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Abstract: Cynara cardunculus is a perennial plant that adapts well to Mediterranean climate conditions.
The possibility of cultivating C. cardunculus with low or zero input and in low productivity or marginal
lands makes it one of the most promising crops for bioenergy production in the Mediterranean areas.
The objective of the research was to study the effects of two marginal and contrasting southern Italian
environments (plain, 42 m a.s.l. and hilly area, 419 m a.s.l.) during a three-year period on biomass,
seed, energy yield, and oil composition of two genotypes of C. cardunculus (cultivated cardoon
and wild cardoon). When compared to the plain, plants that were grown in the hills gave higher
biomass yield (10.9 vs. 9.7 t DM ha−1 year−1), higher seed yield (0.46 vs. 0.44 t DM ha−1 year−1) and,
consequently, higher total energy yield (190 vs. 172 GJ ha−1 year−1), attributable to higher average
annual rainfall (680 vs. 565 mm year−1). The season, although only evaluated for three years (short
cycle), showed a different effect based on the genotype, highlighting a greater over-time production
constancy of wild cardoon (though less yielding) as compared to cultivated cardoon. Oil yield and
composition were only slightly affected by environment and genotype. Overall, the results of this
research suggest using C. cardunculus in marginal hilly areas, where, in addition to the production
of bioenergy, it may represent a good chance to fight erosion and improve soil fertility, without
competing with food crops.
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1. Introduction

Cynara cardunculus L. is a member of the Asteraceae family, including the globe artichoke
[C. cardunculus L. var. scolymus (L.) Fiori], the cultivated cardoon [C. cardunculus L. var. altilis DC.],
and their ancestor, the wild cardoon [C. cardunculus L. var. sylvestris (Lamk) Fiori] [1–3]. In addition to
the traditional use for food [4,5], in recent years cultivated and wild cardoon have been considered
for different industrial applications. These include for the production of cellulose, pulp, and paper,
use in animal feeding, use of florets in the dairy industry, extraction of inulin and phytochemicals
for pharmacological and cosmetic use [2,6,7], as well as use for its antimicrobial and bioherbicide
action [8,9]. However, it is as a bioenergy crop that C. cardunculus is most promising in southern
areas of Europe in relation to good adaptation to Mediterranean climate conditions of low rainfall and
hot dry summers. This is attributable to the positive balance between the phases of the growth and
development cycle under Mediterranean climatic trends, the capacity of photosynthesizing during
winter time, as well as the capacity of nutrient uptake from deep soil layers [10]. In Mediterranean
environments, C. cardunculus is able to provide high biomass, seed, and energy yields under low external
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management energy supplies thanks to its excellent adaptation [11–15]. Energy can be produced from
the biomass via combustion and oil that accumulated in the seeds is suitable as solid biofuel and as a
feedstock for biodiesel [16]; alternatively, biomass can be utilized for bioethanol [17] or biomethane
production via fermentation [18]. The economic analysis of cardoon as compared to other herbaceous
annual crops, demonstrated the low cultivation costs, the higher total revenues, and its suitability
for inclusion in arable cropping systems in marginal lands [19,20]. The use of marginal lands for the
cultivation of a bioenergy crop would ease the conflict that, in Europe, bioenergy crops have with food
production [20–22]. Moreover, the use of marginal areas for energy crops may contribute to the EU
policy objective to reduce CO2 emissions by 40% in 2030 and, in particular, to achieve the contribution
of 32% with renewable sources to the total energy consumption in that year contained in the new
Directive of Renewable Energies 2021–2030 that promotes the use of renewable energy sources [23].

The possibility of cultivating C. cardunculus as a bioenergy crop with low or zero input and in
low productivity or marginal lands has prompted great interest and research activities in the last
thirty years [24]. The studies conducted mainly in Italy, Greece, Portugal, and Spain showed great
variability in dry biomass yields [12–14,25–32], and seed yields and oil contents [11,25,33] in relation
to the pedo-climatic conditions, cropping techniques and genotypes. Furthermore, data concerning
the evaluation of the suitability of C. cardunculus to different environments at a local level in terms
of biomass production are very limited in the literature. It would also be important to evaluate the
adaptability of different genotypes and their productivity over time in different environments in order
to provide more precise and timely information to farmers who want to invest in this bioenergy crop.
The objective of this research was to study the effects of two marginal contrasting southern Italian
environments during a three-year period on biomass, seed, energy yield, and oil composition of two
genotypes of C. cardunculus (cultivated cardoon and wild cardoon).

2. Materials and Methods

2.1. Location, Climate and Soil

The field experiments were conducted during three growing seasons (from 2013–2014 to 2015–2016,
hereafter referred as S1, S2, and S3) at two locations Ispica and Modica (hereafter referred as ‘plain’
and ‘hills’), whose geographical coordinates and soil characteristics are listed in Table 1.

Table 1. Geographical coordinates, soil characteristics and climate characteristics (long-term 1977/2006)
of the two locations [34].

Location
Ispica (Plain) Modica (Hills)

Geographical coordinates
Latitude and longitude 36◦47′ N 14◦54′ E 36◦53′ N 14◦51′ E

Altitude (m a.s.l.) 42 419
Soil characteristics

Clay (>0.002 mm) (%) 19 38
Silt (0.02–0.002 mm) (%) 10 26
Sand (2–0.02 mm) (%) 71 36

Total N (g kg−1) 0.8 1.4
Organic matter (g kg−1) 12.2 14.0

P2O5 available (mg kg−1) 57 53
K2O exchangeable (mg kg−1) 302 351

pH 7.7 7.4
Climate characteristics

Annual total rainfall (mm) 481 613
Annual rainy days (N) 53 63

Average maximum temperatures (◦C) 23.4 24.2
Average minimum temperatures (◦C) 14.8 13.9
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The two locations, although not very far from each other, represent two different marginal
environments. The plain location has a history of arable cropping and fairly fertile soils, even if its
productive potential is variable from around average–low values [35]; the soil is a moderately deep,
calcic brown [36], with sandy loam texture, low N soil content, and organic matter. The hillside
location is subjected to erosion and characterized by low-fertility soils; the soil is a moderately deep,
typic xerochrepts [36] with loamy-clay soil texture, low N soil content, and organic matter.

In both locations (plain and hills), the climate is semiarid-Mediterranean, with mild wet winters
and hot, rainless summers. However, the two locations differ for total mean rainfall (481 mm on the
plain and 613 mm in the hills) and number of annual rainy days (53 and 63, respectively, in the plain
and hills) in the 30-year period 1977/2006 [34]. Furthermore, when compared to the plain, the hilly
location is characterized by higher monthly maximum temperatures on average of 1 ◦C and lower
monthly minimum temperatures on average of 1 ◦C throughout the entire year (Table 1).

2.2. Experimental Design, Plant Material and Management Practices

In each location (plain and hills), a randomized block design with three replications was used.
Each block included two genotypes with a plot size of 12 × 12 m, each containing 360 plants. The total
area of the experiment was in each location 864 m2 (six plots of 144 m2). The two genotypes studied
were: cultivated cardoon cultivar ‘Bianco Avorio’ and a wild cardoon landrace. ‘Bianco avorio’
(SAIS Sementi, Cesena, Italy) is a commercial cultivar cultivated for the fleshy leaf petiole and part
of the central leaf vein used to prepare typical Italian dishes [13]. ‘Bianco Avorio’ was chosen due
to its high biomass productivity and the adaptability to grow under low input in Mediterranean
area [11,13,30]. Wild cardoon seeds were collected from native stands in the coastal plain area South of
Ragusa (36◦55′ N, 14◦43′ E, 502 m a.s.l., South-Eastern Sicily). Four-week-old seedlings with three-four
true leaves were transplanted in the field on 5 November on both the plain and in the hills, adopting
a planting density of 2.5 plants m−2 with inter-row and intra-row spacing, respectively, of 1.00 and
0.40 m. In each location before transplanting, tillage consisted of ∼35 cm depth ploughing, followed
by harrowing. The same fertilizer regime was applied in each location, during seedbed preparation,
the soil was fertilized with 60 kg ha−1 N (as urea), 100 kg ha−1 P2O5 (as triple superphosphate)
and 80 kg ha−1 K2O (as potassium sulphate). In late February, 60 kg ha−1 N (as urea) were applied.
Soon after transplanting, an irrigation (30 m3 ha−1) and hand weeding were carried out, in order to
improve crop establishment. In the following years (from second to third), no fertilization, irrigation,
and weed control were carried out. Chemical products against pest and diseases were never necessary.
In each location, the crop regrowth in the seasons after transplanting was naturally allowed by rains of
mid-September to early October. The growth of the rosette leaves was rapid, competing very well
against weeds, also thanks to its allelopathic action [37].

2.3. Data Collection

In each season of cultivation, the aboveground biomass was harvested when the fruits reached
the ripened stage (at the end of July in both locations). As a member of the Compositae family, the fruit
of C. cardunculus is a cypsela, i.e. an achene originating from an inferior ovary [2], but it is commonly
known as ‘seed’ and it is thus called throughout the entire manuscript. The plants were harvested from
the central area (4 × 4 m) of each plot, by cutting them at about 5 cm above the soil level. The harvested
plants (about 40 for each plot) were immediately weighed in the field in order to determine their
fresh weight. The number of plants per plot, height of plants and biomass components (stalks, leaves
and heads) were also measured. The heads were threshed with a specific mini-thresher to separate
seeds, which were then weighed. The moisture content of each biomass components (stalks, leaves,
heads, and seeds) was measured in the laboratory by weighing ∼200 g of plant material, and placing
it in a thermoventilated oven (Binder, Milan, Italy) at 105 ± 1 ◦C until constant weight was reached.
All of the biomass components (e.g., stems, leaves, heads and seeds) were milled in a MF10 IKA mill
to 3.0 mm. In each growing season, the gross calorific value of harvested biomass was determined
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using a C200-System-IKA calorimeter (IKAWerke Staufen, im Breisgau, Germany), according to the
standardized procedure ASTM E–711–87 (2004), and taking into account the biomass partitioning.
The average values 16,517 kJ kg−1 DM for aboveground biomass and 22,650 kJ kg−1 DM for seed were
utilized for the calculation of the energy yield.

The seed samples removed from ripe capitula harvested in the second growing season
(on 30 July 2015) were sent to the Stazione Sperimentale per le Industrie degli Oli e dei Grassi
(Milano, Italy) in roder to determine their oil yield and fatty acid composition. The moisture content of
the seeds was determined before oil extraction by weighing 10 g of ground grain in pre-calibrated
porcelain capsules and placing it in a thermoventilated oven (Binder, Milan, Italy) at 105 ± 1 ◦C, until a
constant weight was reached. Seeds oil yield was determined by standard procedure according to the
ISO 659:2009 norm; the fatty acids composition was determined by gas chromatography according
to the procedure ISO 12966–4:2015; the free acidity as oleic acid was determined according to the
procedure ISO 660:2009 [38].

2.4. Meteorological and Soil Measurements

The rainfall and air temperature were recorded in each location during the entire period of trials
on a CR10 data logger (Campbell Scientific Inc., Loughborough, UK) connected to a meteorological
station sited 100 m away from the experimental field.

Soil analysis was conducted in each location before the start of the experiment (early September)
by collecting three soil samples per each Cynara cultivated plot, with a 4 cm (i.d.) core auger to a depth
of 30 cm, fractured into aggregates by hand pressure, air-dried, and sieved (<2 mm). The three samples
were taken from the middle of each plot, ∼100 cm away from each other. The soil analyses were carried
out according to procedures that were approved by the Italian Society of Soil Science [39].

2.5. Statistical Analysis

Levene’s test was used to test for homoscedasticity, following which the data were subjected to a
three-way analysis of variance (ANOVA), based on a factorial combination of two locations × two
genotypes × three seasons. The means were separated on the basis of the Least Significant Difference
(LSD) test, when the F-test was significant. The percentage data were arcsine transformed before
ANOVA (untransformed data are reported and discussed). All of the calculations and analyses were
performed using the appropriate options within CoStat1 version 6.003 (CoHort Software, Monterey,
CA, USA). Collected data were submitted to multiple correlation analyses in order to define the
relationship among variables.

2.6. Temperature and Rainfall

The monthly maximum and minimum temperatures at the plain location during 2014 and 2016
were similar; instead, lower monthly maximum and minimum temperatures were recorded in January
and February in 2015 as compared to 2014 and 2016 (Figure 1). In addition, in June, July, and August
in 2015, higher monthly maximum and minimum temperatures were recorded when compared to
2014 and 2016. In the hills, the monthly maximum and minimum temperatures during 2014 and 2015
were similar, whereas, throughout March, April, and May, higher monthly maximum and minimum
temperatures were found in 2016 as compared to 2014 and 2015. There was considerable variability in
rainfall from year to year at the two locations. On the plain, the annual rainfall in 2013–2014 (679 mm)
and 2014–2015 (669 mm) was almost double when compared to 2015–2016 (348 mm) and higher than
the long-term average (481 mm). In the hills, the annual rainfall in 2013–2014 (620 mm) was in line with
the long-term average (613 mm); on the contrary, in 2014–2015 (950 mm) and in 2015–2016 (470 mm),
it was higher and lower than 2013–2014 and the long-term average, respectively (Figure 1).



Agronomy 2020, 10, 1548 5 of 15
Agronomy 2020, 10, x FOR PEER REVIEW 5 of 16 

 

N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O
0

50

100

150

200

250

0

5

10

15

20

25

30

35

40

2013/2014 2015/20162014/2015

Te
m

pe
ra

tu
re

 (°
C

) R
ainfall (m

m
)

Plain (42 m a.s.l.)

N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O
0

50

100

150

200

250

0

5

10

15

20

25

30

35

40

Rainfall
Max temperature
min temperature

Hills (419 m a.s.l.)

2013/2014 2015/2016

Te
m

pe
ra

tu
re

 (°
C

) R
ainfall (m

m
)

2014/2015

 169 
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Figure 1. Maximum and minimum monthly air temperatures and total monthly rainfall recorded
through the three seasons in the two environments.

3. Results

All of the data were subjected to ANOVA, whose results are reported in Table 2.

Table 2. F values resulting from analysis of variance for all studied variables.

Variable Location
(L)

Genotype
(G)

Season
(S) (L) × (G) (L) × (S) (G) × (S) (L) × (G) × (S)

Degree of freedom 1 1 2 1 2 2 2
Plants survival (%) NS 9 ** 19 *** NS NS NS NS
Plant height (cm) 21 *** 997 *** 112 *** NS NS 25 *** NS
Biomass yield (t DM ha−1) 14 ** 697 *** 69 *** NS NS 37 *** NS
Biomass DM content (%) 15 ** NS 7 * 8 ** NS NS
Leaves incidence (%) NS 70 *** NS NS NS 5 NS
Stalks incidence (%) NS 347 *** 5 * NS NS 5 NS
Heads incidence (%) NS 513 *** 4 * NS NS 4 NS
Seed yield (t DM ha−1) 5 * 1343 *** NS NS NS 20 *** NS
N heads plant−1 NS NS 10 *** NS NS 10 *** NS
Seed weight head−1 NS 103 *** 3 *** NS NS 4 *** NS
Biomass E yield (GJ ha−1) 14 ** 698 *** 69 *** NS NS 37 *** NS
Seed E yield (GJ ha−1) 5 * 1343 *** NS NS NS 20 *** NS
Total E yield (GJ ha−1) 14 ** 787 *** 68 *** NS NS 36 *** NS

DM = Dry Matter; E = Energy; *, **, *** indicate significant at p ≤ 0.05, 0.01, 0.001, respectively; NS = Not Significant.

3.1. Plant Survival and Height

Regardless of locations, plant survival was very high and it obviously declined with the seasons
(Table 3). Higher plant survival values over the period S1–S3 were recorded in wild cardoon (99.3%)
than in cultivated cardoon (98.2%) (Table 3).
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Table 3. Plant survival, height, biomass yield, biomass dry matter content, and incidence of various
components (leaves, stalks, and heads) on total biomass in Cynara cardunculus L. as affected by the
main factors.

Plant
Survival

(%)

Plant
Height

(cm)

Biomass Yield
(t DM ha−1)

Biomass DM
Content

(%)

Leaves (1) Incid.
(%)

Stalks (1) Incid.
(%)

Heads (1) Incid.
(%)

Location
Plain 98.8 a 127.3 b 9.7 b 91.6 a 35.5 a 35.9 a 28.6 a
Hills 98.8 a 134.0 a 10.9 a 86.6 b 36.0 a 36.5 a 27.5 a

Genotype
Cultiv. cardoon 98.2 b 153.8 a 14.2 a 89.0 a 38.5 a 42.6 a 18.7 b
Wild cardoon 99.3 a 107.5 b 6.4 b 89.3 a 32.9 b 29.8 b 37.4 a

Season
S1 100 a 118.7 c 7.9 b 89.6 ab 35.4 ab 34.9 b 29.7 a
S2 98.9 b 128.1 b 11.6 a 91.9 a 36.8 a 36.1 ab 27.2 b
S3 97.4 c 145.2 a 11.6 a 85.8 b 35.0 b 37.7 a 27.3 b

S1 = season 1, S2 = season 2, S3 = season 3. Different letters within main factors indicate significance at Fisher’s
protected least significant difference (LSD) test (p ≤ 0.05; (1) incidence values of leaves, stalks and heads on total
biomass were calculated on the basis of dry weight.

Plants that were grown at the hilly location showed greater height than those grown on the plain
(134.0 vs. 127.3 cm). Cultivated cardoon showed taller plants as compared to wild cardoon (153.8 vs.
107.5 cm) (Table 3). The plant height increased significantly through the seasons in both genotypes,
but, in wild cardoon, it showed a greater increasing pattern from S1 to S3 (34%), when compared to
cultivated cardoon (from S1 to S3, 15%, respectively) (Figure 2).
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Figure 2. Plant height as affected by interaction ‘genotype × season’. S1 = season 1, S2 = season 2,
S3 = season 3.

3.2. Aboveground Dry Biomass Yield and Its Partitioning

Averaged over the period S1–S3 and genotypes, the biomass yield was significantly higher in the
hills than on the plain (10.9 vs. 9.7 t DM ha−1 year−1). Cultivated cardoon was characterized by a biomass
yield almost more than double than that of wild cardoon (14.2 vs. 6.4 t DM ha−1 year−1) (Table 3).

However, as revealed by the significant ‘genotype × season’ interaction, in cultivated cardoon
aboveground dry biomass yield significantly increased by 65 % from S1 to S2 (from 10.0 to 16.5 t DM
ha−1 year−1) and then remained constant in the third season studied (16.2 t DM ha−1 year−1); in wild
cardoon, biomass yield increased poorly from S1 to S3 (from 5.7 to 6.9 t DM ha−1 year−1) with no
significant differences on statistical analysis (Table 4). Biomass dry matter content at harvest was
significantly higher in plants from the plain than the hills (91.6 vs. 86.6 %) (Table 4); in addition,
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as revealed by the significant ‘location × season’ interaction, biomass dry matter content in plants from
the plain significantly increased from S1 to S2 (from 87.3 to 92.5%) and it then dropped to 80.1% in S3,
whereas in plants from the hills it remained constant (around 91%) throughout the seasons (Figure 3).
With reference to biomass partitioning, cultivated cardoon showed a significantly higher stalks and
leaves incidence as compared to wild cardoon (42.6 vs. 29.8 and 38.5 vs. 32.9%, respectively), while the
latter exceeded cultivated cardoon for heads incidence (37.4 vs. 18.7%) (Table 3). Regardless of location
and genotype, the plants showed a different shift in biomass partitioning over seasons, with an increase
from S1 to S3 of stalks incidence (from 34.9 to 37.7%), and a decrease in heads incidence over the same
period (from 29.7 to 27.2%); leaves incidence showed the highest value in S2, the lowest in S3 (Table 3).

Table 4. Biomass yield, seed yield, number of heads per plant, and average seed weight per head, as
affected by interaction ‘genotype × season’.

Biomass Yield Yield Seed Yield Heads Seed Weight

Genotype Season (t DM ha−1) (t DM ha−1) (N plant−1) (g head−1)

Cultiv. cardoon S1 10.0 0.65 6.7 3.97
S2 16.5 0.71 5.7 5.26
S3 16.2 0.59 4.7 5.33

Wild cardoon S1 5.7 0.22 5.5 1.66
S2 6.6 0.22 5.2 1.69
S3 6.9 0.27 5.5 2.05

LSD interaction p ≤ 0.05 1.7 0.06 1.1 0.62

S1 = season 1, S2 = season 2, S3 = season 3.Agronomy 2020, 10, x FOR PEER REVIEW 8 of 16 
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Figure 3. Biomass dry matter content as affected by interaction ‘location × season’. S1 = season 1,
S2 = season 2, S3 = season 3.

3.3. Seed Yield and Components

Averaged over the period S1–S3 and genotypes, the seed yield was higher from the hills when
compared to the plain (0.46 vs. 0.44 t DM ha−1 year−1). Averaged over the locations, cultivated cardoon
yielded seed 174% more than wild cardoon (0.65 vs. 0.24 t DM ha−1 year−1) (Table 5), attributable not
to the number of heads per plant (5.7 vs. 5.4), but to the higher seed average weight per head (4.8 vs.
1.8 g head−1) (Table 4). The seed yield trend during the seasons was substantially different between
the two genotypes. In fact, in cultivated cardoon, the seed yield was almost constant from S1 to S2
(around 0.68 t ha−1) and it then dropped down to 0.59 t ha−1 in S3, mainly due to the reduction in the
number of heads from S1 to S3 (from 6.7 to 4.7 N plant−1), while the average weight of seeds per head
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instead slightly increased from S1 to S3 (from 3.97 to 5.33 g head−1); in wild cardoon, on the contrary,
some stability over the years of the seed yield was observed without significant differences (Table 4).

Table 5. Seed yield, number of heads per plant, average seed weight per head, and energy yields in
Cynara cardunculus L., as affected by the main factors.

Seed Yield
(t DM ha−1)

Heads
(N plant−1)

Seed Weight
(g head−1)

Biomass E (1) Yield
(GJ ha−1)

Seed E (1) Yield
(GJ ha−1)

Total E (1) Yield
(GJ ha−1)

Location
Plain 0.44 b 5.4 a 3.2 a 162 b 10 a 172 b
Hills 0.46 a 5.6 a 3.4 a 180 a 10 a 190 a

Genotype
Cultiv.

cardoon 0.65 a 5.7 a 4.8 a 236 a 15 a 251 a

Wild
cardoon 0.24 b 5.4 a 1.8 b 106 b 5 b 111 b

Season
S1 0.44 ab 6.1 a 2.8 b 130 b 10 a 140 b
S2 0.46 a 5.4 b 3.5 a 191 a 10 a 201 a
S3 0.44 b 5.1 b 3.7 a 191 a 10 a 201 a

S1= season 1, S2 = season 2, S3 = season 3. Different letters within main factors indicate significance at Fisher’s
protected least significant difference (LSD) test (p ≤ 0.05); (1) E = Energy.

3.4. Energy Yield

The crop grown in the hilly location provided greater energy from biomass than the plain (180 vs.
162 GJ ha−1 year−1), but equal energy from seeds (10 GJ ha−1 year−1) and, consequently, greater total
energy (190 vs. 172 GJ ha−1 year−1) (Table 5). As regards the genotypes tested, the cultivated cardoon
more than doubled the biomass energy yield of wild cardoon over the S1–S3 cropping period (236 vs.
106 GJ ha−1 year−1) and tripled the energy of the seeds (15 vs. 5 GJ ha−1 year−1), thus giving a total
energy greater than 225% (251 vs. 111 GJ ha−1 year−1) (Table 5). Moreover, when comparing their
energy yield pattern, the genotypes showed distinct trends passing from season to season, as revealed
by the ANOVA. Indeed, cultivated cardoon biomass energy yield significantly increased from S1 to S2
(165 to 273 GJ ha−1 year−1), in order to remain constant in S3 and seed energy yield increased from S1
to S2 and then dropped in S3 (Table 6). Differently, wild cardoon showed a slight and not significantly
increase from S1 to S3 of biomass energy yield (from 95 to 114 GJ ha−1 year−1) and seed energy yield
(from 5 to 6 GJ ha−1 year−1). Overall, total energy yield in cultivated cardoon increased significantly
from S1 to S2, to remain constant at S3, whereas, in wild cardoon, it increased slightly, showing no
significant differences between years (Table 6).

Table 6. Biomass energy yield, seed energy yield and total energy yield, as affected by interaction.
‘genotype × season’.

Biomass E (1) Yield Seed E (1) Yield Total E (1) Yield

Genotype Season (GJ ha−1) (GJ ha−1) (GJ ha−1)

Cultivated cardoon S1 165 15 180
S2 273 16 289
S3 269 13 282

Wild cardoon S1 95 5 100
S2 109 5 114
S3 114 6 120

LSD interaction p ≤ 0.05 30 2 30

S1= season 1, S2 = season 2, S3 = season 3. (1) E = Energy.
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3.5. Oil Yield and Fatty Acids Composition

Seed moisture, oil yield, acidity, and fatty acid composition were influenced by the location
and genotype (Table 7). The seed moisture was significantly higher in the hills when compared to
the plain (8.1 vs. 5.9%), whereas oil yield and acidity were substantially similar between the two
locations. With regard to fatty acid composition oil of plants grown in the hills, these recorded higher
concentrations of palmitoleic acid (0.18 vs. 0.15 g 100 g−1 DW), hepatdecanic acid (0.05 vs. 0.04 g
100 g−1 DW), and linolenic acid (0.06 vs. 0.04 g 100 g−1 DW) compared to the plain. Regardless of
locations, cultivated cardoon showed a higher oil yield as compared to wild (25 vs. 23 g 100 g−1 DW)
and with higher acidity (1.3 vs. 0.4%); in addition, the oil of cultivated cardoon was found to have
higher palmitoleic acid (0.21 vs. 0.12 g 100 g−1 DW), heptadecanoic acid (0.06 vs. 0.03 g 100 g−1 DW),
as well as higher linolenic acid (0.06 vs. 0.04 g 100 g−1 DW) than wild cardoon (Table 7).

Table 7. Seeds moisture, oil yield, acidity, and fatty acid composition in Cynara cardunculus L., as affected
by location and genotype (mean ± standard deviation, n = 6).

Location Genotype

Variable Unit Plain Hills Cultiv. Cardoon Wild Cardoon

Seeds moisture % 5.9 ± 0.3 8.1 ± 1.0 7.2 ± 0.2 6.8 ± 0.1
Oil yield g 100 g−1 DW 23.9 ± 2.0 24.1 ± 1.6 25.0 ± 1.3 23.0 ± 1.5
Acidity % oleic acid 1.0 ± 0.2 0.7 ± 0.1 1.3 ± 0.1 0.4 ± 0.03

Myristic, C14:0 g 100 g−1 DW 0.13 ± 0.02 0.13 ± 0.01 0.14 ± 0.01 0.12 ± 0.02
Palmitic, C16:0 “ 11.1 ± 1.4 10.8 ± 1.1 11.0 ± 1.3 10.9 ± 1.2

Palmitoleic, C16:1 “ 0.15 ± 0.01 0.18 ± 0.02 0.21 ± 0.01 0.12 ± 0.01
Heptadecanoic, C17:0 “ 0.04 ± 0.003 0.05 ± 0.004 0.06 ± 0.005 0.03 ± 0.004

Stearic, C18:0 “ 3.45 ± 0.2 3.25 ± 0.3 3.30 ± 0.3 3.40 ± 0.2
Oleic, C18:1 “ 28.5 ± 1.6 27.6 ± 1.9 28.4 ± 2.3 27.7 ± 1.8

Linoleic, C18:2 “ 55.3 ± 2.7 54.3 ± 2.8 54.8 ± 2.7 54.8 ± 2.5
Linolenic, C18:3 “ 0.04 ± 0.003 0.06 ± 0.004 0.06 ± 0.005 0.04 ± 0.003
Arachidic, C20:0 “ 0.40 ± 0.05 0.37 ± 0.03 0.39 ± 0.04 0.38 ± 0.05
Behenic, C22:0 “ 0.14 ± 0.02 0.13 ± 0.01 0.13 ± 0.01 0.14 ± 0.01

Lignoceric, C24:0 “ 0.21 ± 0.01 0.20 ± 0.01 0.21 ± 0.02 0.20 ± 0.01

3.6. Correlation Among Variables

The total energy yield was positively correlated with the aboveground dry biomass and seed
yield (0.99 *** and 0.87 ***, respectively), with plant height (0.90 ***) and percentage incidence of stalk
(0.91 ***), whereas it was negatively correlated with the percentage incidence of heads (−0.93 ***).
Seed yield showed a positive correlation with aboveground dry biomass (0.86 ***), incidence of stalk
(0.90 ***), incidence of leaves (0.84 ***), and negatively with incidence of heads (−0.95 ***). Both biomass
and seed yield were correlated also with plant height (0.89 *** and 0.88 ***, respectively) and with seed
weight per head (0.94 *** and 0.92 ***, respectively) (Table 8).
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Table 8. Pearson’s correlation coefficients and significance of correlations among all of the variables recorded in the three season experiment and in the two environments.

Plant
Height

Biomass
Yield

Biomass
DM

Leaves
Incid.

Stalks
Incid.

Heads
Incid.

N Heads
plant−1

Seed Weight
head−1

Seed
Yield

Biomass
E Yield

Seed E
Yield

Total E
Yield

Plant height -
Biomass yield 0.89 *** -
Biomass DM NS NS -
Leaves incid. 0.75 *** 0.77 *** NS -
Stalks incid. 0.89 *** 0.91 *** NS 0.70 *** -
Heads incid. −0.91 *** −0.93 *** NS −0.86 *** −0.97 *** -

N heads plant−1 NS NS NS NS NS NS -
Seed weight head−1 0.91 *** 0.94 *** NS 0.76 *** 0.93 *** −0.94 *** NS -

Seed yield 0.88 *** 0.86 *** NS 0.84 *** 0.90 *** −0.95 *** NS 0.92 *** -
Biomass E yield 0.90 *** 0.99 *** NS 0.77 *** 0.91 *** −0.93 *** NS 0.94 *** 0.86 *** -

Seed E yield 0.88 *** 0.86 *** NS 0.84 *** 0.90 *** −0.95 *** NS 0.92 *** 0.99 *** 0.86 *** -
Total E yield 0.90 *** 0.99 *** NS 0.78 *** 0.91 *** −0.93 *** NS 0.95 *** 0.87 *** 0.99 *** 0.87 *** -

DM = Dry Matter; E = Energy, *** indicate significant at p < 0.001, respectively; NS = Not Significant.
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4. Discussion

The biomass yields that were obtained in both environments in our research are substantially in
agreement with other authors operating in rainfed conditions in Italy [12,26,28,32]. On the contrary,
our results were lower than those that were reported in a previous work [14], in which, differently from
the current experiment, the C. cardunculus crop was grown on a high fertility soil and managed with
supplements in terms of both irrigation and fertilization. The seed yields obtained in this research (about
0.45 t DM ha−1 year−1) are also consistent with the results that were obtained under rainfed conditions
in Spain [10] and Portugal [13], and lower than those reported in the same environment [14,25,30] with
the aid of fertilization and irrigation. Biomass and seed yields in this research are not so high, but they
are still respectable when considering that they have been obtained in marginal areas with soils with
low-medium productivity and managed under zero/minimal inputs in rainfed conditions.

The two environments that were studied in this research, different for geographical, pedological,
and climatic characteristics, influenced the productive response of the plants in both cultivated cardoon
and wild cardoon. Indeed, regardless of seasons, the plants grown in the hilly area provided greater
aerial biomass (10.9 vs. 9.7 t DM ha−1 year−1) when compared to the ones grown on the plain. The hills
compared to the plain recorded higher maximum temperatures and lower minimum temperatures
and, above all, higher annual rainfall (680 vs. 565 mm year−1) throughout the three seasons. Weather
conditions, in particular rainfall, can affect biomass production, as was clearly shown in a nine-year
experiment in Spain [40], in which biomass productivity of cultivated cardoon, in rainfed conditions,
was extremely variable from one year to the next according to rainfall. The yields of whole biomass
were reported in the range of 10–20 Mg DM ha−1 year−1 for crops receiving around 500 mm annual
rainfall, and a mean value of 14 Mg ha−1 year−1 for the drylands of Central Spain in years of severe
drought; much lower yields e.g. 3.4 Mg ha−1 year−1 were reported for Madrid (Spain) in a year
with only 280 mm [10]. In a recent research that was conducted in a Mediterranean cropland [41]
evaluating the productivity levels of different genotypes of cultivated cardoon (‘Altilis’, ‘Gigante’ and
‘Trinaseed’) in two different environments (plain vs hills), no differences in lignocellulosic biomass
yield (on average 19 t DM ha−1 year−1) were found during three years between the environments,
which were different for minimum and maximum temperatures, but very similar for rainfall (900 mm
year−1). In addition, the loam-clay texture soil in the hills, as compared to the sandy loam of the plain,
has certainly allowed for greater water retention and water conservation in the soil and, therefore,
better conditions for plant growth and development. This soil characteristic (texture) is of greater
importance in rainfed conditions.

The differences found in the biomass dry matter content between locations (lower in the hills than
the plain) are also attributable to the different weather conditions of the two environments. In our
research, the higher seed yields found may also be attributed to the higher rainfall in the hills when
compared to the plain (0.46 vs. 0.44 t DM ha−1 year−1, respectively).

The season, also as a consequence of the crop age, had an important effect in both environments.
Indeed, the rather modest dry biomass yield at S1 (7.8 t DM ha−1) increased in S2 (11.6 t DM ha−1)
to remain constant in S3 (11.7 t DM ha−1). Like all perennial biomass crops, cardoon has low yields
in the first year, which can be considered to be a crop stabilization stage (about 60% of maximum
yield), and it reaches the maximum values at the fifth or sixth year of cultivation [12,42]. Although
the research was carried out for only three seasons, there was a progressive increase in the average
height of the plant (from about 119 cm in S1 to 145 cm in S3), a significant increase in the incidence
of stalks on the total biomass (from 34.9% in S1 to 37.7% in S3) and a decreasing incidence of the
heads (from 29.7% in S1 to 27.3% in S3). The highest incidence of stalks on biomass yield, as well as
the decreasing incidence of the heads over time, substantially agree with a previous experiment in a
similar environment [14,43], reflecting a change in the overall plant organography and subsequent
modifications in intra-plant competition relationships. Beyond the mean annual biomass yield, a
very different biomass and seed yield pattern was recorded between genotypes in this study across
seasons. Indeed, cultivated cardoon showed oscillations over the three cropping season periods in
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biomass yield and seed yield according to other authors [12,32]. Differently, wild cardoon, although
less yielding, showed a more conservative profile in biomass and seeds yield over seasons, as observed
in the same environment [32]. The stability of biomass and seed production over time is an advantage,
as it allows for a more reliable quantification of the land for the cultivation of energy plants and
the possibility of ensuring a programmable biomass production. Therefore, stabilizing the biomass
production over time should be one of the objectives of the breeding programs in C. cardunculus as
an energy crop. Averaged over seasons and environments, cultivated cardoon yielded 122% more
biomass than wild cardoon (14.2 vs. 6.4 t DM ha−1 year−1), in agreement with the results of various
researches that were conducted both in conditions of good soil fertility and supplying fertilization and
irrigation [14,30], but also in marginal and low fertile environments, such as that of our research [32].
In addition, cultivated cardoon yielded seed 174% more than wild cardoon (0.65 vs. 0.24 t DM ha−1

year−1). It is known that high growth generally results in a greater number of heads, and in heads of
larger size that contain a higher proportion of seeds (% w/w) [44]. This plasticity of Cynara explains the
wide range of values that were reported in the literature for seed yields, from 0.2 to 4.3 t ha−1 year−1 [2].
Seed yield has been related to biomass yield, but what interestingly emerged in this research is that
both biomass and seed yield were positively correlated with plant height, with incidence of stalks
and leaves and with seed weight per head and negatively with incidence of heads. These indications
can be important for breeding, as they indicate that, to increase the yield capacity of genotypes for
producing both biomass and seed yield, it is necessary to increase the formation and development of
stalks in the plants and seed weight per head, but also, with respect to wild cardoon alone, in order
to improve plant height. Breeding for the aforementioned characteristics should be facilitated by
marker-assisted selection for quantitative traits [45], since the genome of the artichoke has recently
been decoded [15,46]. With regard to energy yield, it substantially reflects the quantity of biomass
produced per hectare, since the difference in heating values between the botanical varieties is small [2].
Consequently, the crop grown in the hills provided higher biomass energy yield as compared to the
plain (180 vs. 162 GJ ha−1 year−1), but equal seeds energy yield (10 GJ ha−1 year−1) and, consequently,
a greater total energy yield (190 vs. 172 GJ ha−1 year−1). These results suggest the advisability of
moving the C. cardunculus as energy crop to inland marginal hilly or submontane areas, generally
characterized by higher average annual rainfall, and loamy-clay soils compared to the plain in the
Mediterranean environment. In these marginal hilly areas C. cardunculus could also represent a good
chance to fight erosion and to improve soil fertility, as shown in a multi-year research [32]. Between
the two genotypes tested, the cultivated cardoon more than doubled the biomass energy yield of wild
cardoon (236 vs. 106 GJ ha−1 year−1). However, wild cardoon could be more wind resistant compared
to cultivated cardoon due to its lower height; this, together with greater survival and stability, means
that wild rather than cultivated cardoon seems to be more appropriate for implanting a perennial crop
in difficult and windy marginal areas.

With regard to oil yield, we found no difference between the two environments in accordance with
other findings [47], whereas wild cardoon as compared to cultivated cardoon showed less oil yield
(23 vs. 25 g 100 g−1 DW) and acidity (0.4 vs. 1.3% oleic acid) in agreement with the results of researches
that were conducted in a similar environment [25,48]. The fatty acids profile was very similar to that of
the sunflower (Helianthus annuus L.), a species of the same family as the Compositae [11]. The main
components (linoleic, oleic, and palmitic acids) showed no differences between environments and
genotypes, whereas differences were found in minor fatty acids between environments with plants
grown in the hills as compared to the plain, showing higher concentration of palmitoleic (0.175 vs.
0.15 g 100 g−1 DW), hepatdecanic (0.05 vs. 0.04 g 100 g−1 DW), and linolenic (0.06 vs. 0.045 g 100 g−1

DW) acids, and between genotypes with wild cardoon showing lower palmitolenic (0.12 vs. 0.20 g
100 g−1 DW), heptadodecanic (0.03 vs. 0.05 g 100 g−1 DW), and linolenic (0.04 vs. 0.06 g 100 g−1 DW)
acids than cultivated cardoon. In the context of bio-energy applications, the suitability of biomass
and seed oil of C. cardunculus for biodiesel [49,50], biomethane, and bioethanol production [17,18] has
already been studied. For the two-fold application of the crop—lignocellulosic biomass for energy and
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oil seeds for biodiesel production—a strategy was suggested [2], i.e. to harvest the whole biomass,
mechanically separate the different biomass fractions at the facility; in this way, each biomass fraction
could be directed to different applications, following the biorefinery concept.

5. Conclusions

Overall, the results of this research show that cultivated and wild cardoon as energy crops are
able, without competing with food crops, to enhance marginal areas, with soils with low-medium
productivity and managed under zero/minimal inputs in rainfed conditions, where they may also
represent a good chance to fight erosion and improve the soil fertility. The greater productivity
in biomass and seed expressed by C. cardunculus in the marginal environment located at a higher
altitude suggests the opportunity to move the crop to hilly and submontane areas, which are generally
characterized by higher average annual rainfall. The season, although only evaluated for three years
(short cycle), showed a different effect based on the genotype, highlighting a greater production
constancy of wild cardoon over time (though less yielding) compared to cultivated cardoon; attention
should be given to the stability together with agronomical performances in the breeding, recently
facilitated by the decoding of the artichoke genome, in order to valorize the yield potential of marginal
farmland in the Mediterranean area.
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