases where data in G2 are assigned to
he 10% of nodes with the highest values and the 10% with the lowest
alues, respectively. The rationale is thus to allocate ‘‘full knowledge’’
i.e., a complete subset of all classes) either to high-centrality or low-
entrality nodes, and study the effect of the network topology in
oth cases. In the following, these configurations are referred to as

‘highest-focus’’ and ‘‘lowest-focus’’, respectively. The measures taken

nto account are: c

6 
• Degree centrality
• Betweenness centrality
• Clustering coefficient

or the degree centrality measure, we will refer to the highest-focus and
owest-focus cases as hub-focus and edge-focus to easily distinguish the
egree results with the other centrality measures. Specifically, starting
rom the node(s) with the highest (lowest) centrality, we pick nodes
ntil we reach 10% of the network. In case adding all nodes at a given
entrality measure value results in more than 10% of the network,
e randomly pick, among nodes with that centrality measure value,
subset that allows us to fill the 10% subset.

The degree centrality is calculated by taking the total number of
dges connected to a node (i.e., its degree). Being directly connected
ith many other nodes, nodes with high degree centrality are generally
xpected to be more influential in the network, as they can reach many
odes at once leveraging their direct connections. When considering the
egree centrality, low-centrality nodes are edge nodes (i.e., nodes at the
eriphery of the graph), hence we may use the terms lowest-focused
nd edge-focused interchangeably. Similarly for highest-focused and
ub-focused.

The betweenness centrality measures the importance of a node in a
etwork by quantifying its role as a connector or bridge between other
odes [27]. It identifies nodes that lie on a high number of shortest
aths, which are the most efficient routes for information to travel
etween different parts of the network. These nodes play a critical
ole in facilitating communication and information flow, as they act
s intermediaries between different communities or groups of nodes.
odes with high betweenness centrality are often referred to as bridges.

n contrast, nodes with low betweenness centrality lie on relatively few
hortest paths and are less influential in connecting different parts of
he network. They are often referred to as isolates.

The clustering coefficient of a node measures the proportion of its
eighbors that are also connected to each other [21]. Nodes with
igher clustering coefficient centrality have neighbors that are well-
onnected to each other, indicating the presence of cohesive groups or
lusters in the network. The higher the clustering coefficient, the more
omogeneous a group of nodes is in terms of connections, the more
alanced information spread is expected to be within the cluster.

The rationale behind the choice of these centrality measures is their
bility to capture distinct aspects of network dynamics and structure.
egree centrality highlights the importance of well-connected nodes,
lustering coefficient emphasizes local connectivity patterns, and be-
weenness centrality identifies nodes critical for global information
low.
For SBM networks, instead, we divided the dataset classes into

ubsets based on the communities the nodes belong to, without over-
ap. Therefore, since we study SBM topologies with 4 communities,
ach community gets two classes: community 1 sees classes 0 and 1;
ommunity 2 sees classes 2 and 3; community 3 sees classes 4 and 5;
ommunity 4 sees classes 6 and 7. This data distribution is designed
o challenge the knowledge-spreading process since maximum learning
ccuracy can only be achieved if information from all the external

ommunities is brought into the local one. For the SBM networks, we
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Table 3
Architecture and settings of local models.

Dataset Model Structure Activation Kernel size

MNIST MLP FC:512,256,128 ReLU –
Fashion CNN Conv2d:32,64

FC:9216,128
ReLU 3 × 3

EMNIST CNN Conv2d:32,64
MaxPool(2)
Dropout(.25)
FC:9216,128
Dropout(.5)
FC:128

ReLU 3 × 3

only analyzed the MNIST dataset since, as we will see, the system is
unable to spread knowledge even in the simplest task of classifying the
MNIST dataset.

5.3. Learning task and evaluation metric

For the learning task, we consider a simple classifier as a model
to be trained, and we focus on two performance figures. We consider
the accuracy over time at each node to assess the effectiveness and
speed of knowledge diffusion across the network. When needed, we also
analyze the confusion matrix. For SBM networks, we also investigated
the average confusion matrix across nodes of the same community.
Specifically, for each node, we compute the confusion matrix for the
MNIST classes and then take the average across all nodes in the same
community.

We implemented the DecAvg scheme within the custom SAISim sim-
lator, available on Zenodo.3 SAISim is developed in Python and lever-

ages state-of-the-art libraries such as PyTorch and NetworkX for deep
learning and complex networks, respectively. On top of that, SAISim
implements the primitives for supporting fully decentralized learning.
The local models of nodes are different based on the dataset under
study. We described them below and their configuration (inherited
from [7]) is provided in Table 3.

• MNIST dataset: Multilayer Perceptron (MLP) with three layers
(sizes 512, 256, 128) and ReLu activation function. SGD is used
for the optimization, with learning rate 0.01 and momentum 0.5.
The number of local training epochs between each round of
updates’ exchange is set to 5.

• EMNIST: Convolutional Neural Network (CNN) with 9 layers and
ReLu activation function. SGD is used for the optimization with
learning rate 0.001 and momentum 0.9. The number of local
training epochs between each round of updates’ exchange is set
to 5.

• Fashion-MNIST: Convolutional Neural Network (CNNs) with 8
layers and ReLu activation functions. SGD is used for the op-
timization with learning rate 0.001 and momentum 0.9. The
number of local training epochs between each round of updates’
exchange is set to 5.

6. Results

The rest of this section is organized as follows: in Sections 6.1 and
6.2, we present individually the results obtained for the ER and BA
networks. Then in Section 6.3 we discuss how the two topopologies
compare against each other. In Section 6.4 we present and discuss
the results obtained for the SBM networks. Finally, in Section 6.5, we
discuss the effect of cross-correlations between classes on decentral-
ized learning done through DecAvg, using Fashion-MNIST as a study
case. Due to space constraints and readability, the plots for EMNIST

3 https://doi.org/10.5281/zenodo.5780042
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and Fashion-MNIST are provided in the body of the paper only for
selected discussions to showcase that the same trend observed for
MNIST is generally confirmed. However, the full set of plots is provided
in Appendices A and B, for EMNIST and Fashion-MNIST respectively.

Please recall that the analysis carried out for Fashion-MNIST is
twofold. In Section 6.5, the performance of DecAvg on the complete
set of labels is presented, where we show that some classes suffer
from cross-correlation and how this is detrimental to decentralized
learning. Specifically, the cross-correlation is between the 7th class
(Shirt) and the 1st (T-shirt/top), 3rd (Pullover), and 5th (Coat) class
in the Fashion-MNIST dataset. To demonstrate that in the absence of
significant cross-correlation, the trends are the same as for the other
datasets, in Sections 6.1–6.3, we remove the problematic class and
present the results without it.

6.1. Decentralized learning over Erdős-Rényi graphs

As explained in Section 5, for the ER model we consider three
settings that are idempotent to the chosen Barabási-Albert graphs, dis-
cussed later on in Section 6.2. This allows us to draw direct comparisons
between the main characteristics of a decentralized learning process
on equivalent topologies (Section 6.3). Let us begin our analysis by
considering the relationships between the centrality measures w.r.t. the
considered network topology, as shown in the scatterplots of Figs. 5–6.
The scatterplots in Fig. 5 show the relation between degree centrality
and betweenness centrality for the three distinct configurations of the
Erdős-Rényi (ER) graph. In these scatterplots, the highest-focus and
lowest-focus nodes selected for the betweenness centrality metric are
highlighted in red and blue, respectively. The scatterplots show a rela-
tionship of direct proportionality between betweenness centrality and
degree. Nodes with higher degrees tend to exhibit higher betweenness
centrality, indicating that well-connected nodes also play crucial roles
as bridges or intermediaries in the network. Hence, we expect a similar
behavior of the system when data is distributed either according to the
betweenness centrality or their degree. Fig. 6 shows the scatterplots
of the clustering coefficient vs the degree centrality: as it is common
in such graphs, the higher the clustering coefficient, the lower the
degree. The intuitive understanding behind nodes with high clustering
coefficients having smaller degrees lies in the fact that high-degree
nodes, connected to numerous other nodes, are less likely to have
tightly knit connections among their neighbors, causing them to cluster
in the lower degree range of the plot.

6.1.1. ER: Degree centrality used for G2 data assignment
We start our analysis with the case of data in the G2 subset being

assigned based on the degree centrality. For clarity, we denote nodes
exclusively assigned G1 data as G1 nodes and, conversely, refer to nodes
assigned both G1 and G2 data as G2 nodes. In Fig. 7 we show the
evolution of the accuracy per node over time (each curve corresponds
to one node) on the MNIST dataset. The top-row plots refer to the
edge-focused case, where the digits in class group G2 are assigned
to edge nodes, while the bottom-row plots correspond to the hub-
focused scenario, where the high-degree nodes get the G2 class data. As
expected, the nodes that are assigned both G1 and G2 data (the group
of curves with higher accuracy in the figure) show an excellent learning
performance. It is more interesting to focus our attention on the other
nodes, the ones assigned only data in G1 that can only learn the classes
in G2 thanks to the knowledge (models) they receive from other nodes.
In the bottom row of Fig. 7 we can observe the accuracy over time when
G2 data are assigned to the nodes with the highest degree. Since a high
degree implies better connectivity, we expected it to be easier for edge
nodes to be reached by the ‘‘good’’ models of the central nodes, and this
to be increasingly true as the average degree of the network increases
(from left to right). This is confirmed in the figure, where we see that
some edge nodes are struggling on ER-idem(𝑚 = 2) but progressively
catch up when 𝑚 increases. In other words, when the highest degree nodes

https://doi.org/10.5281/zenodo.5780042
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Fig. 5. Scatterplots of the nodes’ betweenness centrality measures vs the degree in our ER graphs. Increasing value of connectedness going from left to right. Red dots are the
nodes chosen for the highest-focused case, the blue dots are the nodes chosen for the lowest-focused case. The scatterplots show that the betweenness centrality is proportional to
the degree. Gray dots represent nodes that are neither selected in the highest-focused case nor in the lowest-focused case, as they have intermediate values for both metrics.
Fig. 6. Scatterplots of the nodes’ clustering coefficient vs the degree in our ER graphs. Increasing values of connectedness going from left to right. Red dots are the nodes chosen
for the highest-focused case, the blue dots are the nodes chosen for the lowest-focused case. There is no strong correlation between the two metrics. Gray dots represent nodes
that are neither selected in the highest-focused case nor in the lowest-focused case, as they have intermediate values for both metrics.. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. MNIST – Accuracy over time in ER networks (all nodes, G2 data assigned based on degree centrality). G1 nodes in blue, G2 nodes in orange. From left to right: increasing
values of connectedness; from top to bottom: lowest-focused and highest-focused scenario.
enjoy higher accuracy, they are able to drag all the other nodes closer to
their performance efficiently.

Conversely, when G2 data are instead assigned to nodes with the
smallest degree, we expect the decentralized learning process to be less
effective. The intuition is that nodes with G2 data, in this case, are
poorly connected. Hence, the knowledge they bring has a hard time
percolating through the network. The top row of Fig. 7 confirms this.
8 
Especially when the average degree is smallest, corresponding to ER-
idem(𝑚 = 2), we see nodes that, after 200 communication rounds, have
barely increased their accuracy above the baseline 0.5 (corresponding
to the accuracy on the G1 class group that is available locally to all
nodes). When comparing to the previous case, then, we conclude that
when G2 nodes are less central (according to the degree centrality) they have
difficulties in dragging G1 nodes towards better accuracy by contributing
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Fig. 8. EMNIST – Accuracy over time in ER networks (all nodes, G2 data assigned based on degree centrality). G1 nodes in blue, G2 nodes in orange. From left to right: increasing
values of connectedness; from top to bottom: lowest-focused and highest-focused scenario.
Fig. 9. Fashion-MNIST – Accuracy over time in ER networks (all nodes, G2 data assigned based on degree centrality). G1 nodes in blue, G2 nodes in orange. From left to right:
increasing values of connectedness; from top to bottom: lowest-focused and highest-focused scenario.
Fig. 10. MNIST – Mean accuracy over time in ER networks (average across G1 nodes only, G2 data assigned based on degree centrality). Highest-focused (blue) and lowest-focused

(orange) cases.
their ‘‘good’’ models. This effect arises from the combination of the average-
based aggregation strategy in DecAvg along with the topological properties

of the graphs.

9 
The same results for EMNIST and Fashion-MNIST are shown in Figs. 8

and 9, and substantially confirm the findings discussed above. The
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Fig. 11. MNIST – Standard deviation of accuracy over time in ER networks (std dev. across G1 nodes only, G2 data assigned based on degree centrality). Left to right: highest-focus
and lowest-focus cases.
main difference with respect to the MNIST case is that it is evident
that EMNIST-Letters is an intrinsically more difficult dataset to classify
since even the G2 nodes are not able to reach 90%. Vice versa, Fashion-
MNIST with one G2 classless (the Shirt class) makes classification easier
for G1 nodes. Given that the trends are substantially confirmed, in
the following we focus only on the MNIST dataset (but EMNIST and
Fashion-MNIST plots can be found in Appendices A and B).

In Fig. 10, we aggregate the accuracy among all G1 nodes in the
same experiment, and we show the evolution over time of the average
of the accuracy. Coherently with the reasoning above, the average
accuracy in the edge-focus case is much lower than in the hub-focus
case. The gap decreases as we increase the overall connectivity of the
network, i.e., as 𝑚 increases. The poor average performance of the
edge-focus case is due to high-degree nodes hindering the spreading of
knowledge from edge nodes. This effect is due to the model averaging
mechanism of decentralized learning, as we explain in more detail
in Section 6.2. In Fig. 11, we present the standard deviation of the
accuracy for all G1 nodes in the ER networks. As we can see, the
hub-focused case (left) shows separated curves having a clear gap
between ER-idem(𝑚 = 2) and the others. This higher variability can
be attributed to the effect of longer paths of ER-idem(𝑚 = 2). Since
the equivalent 𝑝 value of ER-idem(𝑚 = 2) is around the critical value
for the connectedness, the network has longer paths, impeding the
synchronization of local models across nodes. In this scenario, nodes are
situated farther apart compared to the other more connected networks
(values of 𝑝 well above the critical value). In the edge-focus case, we
observe two separate behaviors. When the connectivity is high enough,
i.e., for ER-idem(𝑚 = 5) and ER-idem(𝑚 = 10), the trend of the standard
deviations is more similar to the hub-focus case, with a decrease over
time although at a slower pace. For the case ER-idem(𝑚 = 2), the trend
of the variability is increasing in the observed time window, proving
that the connectivity is insufficient to let all nodes synchronize and
collaborate constructively within a reasonable timeframe.

6.1.2. ER: Betweenness centrality used for G2 data assignment
In this section, we investigate the accuracy performance of decen-

tralized learning when G2 data are assigned based on the betweenness
centrality. We focus here on the MNIST datasets but the findings are the
same for EMNIST and Fashion-MNIST (Appendices A and B). In Fig. 12
we show the evolution of the accuracy per node over time. Due to the
high correlation between degree centrality and betweenness centrality
in our ER graphs (Fig. 5), a similar behavior as in the degree-based
case emerges. Consistently with the results obtained in the previous
section, the highest-focused case has a better performance than the
lowest-focused case.

In Fig. 13, we show the average accuracy of all the nodes with
assigned G1 images for both the highest and lowest focus cases. As
expected, the highest focus case shows higher accuracy levels than
the lowest focus counterpart and an overall small difference in perfor-
mance. Looking at Fig. 14, we obtain results similar to the degree-based
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analysis. Also, in this case, the connectedness of the graph influences
the gap between the curves for the ER-idem(𝑚 = 2) case and the
other cases. As we increase the mean connectivity of the graph, not
only does the gap decrease, but so does the standard deviation, since
the augmented connectivity helps the other nodes to spread their
information to the other nodes.

6.1.3. ER: Clustering coefficient used for G2 data assignment
As we remarked when discussing Fig. 6, the clustering coefficient

has no significant relation with the degree centrality (and, as a result,
with the betweenness centrality) in our ER graphs. This implies that
the degree of nodes can be high or low regardless of their clustering
coefficient. Given that degree centrality seems to be the main driver
of knowledge spreading, we do not expect much variation in the
accuracy between the highest and lowest focus cases. This is evident
in Fig. 15. This implies that the clustering coefficient does not reflect in any
meaningful way the model aggregation and dissemination process. For this
reason, whether G2 data are assigned to nodes with low or high clustering
coefficients does not make a difference. The similar performance between
the highest and lowest focus cases is further confirmed by the mean
accuracy curves of all G1 nodes showed in Fig. 16, where we can see
that the curves have a small gap, with the highest focus case being
above the lowest focus one with the exception of the last scenario. In
the high-focus case an increase of connectivity does not help much since
high-focus nodes are anyway poorly connected. In the low-focus case,
this is the opposite, and the rightmost plot of Fig. 16 shows that, in this
case, the effect of higher connectivity for the low-focus case is more
important than allocating G2 on most central nodes.

In Fig. 17 we show the standard deviation of the accuracy for all the
scenarios and all networks. As we can see, all the curves have the same
trend and are closer together. Therefore, for better visualization, we
plot the different network realizations separately. For the ER-idem(𝑚 =
2) case, the highest-focus case is above the lowest-focus counterpart,
meaning that the highest-focus shows a higher standard deviation.
This is due to the locality of information dissemination given that G2
nodes are well-connected inside their neighborhood but might not be
as homogeneously connected to the rest of the network.

The same conclusion holds for the EMNIST and Fashion-MNIST
datasets, whose plots can be found in Appendices A and B.

6.2. Decentralized learning over Barabási-Albert graphs

In this section, we focus our analysis on the Barabási-Albert topol-
ogy, with three different settings for the parameter related to the
preferential attachment: 𝑚 = 2, 5, 10. Preliminarily, we investigate,
as we did for ER, the relationship between the different centrality
measures used for G2 data assignment (Fig. 18). The relationship
between degree and betweenness centrality is still one of direct pro-
portionality, as expected, but with a more pronounced quadratic trend.
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Fig. 12. MNIST – Accuracy over time in ER networks (all nodes, G2 data assigned based on betweenness centrality). G1 nodes in blue, G2 nodes in orange. From left to right:
increasing values of connectedness; from top to bottom: lowest-focused and highest-focused scenario.
Fig. 13. MNIST – Mean accuracy over time in ER networks (average across G1 nodes only, G2 data assigned based on betweenness centrality). Highest-focused (blue) and
lowest-focused (orange) cases.
Fig. 14. MNIST – Standard deviation of accuracy over time in ER networks (std dev. across G1 nodes only, G2 data assigned based on betweenness centrality). Left to right:
highest-focus and lowest-focus cases.
Note, also, that nodes reach much higher values for both centrality
metrics with BA, which follows directly from the topological properties
of BA networks. Moreover, due to the power law nature of the BA
degree distribution, the nodes chosen for the highest focus case (those
indicated by the red dots) span a wider range of degrees than in ER.
When looking at the degree centrality vs clustering coefficient (Fig. 19),
BA graphs exhibit nodes with both high and low clustering coefficients
concentrated on the left-hand side of the scatterplot, suggesting a
generally low degree for these nodes (with the exception of some nodes
with a medium-range degree when 𝑚 = 5).
11 
6.2.1. BA: Degree centrality used for G2 data assignment
Focusing on MNIST, we show the accuracy over time for the case

in which degree centrality is used to drive the G2 data assignment in
Fig. 20. First, in the hub-focused case (bottom row), the performance
for varying values of the minimum degree 𝑚 is basically indistin-
guishable (this is confirmed by looking at the average and standard
deviation of the accuracy in Fig. 24). This means that hubs (in this
case, high-degree nodes are real hubs) spread knowledge extremely
efficiently, irrespective of the connectivity of the rest of the nodes.
The edge-focused case (top row of Fig. 20) is more challenging. As
in the case of ER networks, edge nodes are unable to spread their
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Fig. 15. MNIST – Accuracy over time in ER networks (all nodes, G2 data assigned based on clustering coefficient). G1 nodes in blue, G2 nodes in orange. From left to right:
increasing values of connectedness; from top to bottom: lowest-focused and highest-focused scenario. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
Fig. 16. MNIST – Mean accuracy over time in ER networks (average across G1 nodes only, G2 data assigned based on clustering coefficient). Highest-focused (blue) and
lowest-focused (orange) cases.
Fig. 17. MNIST – Standard deviation of accuracy over time in ER networks (std dev. across G1 nodes only, G2 data assigned based on clustering coefficient). Left to right:
increasing values of the connectedness.
knowledge efficiently, and the accuracy gap between edge nodes and
non-edge nodes remains strong all throughout. In Fig. 24, we observe
that larger values of 𝑚 (i.e., stronger connectivity) help improve the
average accuracy in the edge-focused case but not significantly, and
the variability is reduced (as shown by the standard deviation curves
on the right-hand side plot).

Given the distinctive features of high-degree nodes in the BA net-
work, we ask whether they are at an advantage or disadvantage in
an edge-focused scenario. Thus, in Fig. 23, we focus on the G1 nodes
for the edge-focused scenario, highlighting in red the behavior of
12 
high degree nodes. For smaller 𝑚, the neighborhood of these hubs is
smaller. Hence, the aggregation is more influenced by the capabilities
of the specific nodes composing the neighborhood, resulting in higher
variability. As 𝑚 increases, the neighborhood of hubs becomes so large
that it will include both ‘‘good’’ models (with G1 and G2 knowledge)
and models knowing only about G1. The ‘‘good’’ models are then more
likely to get lost in the average. Hence, the accuracy of previously
well-performing hubs goes down as 𝑚 increases. However, the overall
accuracy for G1 nodes does not decrease. This is because G1 nodes that
are not hubs increase their connectivity as 𝑚 increases. This results in
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Fig. 18. Scatterplot of the BA graphs. Betwenness centrality vs degree. Gray dots represent nodes that are neither selected in the highest-focused case nor in the lowest-focused
case, as they have intermediate values for both metrics. Red dots: highest-focus nodes; blue dots: lowest-focus nodes.
Fig. 19. Scatterplot of the BA graphs. Clustering coefficient vs degree. Gray dots represent nodes that are neither selected in the highest-focused case nor in the lowest-focused
case, as they have intermediate values for both metrics. Red dots: highest-focus nodes; blue dots: lowest-focus nodes.
Fig. 20. MNIST – Accuracy in BA networks (G1 nodes, G2 data assigned based on degree centrality). G1 nodes in blue, G2 nodes in orange. From left to right, the parameter 𝑚
increases; from top to bottom: edge-focused and hub-focused scenario. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
better average accuracy (some hubs get worse, but other G1 nodes get
better) and reduced variability (Fig. 24).

When examining the results for EMNIST (see Fig. 21) and Fashion-
MNIST (see Fig. 22), the same trends are observed, with the only
difference being the absolute values of accuracy due to the varying
classification difficulties of the datasets. To avoid overcrowding the
body of the paper, further discussion on these two datasets will not
be provided in the following sections, but their plots can be found in
the appendices.
13 
6.2.2. BA: Betweenness centrality used for G2 data assignment
Since the betweenness centrality is proportional to the degree

(Fig. 18), we expect the G2 data assignment based on betweenness
centrality to perform similarly to its degree-based counterpart. In
Fig. 25, in the lowest focus case (top row), we see an increasingly
narrow curve meaning that as we increase the connectedness, the
knowledge is more easily spread and this results in less variation in the
performances. The overall behavior is almost identical to the degree-
based one, with almost no difference in the performances in the highest
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Fig. 21. EMNIST – Accuracy in BA networks (G1 nodes, G2 data assigned based on degree centrality). G1 nodes in blue, G2 nodes in orange. From left to right, the parameter
𝑚 increases; from top to bottom: edge-focused and hub-focused scenario.
Fig. 22. Fashion-MNIST – Accuracy in BA networks (G1 nodes, G2 data assigned based on degree centrality). G1 nodes in blue, G2 nodes in orange. From left to right, the
parameter 𝑚 increases; from top to bottom: edge-focused and hub-focused scenario.
Fig. 23. MNIST – Accuracy in BA networks (nodes with only G1 images, edge-focused scenario, G2 data assigned based on degree centrality), high-degree nodes in red.
focus case. In Fig. 26, we show the mean accuracy and the standard

deviation for each network and case. Again, the same behavior as in

the degree-based case is observed.
14 
6.2.3. BA: Clustering coefficient used for G2 data assignment

Looking at the individual curves of the accuracy over time in Fig. 27,
we can see that the behavior is similar between the highest and lowest
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Fig. 24. MNIST – BA (G1 nodes, G2 data assigned based on degree centrality): accuracy mean and std.
Fig. 25. MNIST – Accuracy in BA networks (all nodes, G2 data assigned based on betweenness centrality). G1 nodes in blue, G2 nodes in orange. From left to right, increasing
values of 𝑚; from top to bottom: lowest-focused and highest-focused scenario.
Fig. 26. MNIST – BA (G1 nodes), G2 data assigned based on betweenness centrality): accuracy mean and std for betweenness centrality.
focus cases, as a result of the negligible difference among the degrees
of the selected nodes for G2 assignment (see Fig. 19). However, as
expected from the scatterplot in Fig. 19, the lowest focus case shows
a higher variability between the performances of the different nodes.
As such, some nodes are able to reach higher values of accuracy (see
case 𝑚 = 2). The reasoning is the same as for the ER networks: the
nodes with a high clustering coefficient tend to keep the information
locally, whereas the ones with a low clustering coefficient spread it
more broadly if they also have a high degree. This spreading results
in higher variability. Figs. 28 and 29 simply confirm this trend. As for
15 
the ER, also in Fig. 29, the curves are closer together. Thus, we show
the network realizations separately.

6.3. ER vs BA comparison

As explained in Section 5.1, we have chosen our ER and BA settings
such that the corresponding graphs are idempotent. This allows us to
compare directly and fairly the impact of the network topology on the
learning process for the same value 𝑚. For clarity, we focus on the mean
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Fig. 27. MNIST – Accuracy in BA networks (all nodes, G2 data assigned based on clustering coefficient). G1 nodes in blue, G2 nodes in orange. From left to right, increasing
values of 𝑚; from top to bottom: lowest-focused and highest-focused scenario.
Fig. 28. MNIST – Accuracy in BA networks (average across all nodes, G2 data assigned based on clustering coefficient). From left to right, increasing values of 𝑚; from top to
bottom: lowest-focused and highest-focused scenario.
Fig. 29. MNIST – BA (G1 nodes): standard deviation, G2 data assigned based on clustering coefficient.
accuracy in the MNIST case, so that the plot is not overclutted with
curves and a direct comparison is more immediate.

6.3.1. Degree centrality
In the hub-focused case, as shown in Fig. 30, the Barabasi Albert

performs better than the ER counterpart. We can see that the difference
decreases as we increase the number of connections in the graphs
(i.e. going from left to right). This is easily explained by looking at
the characteristics of the topology of the two types of graphs. The
Barabási-Albert graph, in fact, is a graph that exhibits a heavy tail in the
degree distribution, meaning that it has few nodes with a high degree
16 
and many nodes with a low degree. This means that the high-degree
nodes are well connected in the graph and can exert their influence
much more efficiently than the Erdős-Rényi counterpart. On the other
hand, the Erdős-Rényi graph is a random graph. Thus the nodes with
a high degree are not necessarily well connected inside the graph.
However, this difference gets smaller as we increase the mean number
of connections: all nodes, in general, enjoy better connectivity, and the
network can compensate for the lack of strong hubs.

The edge-focused case is more diverse. Here, BA performs better
than the ER counterpart only for 𝑚 = 2. In the other two cases, ER
is the one with better performance, as reported in Fig. 31. This can
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Fig. 30. MNIST – Mean accuracy of the Barabasi Albert (orange line) and the Erdős-Rényi counterpart (blue line) in the hub-focused case. Going from left to right: 𝑚 = 2, 5, 10.
G2 data are assigned based on the degree centrality.
Fig. 31. MNIST – Mean accuracy of the Barabasi Albert (orange line) and the Erdős-Rényi counterpart (blue line) in the edge-focused case. Going from left to right: 𝑚 = 2, 5, 10.
G2 data are assigned based on the degree centrality.
Table 4
Table showing the algebraic connectivity values for the BA graphs and their ER
counterpart for different values of 𝑚.
𝑚 = 2 𝑚 = 5 𝑚 = 10

BA ER BA ER BA ER

0.612 0.395 2.989 2.998 4.718 8.143

be confirmed by looking at the algebraic connectivity of the graphs
(Table 4). Algebraic connectivity is a measure of the connectedness of a
graph. A graph with high algebraic connectivity is well-connected and
can quickly spread information, while a graph with low algebraic con-
nectivity can only spread information slowly. The higher the algebraic
connectivity, the higher the number of paths for information to travel
through the graph. As shown in Table 4, the algebraic connectivity
of the 𝑚 = 2 case is lower for the Erdős-Rényi with respect to the
Barabási-Albert.

6.3.2. Betweenness centrality
As discussed in the previous sections, the betweenness centrality

shows a proportional relationship to the degree for both the ER and
the BA networks. Therefore, we expect to have similar results for the
betweenness centrality. Similarly to the degree case, in the lowest
focus, the BA performs better than the ER counterpart only for 𝑚 = 2, as
shown in Fig. 32. This means that comparing these results with Fig. 31,
G2 nodes are not able to sufficiently influence the hubs.

6.3.3. Clustering coefficient
Similarly as above, also the clustering coefficient shows for the ER-

idem(𝑚 = 2) a worse performance than the BA, see Fig. 33. Again, this
17 
is due to the algebraic connectivity that helps the knowledge spreading,
as discussed for Fig. 32 and earlier.

6.4. Decentralized learning over Stochastic Block Model graphs

The SBM topology is different from the previous two as it fea-
tures four clearly separated communities, with sporadic intercommu-
nity links. For the intracommunity connectivity, we test two scenar-
ios (lower and higher intracommunity connectivity, corresponding to
𝑝𝑖𝑖 = 0.5 and 𝑝𝑖𝑖 = 0.8). Recall that each community holds two non-
overlapping MNIST classes (hence, classes 8 and 9 are discarded).
Using only intracommunity information, nodes can, at most, achieve a
0.25 accuracy (perfect classification of the two classes in their training
data, zero knowledge on the other six). In order to go beyond 0.25,
knowledge must be circulated across communities. In these settings
we are interested in analyzing (i) whether the sporadic edges between
communities are sufficient for exchanging the knowledge built intra-
community and (ii) to what extent the external knowledge permeates
through the communities. Fig. 34 shows that the latter is happening:
with 𝑝𝑖𝑖 = 0.5 (less dense communities, blue lines) the average accuracy
grows faster than with 𝑝𝑖𝑖 = 0.8. The figure also reveals the presence of
stragglers, for whom catching up with the rest of the network takes
some time. Interestingly, entire communities appear to be stragglers.
Fig. 35 shows that communities are, as expected, very good at clas-
sifying classes they have in their local training data. Vice versa, it is
very hard for external knowledge to enter the communities. Fig. 35
also shows the number of links pointing towards external communities,
which are the conduit for knowledge diffusion. Community 𝐶2 enjoys
fewer external links, and indeed its learning process is very slow and
mediocre (Fig. 34). However, Community 𝐶 has only slightly fewer
1
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Fig. 32. MNIST – Comparison of mean accuracy ER vs BA. Top to bottom: lowest-focus and highest-focus cases. Left to right: increasing 𝑚. G2 data is assigned based on betweenness
centrality.
Fig. 33. MNIST – Comparison of mean accuracy ER vs BA. Left to right: increasing 𝑚. Top to bottom: lowest-focus and highest-focus. G2 data assigned based on clustering
coefficient.
links than Community 𝐶3, but its learning process is faster and more
accurate. This observation suggests that the specific class distribution
assigned to each community might play a crucial role in determining
its learning performance.

To validate the above hypothesis, we swapped the datasets among
the four communities as reported in Table 5. If the learning perfor-
mance is highly dependent on the dataset, one would expect that
when the dataset of 𝐶1 is moved to 𝐶2, the improved learning speed
and accuracy would move with it. Conversely, if the characteristics
of the community itself play a significant role, one might observe
18 
Table 5
Data swap between com-
munities.
Source → Destination

𝐶1 → 𝐶2
𝐶2 → 𝐶3
𝐶3 → 𝐶4
𝐶4 → 𝐶1
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Fig. 34. MNIST – Mean accuracy over time in SBM communities.
different results. Our findings, shown in Fig. 36, confirmed this assump-
tion, demonstrating that the specific class distribution significantly
influences the learning behavior of each community.

Furthermore, we explored the impact of conducting multiple local
training epochs on the dissemination of information within the commu-
nity. The objective was to determine whether a high number of local
training epochs in between global updates might negatively impact in-
formation diffusion when communities are tightly knitted. To examine
this, we conducted a simulation under identical conditions as in the
original experiment but with significantly fewer local training epochs
per communication round: specifically, we reduced it to 5 local training
epochs as opposed to the original 100. The results, presented in Fig. 37,
reveal a pattern consistent with the original findings. This suggests
that the challenge of information propagation within the community
is not inherent to the local training phase but is primarily influenced
by the structural properties of the network as well as by the correlation
between data classes.

6.5. Decentralized learning with cross-correlations in the data

As anticipated in Section 5.2, in our decentralized configuration,
we observed an important role of cross-correlations among classes on
the performance of DecAvg. As previously noted, when class Shirt
(belonging to group G2 based on our data split) is absent from both
the training and test sets, nodes in group G2 achieve higher accuracy
levels than G1 due to their greater data availability. This outcome is
expected because G2 nodes possess more data overall. Interestingly,
though, when class Shirt is included, G2 nodes consistently exhibit
lower accuracy levels than G1 nodes. This pattern persists across all
scenarios, irrespective of whether G2 nodes have the highest or lowest
centrality values, indicating that the issue is related to data distribution
rather than network topology. To investigate this further, we conducted
simulations using the BA model, in the highest-focus case, using the
19 
clustering coefficient for selecting the top nodes. We compared three
different data distributions: one without the class Shirt in G2, a bal-
anced distribution where all images (both G1 and G2, and including
class Shirt) are assigned 60 instances per class on each node, and an un-
balanced distribution where G1 nodes are assigned ∼60 vs ∼600 images
per class (including the Shirt class) on each node, respectively. This
comparison aimed to assess how data distribution affects performance.
In Fig. 38, we show that in the balanced data distribution (bottom row),
the accuracy over time aligns with the expected behavior observed
when class Shirt is absent (shown in Fig. 22), with G2 nodes performing
consistently better the G1 ones.

The behavior described above can be further investigated by look-
ing at the confusion matrices on each node towards the end of the
decentralized training process. Specifically, in Figs. 39 and 40, we
present the confusion matrices for two selected G1 and G2 nodes across
the three cases: without class Shirt, balanced distribution (when class
Shirt is present but not overrepresented with respect to the images
in G1, which include the cross-correlated classes), and unbalanced
distribution (in which class Shirt is overrepresented). In the unbalanced
case (the right-most plot in the figures), the G2 node consistently
misclassifies classes correlated with class Shirt (corresponding to rows
0, 2, and 4). Whereas the G1 node fails to learn class Shirt but maintains
high accuracy for other classes, in the balanced case (middle column),
both G1 and G2 nodes exhibit similar behavior, resulting in improved
overall performance for G2 nodes (which do not misclassify as badly
G1 images), though G2 nodes still misclassify class 6. The improved
performance of G2 nodes is partially paid for by G1 nodes failing to
classify the Shirt class. As a benchmark, note that the classification
accuracy is very high on both G1 and G2 nodes when the offending
class Shirt is dropped (left-most column in Figs. 39 and 40).

A reasonable explanation would be that this is due to the combined
effects of local training and model aggregation function (DecAvg).
During local training, each node updates its model using its local
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Fig. 35. Accuracy per MNIST class and community for SBM with 𝑝𝑖𝑖 = 0.5. For each community, we report in square brackets the number of edges pointing toward external
community 1, 2, 3, 4, respectively.
Fig. 36. MNIST – Mean accuracy over time in SBM communities, with swapped datasets.
dataset. In unbalanced data scenarios (G1 60 images/class vs G2 600
images/class), a high number of instances of a correlated class, not
commonly found in other nodes, causes the locally updated model on
G2 nodes to deviate significantly from those at G1 nodes. Conversely,
in a balanced data distribution, each local model remains closer to
the collective average model. In other words, on G2 nodes, when the
offending class is overrepresented compared to others that are cross-
correlated with it, G2 models classify all cross-correlated G1 classes
as if they were the offending one. Vice versa, when the offending
class is as represented as any other, its classification is skewed, but
the others are properly identified. Consequently, in a balanced setting,
local models struggle to classify instances of class Shirt accurately but
perform better in other classes. Note that, in these cases, having more
data samples may not be better than having fewer data samples for the
cross-correlated classes. Looking at G1 nodes, they are slightly better
off in the unbalanced case, as they are able to pick up the strong signal
about class Shirt (which they do not possess locally) in G2 models,
20 
but the training on their local dataset (which is balanced) avoids
the drift. To conclude, unbalanced data split in decentralized learning
scenarios may amplify cross-correlation effects among classes. In such cases,
having more data samples may not necessarily be better than having fewer
data samples for the cross-correlated classes. While these effects are not
significantly topology-dependent, they can radically impact the performance
of decentralized learning.

7. Conclusion

Fully decentralized learning is becoming increasingly interesting
from a research perspective, as it enables the training of AI models at
the edge of the Internet. This approach helps alleviate issues related
to data and bandwidth burdens on the infrastructure, latency, the
necessity for continuous and reliable Internet connectivity, and also
addresses principles of data locality and privacy. However, learning in a
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Fig. 37. MNIST – Mean accuracy in SBM communities, with 5 local training epochs instead of 100.
Fig. 38. Fashion-MNIST – Accuracy over time for BA network with G2 data assigned based on the clustering coefficient highest-focused. G1 nodes in blue, G2 nodes in orange.
From top to bottom: unbalanced and balanced case.
fully decentralized manner poses significant challenges that researchers
have yet to fully address. In this work, we focus on one of these
challenges, specifically the interplay between the network structure,
on which the learning process evolves, and the final performance
of the learning itself. For this purpose, we selected three network
topologies, each representing a dominant topological property, and six
different methods of distributing training data among nodes. Below, we
summarize the main findings of this work.

Centrality vs neighborhood density. Global centrality metrics
directly correlate with the achieved performance of decen-
tralized learning. No significant difference between the two
21 
global centrality metrics considered (degree and betweenness)
is detected for the topologies we have considered. Vice versa,
local clustering is a poor predictor of performance, meaning
that belonging to tightly vs loosely knit neighborhoods does not
make any direct difference.

Dilution effect. Exporting knowledge to central nodes is difficult be-
cause they perform model aggregation over a large neighbor-
hood, where a single ‘‘good’’ model may get diluted into the
neighborhood average.
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Fig. 39. Fashion-MNIST – Confusion matrix of a G1 node.
Fig. 40. Fashion-MNIST – Confusion matrix of a G2 node.
Centrality pull effect. Central nodes pull the others toward their
knowledge (i.e., learned model). The centrality pull effect com-
bined with the dilution effect explains why knowledge spreads
easily if it originates on central nodes.

Degree distribution. The presence of hubs (originating from the
Pareto distribution of the degree in BA networks) is a double-
edged sword. Hubs can worsen the dilution effect when knowl-
edge is on peripheral nodes but can boost the learning when
knowledge is sourced by central nodes. Also, as a side effect of
the dilution problem, the lower the average degree, the easier
the knowledge spreading from non-central nodes.

Segregated communities. When users are grouped in segregated com-
munities, it is very difficult for knowledge to circulate outside
of the community.

Class cross-correlation Unbalanced data splits, common in decen-
tralized settings, may amplify cross-correlation effects to the
detriment of resulting accuracy. In such cases, having more data
samples may not necessarily be better than having fewer data
samples for the cross-correlated classes. The network topology
does not seem to play a significant role in this situation.

The above summary illustrates the complex interplay between net-
work topology, decentralized learning, and training data distribution.
It conveys how a one-size-fits-all approach is not adequate for decen-
tralized learning. This paper lays the groundwork for further studies,
where more complex network topologies and network dynamics can
be investigated. Moreover, it highlights the need for more nuanced
model aggregation strategies, e.g., for mitigating the dilution effect and
addressing the resulting unfair treatment of peripheral nodes.
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Appendix A. EMNIST

We report here all the plots related to the analysis on the EMNIST-
Letters dataset. For the convenience of the reader, we duplicate those
plots that have also been included in the body of the paper (see
Figs. A.41–A.54).

Appendix B. Fashion-MNIST

We report here all the plots related to the analysis on the Fashion-
MNIST dataset. For the convenience of the reader, we duplicate those
plots that have also been included in the body of the paper. Note that
these results refer to a downsampled Fashion-MNIST dataset where the
class Shirt was removed (see Figs. B.55, B.56, B.57, B.58, B.59, B.60,
B.61, B.62, B.63, B.64, B.65, B.66, B.67 and B.68).
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Fig. A.41. EMNIST – Accuracy over time in ER networks (all nodes, G2 data assigned based on degree centrality). G1 nodes in blue, G2 nodes in orange. From left to right:
increasing values of connectedness; from top to bottom: lowest-focused and highest-focused scenario.

Fig. A.42. EMNIST – Mean accuracy over time and standard deviation in ER networks (average across G1 nodes only, G2 data assigned based on degree centrality).

Fig. A.43. EMNIST – Accuracy over time in ER networks (all nodes, G2 data assigned based on betweenness centrality). G1 nodes in blue, G2 nodes in orange. From left to right:
increasing values of connectedness; from top to bottom: lowest-focused and highest-focused scenario.
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Fig. A.44. EMNIST – Mean accuracy over time in ER networks (average across G1 nodes only, G2 data assigned based on betweenness centrality). Highest-focused (blue) and
lowest-focused (orange) cases.

Fig. A.45. EMNIST – Accuracy over time in ER networks (all nodes, G2 data assigned based on clustering coefficient). G1 nodes in blue, G2 nodes in orange. From left to right:
increasing values of connectedness; from top to bottom: lowest-focused and highest-focused scenario. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. A.46. EMNIST – Mean accuracy over time in ER networks (average across G1 nodes only, G2 data assigned based on clustering coefficient).

Fig. A.47. EMNIST – Standard deviation over time in ER networks (across G1 nodes only, G2 data assigned based on clustering coefficient). Highest-focused (blue) and lowest-focused
(orange) cases. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.48. EMNIST – Accuracy over time in BA networks (all nodes, G2 data assigned based on degree centrality). G1 nodes in blue, G2 nodes in orange. From left to right:
increasing values of connectedness; from top to bottom: lowest-focused and highest-focused scenario.

Fig. A.49. EMNIST – Mean accuracy over time and standard deviation in BA networks (average across G1 nodes only, G2 data assigned based on degree centrality).

Fig. A.50. EMNIST – Accuracy over time in BA networks (all nodes, G2 data assigned based on betweenness centrality). G1 nodes in blue, G2 nodes in orange. From left to right:
increasing values of connectedness; from top to bottom: lowest-focused and highest-focused scenario.
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Fig. A.51. EMNIST – Mean accuracy over time and standard deviation in BA networks (average across G1 nodes only, G2 data assigned based on betweenness centrality).
Highest-focused (blue) and lowest-focused (orange) cases.

Fig. A.52. EMNIST – Accuracy over time in BA networks (all nodes, G2 data assigned based on clustering coefficient centrality). G1 nodes in blue, G2 nodes in orange. From left
to right: increasing values of connectedness; from top to bottom: lowest-focused and highest-focused scenario.

Fig. A.53. EMNIST – Mean accuracy over time in BA networks (average across G1 nodes only, G2 data assigned based on clustering coefficient).

Fig. A.54. EMNIST – Standard deviation over time in BA networks (clustering coefficient). Highest-focused (blue) and lowest-focused (orange) cases.

Computer Networks 253 (2024) 110681 

26 



L. Palmieri et al.

Fig. B.55. Fashion-MNIST – Accuracy over time in ER networks (all nodes, G2 data assigned based on degree centrality). G1 nodes in blue, G2 nodes in orange. From left to
right: increasing values of connectedness; from top to bottom: lowest-focused and highest-focused scenario.

Fig. B.56. Fashion-MNIST – Mean accuracy and standard deviation over time in ER networks (average across G1 nodes only, G2 data assigned based on degree centrality).

Fig. B.57. Fashion-MNIST – Accuracy over time in ER networks (all nodes, G2 data assigned based on betweenness centrality). G1 nodes in blue, G2 nodes in orange. From left
to right: increasing values of connectedness; from top to bottom: lowest-focused and highest-focused scenario.
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Fig. B.58. Fashion-MNIST – Mean accuracy and standard deviation over time in ER networks (average across G1 nodes only, G2 data assigned based on betweenness centrality).

Fig. B.59. Fashion-MNIST – Accuracy over time in ER networks (all nodes, G2 data assigned based on clustering coefficient). G1 nodes in blue, G2 nodes in orange. From left to
right: increasing values of connectedness; from top to bottom: lowest-focused and highest-focused scenario.

Fig. B.60. Fashion-MNIST – Mean accuracy over time in ER networks (average across G1 nodes only, G2 data assigned based on clustering coefficient). Highest-focused (blue)
and lowest-focused (orange) cases.

Fig. B.61. Fashion-MNIST – Standard deviation over time in ER networks (across G1 nodes only, G2 data assigned based on clustering coefficient). Highest-focused (blue) and
lowest-focused (orange) cases.
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Fig. B.62. Fashion-MNIST – Accuracy over time in BA networks (all nodes, G2 data assigned based on degree centrality). G1 nodes in blue, G2 nodes in orange. From left to
right: increasing values of connectedness; from top to bottom: lowest-focused and highest-focused scenario.

Fig. B.63. Fashion-MNIST – Mean accuracy and standard deviation over time in BA networks (average across G1 nodes only, G2 data assigned based on degree centrality).

Fig. B.64. Fashion-MNIST – Accuracy over time in BA networks (all nodes, G2 data assigned based on betweenness centrality). G1 nodes in blue, G2 nodes in orange. From left
to right: increasing values of connectedness; from top to bottom: lowest-focused and highest-focused scenario.
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Fig. B.65. Fashion-MNIST – Mean accuracy and standard deviation over time in BA networks (average across G1 nodes only, G2 data assigned based on betweenness centrality).
Fig. B.66. Fashion-MNIST – Accuracy over time in BA networks (all nodes, G2 data assigned based on clustering coefficient centrality). G1 nodes in blue, G2 nodes in orange.
From left to right: increasing values of connectedness; from top to bottom: lowest-focused and highest-focused scenario.
Fig. B.67. Fashion-MNIST – Mean accuracy over time in BA networks (average across G1 nodes only, G2 data assigned based on clustering coefficient). Highest-focused (blue)
and lowest-focused (orange) cases.
Fig. B.68. Fashion-MNIST – Standard deviation over time in BA networks (clustering coefficient). Highest-focused (blue) and lowest-focused (orange) cases.
30 
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