Formation of a mixed valence Sn₃F₈ phase explains the SnF₂ stabilizing role in tin-halide perovskites

Daniele Meggiolaro^{1*}, Luca Gregori^{1,2}, Filippo De Angelis^{1,2,3,4*}

¹Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di

Scienze e Tecnologie Chimiche "'Giulio Natta"' (CNR-SCITEC), Via Elce di Sotto 8, 06123

Perugia, Italy.

²Department of Chemistry, Biology and Biotechnology, University of Perugia and INSTM, Via Elce di Sotto 8, 06123, Perugia, Italy.

³Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar, 31952, Saudi Arabia.

⁴SKKU Institute of Energy Science and Technology (SIEST) Sungkyunkwan University, Suwon, Korea 440-746.

Corresponding Authors

daniele.meggiolaro@cnr.it, filippo.deangelis@unipg.it

Abstract

 SnF_2 is a common additive stabilizing tin halide perovskites. We propose that this is due to formation a mixed valence Sn_3F_8 phase which sequesters oxidized species from the reaction environment.

TOC graphics

With lead-halide perovskite solar cells heading towards commercialization, tin halide perovskites (THPs) still show an immense development potential. Besides the lower toxicity of tin *vs.* lead, THPs may represent alternative low-band gap materials for both standalone and tandem devices.^{1–3} Sn-Pb alloying is also considered promising to obtain intermediate band gap materials useful in all perovskite tandem solar cells.^{4–6} The facile oxidation of Sn(II) to Sn(IV) seriously limits the material stability and, consequently, the efficiency of THP-based solar cells. Interestingly, Sn(IV) species, such as SnI₄, are not thermodynamically stable in the perovskite bulk, but they spontaneously tend to release holes to the THP valence band, leading to p-doping.⁷ Sn(IV) species are, however, stable at the perovskite surface or grain boundaries where they constitute electrons traps, with Sn(IV) formation being promoted by surface tin vacancies.⁷ Clearly, preventing the presence of Sn(IV) species. Improving the thin film quality together with a proper surface passivation strategy may further decrease the likelihood of Sn(IV) formation during the operational device lifetime.

Since the pioneering paper by Kanatzidis and coworkers in 2012,⁸ SnF₂ has been added to the perovskite precursors to limit THP oxidation. The impact of SnF₂ on the perovskite properties is twofold, leading to improved film quality and alleviated p-doping and Sn(IV) formation.⁹ While the stronger S-F bonds in place of Sn-I bonds may induce retarded crystallization and overall film quality improvement, the role of SnF₂ in improving THP optoelectronic properties has been mainly ascribed to the realization of a tin-rich environment, leading to suppressed tin vacancy formation and associated p-doping.² SnF₂, however, was also shown to stabilize precursor solutions against Sn(IV) formation,¹⁰ coherent with SnF₂ being regarded as a reducing agent.⁸ The question now is: *how can SnF₂ stabilize SnI₂ against oxidation and, consequently, stabilize the perovskite*? The oxidation potential of tin should be formally the same in SnI₂ and SnF₂, being it referred to the solvated metal ion. Here we employ state of the art Density Functional Theory (DFT) calculations to evaluate the possible reactions occurring upon SnF_2 addition to the perovskite precursors, with emphasis on the interaction with oxidized species. Our results show that SnF_2 may sequester Sn(IV) and I_2 from the reaction environment by forming a thermodynamically stable mixed valence phase, thereby explaining its reducing action.

The incorporation of Sn(IV) into the tin perovskite bulk mainly leads to the release of the two holes into the VB of the material and to the parallel formation of acceptor defects compensating the process, specifically iodine interstitials (I_i) and tin vacancies (V_{Sn}^2), see Figure 1a. This process has been modelled in the prototype MASnI₃ perovskite exposed to SnI₄ by reactions R1 and R2 (Table 1), which are thermodynamically driven by the high stability of I_i and V_{Sn}^2 defects in MASnI₃ leading to heavily p-doped materials.¹¹

Figure 1. Schematics of reactions involving SnF_2 , SnI_4 and $MASnI_3$. a) SnI_4 is incorporated into the MASnI₃ perovskite, leading to the formation of I_i and V_{Sn} defects and p-doped materials. b) SnI_4 is incorporated into SnF_4 and Sn_3F_8 phases.

The beneficial impact of SnF_2 in the perovskite stability can be ascribed to its capacity of sequestering Sn(IV) species from the reaction precursors, hence limiting its incorporation into the perovskite. This process is simulated through reactions R3 and R4 in Table 1. The Sn(IV)/Sn(II) exchange between the SnI_4 and SnF_2 phases mainly proceeds with the formation of the Sn(IV) SnF_4 and the Sn(II)/Sn(IV) Sn_3F_8 mixed-valence phase.¹² DFT results show that both these reactions are thermodynamically favored over the incorporation of SnI_4 into MASnI_3 , *i.e.* reactions R1 and R2, confirming that SnF_2 is able to suppress this detrimental process.

Table 1. Thermodynamics of incorporation of SnI_4 into the MASnI₃ bulk (R1-R2). Reactions of SnF_2 with SnI_4 through halide exchange reaction (R3) and the formation of the mixed valence Sn_3F_8 phase (R4). Formation of Sn_3F_8 from $SnF_2 + SnF_4$ (R5). I₂ reduction by SnF_2 to SnI_2 by formation of Sn_3F_8 (R6). Calculations are carried out by the hybrid PBE0 functional including dispersion corrections through the DFT-D3 method, see Supporting Information.

Reaction	$\Delta E (eV)$
$R1. MASnI_3 + SnI_4 = MASnI_3 [2I_i^- + 2h^+] + SnI_2$	-0.37
R2. MASnI ₃ + SnI ₄ = MASnI ₃ [V_{Sn}^{2-} + 2h ⁺] + 2 SnI ₂	-0.77
$R3. 2 SnF_2 + SnI_4 = SnF_4 + 2 SnI_2$	0.35
R4. 4 SnF ₂ + SnI ₄ = Sn ₃ F ₈ + 2 SnI ₂	-0.70
$R5. 2 SnF_2 + SnF_4 = Sn_3F_8$	-1.05
R6. 4 SnF ₂ + I ₂ = Sn ₃ F ₈ + SnI ₂	-0.73

The thermodynamically most favorable process is the incorporation of Sn(IV) to form the Sn_3F_8 phase, which is favored over SnF_4 formation, in agreement with experimental evidence showing that exposure of a SnF_2 solution to F_2 leads to the formation of Sn_3F_8 and not to SnF_4 , as one may expect.¹² This is confirmed by our calculations, which show that a mixture

of SnF_2 and SnF_4 thermodynamically evolves to form the Sn_3F_8 phase (R5). Formation of Sn_3F_8 (R4) simultaneously releases Sn(II) species to the reaction environment, explaining the reducing action of SnF_2 . Furthermore, SnF_2 may "clean" the precursors from oxidizing I_2 species, again by forming the Sn_3F_8 phase (R6).

In conclusion, we have shown that the beneficial role of SnF_2 as an additive to THPs resides in its capacity of retaining oxidized species, such as SnI_4 and I_2 , from the precursors by forming a thermodynamically stable mixed valence Sn_3F_8 phase. We hope our results contribute fundamental understanding towards more stable THPs and prompt further studies to corroborate the proposed reaction mechanism.

ACKNOWLEDGMENT

This work has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101082176 – VALHALLA and by the European Union - NextGenerationEU under the Italian Ministry of University and Research (MUR) National Innovation Ecosystem grant ECS00000041 - VITALITY. We acknowledge Università degli Studi di Perugia and MUR for support within the project Vitality.

AUTHOR INFORMATION

Daniele Meggiolaro - Computational Laboratory for Hybrid/Organic Photovoltaics
(CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC),
Via Elce di Sotto 8, 06123 Perugia, Italy. <u>https://orcid.org/0000-0001-9717-133X</u>

Luca Gregori - Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "'Giulio Natta'" (CNR-SCITEC), Via Elce di Sotto 8, 06123 Perugia, Italy; Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.

https://orcid.org/0000-0002-0023-8313

Filippo De Angelis - Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), Via Elce di Sotto 8, 06123 Perugia, Italy; Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy; Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar, 31952, Saudi Arabia. SKKU Institute of Energy Science and Technology (SIEST) Sungkyunkwan University, Suwon, Korea 440-746. https://orcid.org/0000-0003-3833-1975

References

- K. Noel, N.; D. Stranks, S.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; E. Eperon, G.; K. Pathak, S.; B. Johnston, M.; Petrozza, A.; M. Herz, L.; J. Snaith, H. Lead-Free Organic–Inorganic Tin Halide Perovskites for Photovoltaic Applications. *Energy Environ. Sci.* 2014, 7 (9), 3061–3068. https://doi.org/10.1039/C4EE01076K.
- (2) Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; Graetzel, M.; Mhaisalkar, S. G.; Mathews, N. Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. *Adv. Mater.* 2014, 26 (41), 7122–7127. https://doi.org/10.1002/adma.201401991.
- (3) Jiang, X.; Li, H.; Zhou, Q.; Wei, Q.; Wei, M.; Jiang, L.; Wang, Z.; Peng, Z.; Wang, F.; Zang, Z.; Xu, K.; Hou, Y.; Teale, S.; Zhou, W.; Si, R.; Gao, X.; Sargent, E. H.; Ning, Z. One-Step Synthesis of SnI2 (DMSO)x Adducts for High-Performance Tin Perovskite Solar Cells. J. Am. Chem. Soc. 2021, 143 (29), 10970–10976. https://doi.org/10.1021/jacs.1c03032.
- (4) Tong, J.; Song, Z.; Kim, D. H.; Chen, X.; Chen, C.; Palmstrom, A. F.; Ndione, P. F.; Reese, M. O.; Dunfield, S. P.; Reid, O. G.; Liu, J.; Zhang, F.; Harvey, S. P.; Li, Z.; Christensen, S. T.; Teeter, G.; Zhao, D.; Al-Jassim, M. M.; van Hest, M. F. A. M.; Beard, M. C.; Shaheen, S. E.; Berry, J. J.; Yan, Y.; Zhu, K. Carrier Lifetimes of >1 Ms in Sn-Pb Perovskites Enable Efficient All-Perovskite Tandem Solar Cells. *Science* 2019, *364* (6439), 475–479. https://doi.org/10.1126/science.aav7911.

- (5) Li, C.; Song, Z.; Chen, C.; Xiao, C.; Subedi, B.; Harvey, S. P.; Shrestha, N.; Subedi, K. K.; Chen, L.; Liu, D.; Li, Y.; Kim, Y.-W.; Jiang, C.; Heben, M. J.; Zhao, D.; Ellingson, R. J.; Podraza, N. J.; Al-Jassim, M.; Yan, Y. Low-Bandgap Mixed Tin–Lead Iodide Perovskites with Reduced Methylammonium for Simultaneous Enhancement of Solar Cell Efficiency and Stability. *Nat. Energy* 2020, *5* (10), 768–776. https://doi.org/10.1038/s41560-020-00692-7.
- (6) Milot, R. L.; Klug, M. T.; Davies, C. L.; Wang, Z.; Kraus, H.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. The Effects of Doping Density and Temperature on the Optoelectronic Properties of Formamidinium Tin Triiodide Thin Films. *Adv. Mater.* 2018, *30* (44), 1804506. https://doi.org/10.1002/adma.201804506.
- (7) Ricciarelli, D.; Meggiolaro, D.; Ambrosio, F.; De Angelis, F. Instability of Tin Iodide Perovskites: Bulk p-Doping versus Surface Tin Oxidation. ACS Energy Lett. 2020, 5 (9), 2787–2795. https://doi.org/10.1021/acsenergylett.0c01174.
- (8) Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. All-Solid-State Dye-Sensitized Solar Cells with High Efficiency. *Nature* **2012**, *485* (7399), 486–489. https://doi.org/10.1038/nature11067.
- (9) Gupta, S.; Cahen, D.; Hodes, G. How SnF2 Impacts the Material Properties of Lead-Free Tin Perovskites. J. Phys. Chem. C 2018, 122 (25), 13926–13936. https://doi.org/10.1021/acs.jpcc.8b01045.
- (10) Pascual, J.; Flatken, M.; Félix, R.; Li, G.; Turren-Cruz, S.-H.; Aldamasy, M. H.; Hartmann, C.; Li, M.; Di Girolamo, D.; Nasti, G.; Hüsam, E.; Wilks, R. G.; Dallmann, A.; Bär, M.; Hoell, A.; Abate, A. Fluoride Chemistry in Tin Halide Perovskites. *Angew. Chem. Int. Ed.* 2021, *60* (39), 21583–21591. https://doi.org/10.1002/anie.202107599.
- (11) Meggiolaro, D.; Ricciarelli, D.; Alasmari, A. A.; Alasmary, F. A. S.; De Angelis, F. Tin versus Lead Redox Chemistry Modulates Charge Trapping and Self-Doping in Tin/Lead Iodide Perovskites. J. Phys. Chem. Lett. 2020, 11 (9), 3546–3556. https://doi.org/10.1021/acs.jpclett.0c00725.
- (12) Dove, M. F. A.; King, R.; King, T. J. Preparation and X-Ray Crystal Structure of Sn₃F₈. *J. Chem. Soc. Chem. Commun.* **1973**, No. 24, 944. https://doi.org/10.1039/c39730000944.