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The International Knockout Mouse Consortium

(IKMC) developed high throughput gene trapping

and gene targeting pipelines that produced mostly

conditional mutations of more than 18,500 genes in

C57BL/6N mouse embryonic stem (ES) cells which

have been archived and are freely available to the

research community as a frozen resource. From this

unprecedented resource more than 6000 mutant

mouse strains have been generated by the IKMC

in collaboration with the International Mouse Pheno-

typing Consortium (IMPC). In addition, a cre-driver

resource was established including 250 C57BL/6
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cre-inducible mouse strains. Complementing the cre-

driver resource, a collection comprising 27 rAAVs

expressing cre in a tissue-specific manner has also been

produced. All resources are easily accessible from the

IKMC/IMPC web portal (www.mousephenotype.org).

The IKMC/IMPC resource is a standardized reference

library of mouse models with defined genetic back-

grounds enabling the analysis of gene-disease associa-

tions in mice of different genetic makeup and should

therefore have a major impact on biomedical research.

Section editor: Steve Brown – MRC Harwell Institute,
Mammalian Genetics Unit, Oxfordshire, OX11 0RD, UK.
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Fig. 1. Conditional gene inactivation by a SAbgeopA cassette. A. The
SAbgeopA cassette flanked by recombinase target sites (RTs) in a
FlEx configuration is illustrated after integration into an intron of an
expressed gene. Transcripts (shown as gray arrows) initiated at the
endogenous promoter are spliced from the splice donor (SD) of an
endogenous exon (here exon 1) to the splice acceptor (SA) of the SA
bgeopA cassette and terminate prematurely at the gene trap’s
polyadenylation (pA) site thereby causing a mutation. Exposure to
flpo inverts the SAbgeopA cassette onto the non-coding strand,
which reactivates normal splicing. This repairs the mutation by
restoring normal gene expression. A second, Cre mediated re-
inversion positions the SAbgeopA cassette back onto the coding
strand and re-induces the mutation. Arrows indicate primer positions
within FlipRosabgeo used to diagnose inversions. Frt (yellow
triangles) and F3 (green triangles), heterotypic target sequences for
the flpe- and flpo-recombinases; loxP (purple triangles) and lox5171
(red triangles), heterotypic target sequences for the cre-
recombinase; SA splice acceptor; bgeo, b-galactosidase-neomycin-
phosphotransferase fusion gene; pA, polyadenylation sequence.
Introduction
Comparative analyses of mouse and human genomes have

provided in depth knowledge on gene and genome organiza-

tion and, in combination with disease specific genetic altera-

tions discovered by genome wide association studies (GWAS),

exome sequencing and entire genome sequence, paved the

way for generating mouse models of human disease. As mice

and humans share many physiological and pathological

features and have a similar genome organisation, mouse

models are favorite tools for the functional annotation of

the human genome. In most cases disease underlying genetic

alterations are missense mutations, splice site mutations or

deletions. Corresponding mutations can now be easily copied

into the mouse genome to study their molecular and pheno-

typic consequences. However, functional gene annotation

requires a null mutation first to reveal the phenotypic con-

sequences of a complete loss of function in the context of an

entire organism. On top of this, as many common diseases

occur later in life due to localized tissue specific gene dysfunc-

tions and because about one third of null mutations result in

embryonic lethality conditional mutations enabling spatially

and temporally restricted gene inactivation are essential to

fully understand gene function and its impact on human

disease. To address this challenge, a comprehensive interna-

tional project aimed at inactivating and archiving all 20,000

protein coding genes in ES cells was launched in 2003 [1,2].

Up to now, the International Knockout Mouse Consortium

(IKMC, www.knockoutmouse.org) comprising the European

Conditional Mouse Mutagenesis Program (EUCOMM), the

Knockout Mouse Project (KOMP), the North American Con-

ditional Mouse Mutagenesis Project (NorCOMM) and the

Texas A&M Institute for Genomic Medicine (TIGM) [1–4]

has created a repository of ES cells harboring mostly condi-

tional mutations in nearly 18,500 genes in a C57BL/6N

genetic background using a combination of gene trapping

and targeting complemented recently by designer endonu-

clease mediated genome editing [5–12]. The ES cell-based

mutations are typically converted into mice by blastocyst

injection and phenotypic alterations analyzed in heterozy-

gous and/or homozygous offspring [13–15]. In parallel, the

International Mouse Phenotyping Consortium (IMPC, see

www.mousephenotype.org) was established to produce mu-

tant mice from the IKMC ES cell resource and lately also by

direct nuclease mediated mutagenesis in zygotes for large

scale primary phenotyping. Thus far, for the systematic anal-

ysis of gene function, the establishment of a large collection

of mouse mutants by high-throughput reverse genetics

turned out to be the most productive [14–16].

High throughput knockout resources
Because at the time when the IKMC was established it was

uncertain whether gene targeting by homologous recombi-

nation could be successfully up-scaled, gene targeting and
Please cite this article in press as: Kaloff C, et al. Genome wide conditional mouse kno
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trapping were performed in parallel. The ease of establishing

mutant gene trap libraries paved the way for the generation of

a large collection of gene trapped ES cell lines carrying

mutations in most protein-coding genes expressed in ES cells.

Gene trapping introduces random insertional mutations

throughout the genome and is performed with either viral

or plasmid gene trap vectors [6–10]. Their integration into an

intron or exon simultaneously disrupts and reports the ex-

pression of a trapped gene [17] and provides a molecular tag

enabling easy identification of the disrupted gene by various

PCR strategies [18,19]. By employing the Flip-Excision (FlEx)

system classic gene trap vectors were converted into condi-

tional vectors enabling the induction of spatially- and tem-

porally restricted mutations by crossing the mutant strains to

flpe and/or cre site-specific recombinase expressing deleter

mice [20].

Fig. 1 shows the FlipRosabgeo conditional gene trap vector

used by the IKMC. It contains a typical gene trap cassette

(splice acceptor (SA)-reporter (bgeo)-polyadenylation se-

quence (polyA)) flanked by heterotypic flpe and cre recom-

binase target sites that enable directional cassette inversions

by the corresponding flpe and cre recombinases. Thus,

gene trap mutations can be repaired and re-induced by the
ckout resources, Drug Discov Today: Dis Model (2017), http://dx.doi.org/10.1016/j.
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Table 1. Gene trap mutations generated by the IKMC consortium

EUCOMM/EUCOMM-TOOLS KOMP-CSD KOMP-REGN NorCOMM TIGM total

Gene trap mutations 4.412 3.832 9.882 11.390
successive delivery of flpe and cre [21,22]. Gene trap muta-

genesis can be easily scaled-up so that thousands of muta-

tions can be generated rapidly in one experiment. However,

gene trap mutagenesis is generally biased towards expressed

genes and genes with longer reading frames [23]. While

targeted mutagenesis does not have these biases and is defi-

nitely more precise, in some cases involving the disruption of

multiple isoforms, conditional gene trapping proved superior

[21]. Collectively, the IKMC has generated gene trap muta-

tions in more than 11,000 ES cell genes (Table 1, www.

genetrap.org, www.informatics.jax.org/allele). As there is

some overlap within the IKMC gene trap resource allelic

variants can be established. Moreover, about 4,600 mutations

are also available in 129 Sv ES cells allowing the comparative

analysis of the same mutation in different genetic back-

grounds.

Unlike gene trapping, gene targeting by homologous re-

combination in ES cells is a precise technology enabling the

induction of any desired mutation ranging from single base-

pair substitutions to large deletions [5]. However, in contrast

to random gene trapping, gene targeting requires targeting

vectors for each individual gene and screening for rare ho-

mologous recombinants which is quite laborious and time

consuming. Nonetheless, the IKMC succeeded to develop a

high throughput gene targeting strategy by combining serial

BAC recombineering for vector generation with high

throughput gene targeting in C57BL6/N ES cells [24–29].

Most importantly, IKMC targeting vectors induce reporter

tagged conditional ready null mutations which like the con-

ditional gene trap vectors enable spatial and temporal control

of gene activity which is essential for distinguishing between

pleiotropic gene functions during embryogenesis and adult-

hood [27,29]. IKMC’s most commonly employed targeting

vector is the knock-out first conditional ready vector [29,30].

It consists of homology arms embedding a gene trap (SA-bgal-

pA) and selectable marker gene (pgk-neo-pA) cassette flanked

by frt sites and a critical exon flanked by loxP sites whose

deletion causes a frameshift mutation (tm1a allele; Fig. 2).

Following homologous recombination, the reporter is

spliced into the endogenous transcript resulting in a fusion

transcript from which a truncated endogenous protein fused

to the reporter is translated (tm1a). Removal of the gene

trap and selectable marker cassettes with flpe converts the

knockout-first tm1a allele into a conditional allele (tm1c)

(Fig. 2A). Subsequent deletion of the critical exon from

the tm1c allele induces a null mutation by frameshift-

mediated nonsense-mediated mRNA decay (tm1d). With

these ‘‘knockout first conditional ready’’ targeting vectors
Please cite this article in press as: Kaloff C, et al. Genome wide conditional mouse kno
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the IKMC generated about 13.000 conditional gene muta-

tions in ES cells (Table 2). While most of the conditional

targeting vectors successfully mutated the respective genes, a

set of around 1,800 genes were not amenable to targeting

even after several attempts, possibly due non-permissive

chromatin conformation. These genes were pursued further

within the framework of EUCOMMTOOLS (a successor proj-

ect of EUCOMM) by employing CRISPR/Cas9 genome editing

technology. We could demonstrate that Cas9-assisted

targeting combined with the IKMC conditional targeting

vectors resource successfully mutated most genes previously

inaccessible to conventional targeting [31]. To accelerate

the adoption of Cas9 assisted conditional mutagenesis, we

implemented a new search function within the EUMMCR

website (www.eummcr.org) enabling direct access to suitable

targeting vectors and sgRNAs (www.eummcr.org/crispr/

search). Most of the 13,000 conditional targeting vectors of

the IKMC resource have protospacer (PAM) sequences suit-

ably located for Cas9-assisted targeting, suggesting that the

conditional mutant resource can now be readily completed

[31]. In addition, lacZ tagged gene deletions have been gen-

erated by Regeneron using Velocigene technology utilizing a

bacterial artificial chromosome (BAC)-based strategy (Fig 2B,

Table 2) [26]. Furthermore, over 6,000 mutant mouse strains

generated from the IKMC ES cell resource together with their

primary phenotypes are presently available at www.

mousephenotype.org [14–16]; see also article in this issue.

Cre driver transgenic mouse strains
Full exploration of the IKMC conditional loxP alleles requires

a complementary resource of inducible cre recombinase

expressing transgenic mouse strains (cre-drivers) [32]. Ideally,

cre-driver mice should be at hand for every adult cell type in

order to dissect pleiotropic gene functions related to human

disease. To achieve spatial control of cre expression either

entire bacterial artificial chromosomes [33], or cre knock-ins

into endogenous loci [34] were used to provide high fidelity

cre expression.

About 30% of all null mutations lead to embryonic lethali-

ty and therefore temporal control of gene inactivation is also

required for the analysis of postnatal gene function. Tempo-

ral control of cre activity is achieved by employing fusion

proteins of cre with modified versions of the ligand binding

estrogen receptor domain (cre/ER or cre/ERT2) that also binds

the synthetic estrogen receptor antagonist – tamoxifen [35–

37]. Without ligand cre/ER or cre/ERT2 are sequestered in the

cytoplasm in an inactive state. After ligand binding following

exposure to tamoxifen cre/ER translocates to the nucleus and
ckout resources, Drug Discov Today: Dis Model (2017), http://dx.doi.org/10.1016/j.
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Fig. 2. IKMC gene targeting strategies. A) Knock-out first conditional ready targeting strategy. The targeting vector contains a splice-acceptor carrying
lacZ reporter and neomycin selector cassette flanked by frt and loxP sites followed by a critical exon flanked by loxP site. After integration into the genome
this allele is named tm1a allele. Exposure to flp recombinase deletes the reporter and selector cassette resulting in a wild type conditional floxed allele
(tm1c). The critical exon can be deleted by cre recombinase expression (tm1d). Exposure of the tm1a allele first to cre recombinase deletes neomycin
cassette and the critical exon leading to a reporter null allele (tm1b). B) Represents the generation of entire gene deletions using large BAC targeting
vectors integrating a reporter and loxP flanked selector cassette.
excises floxed sequences from the genome. There are various

sophisticated approaches available for generating Cre-driver

mice; all of which have advantages and disadvantages.

EUCOMMTOOLS exploited a knock-in strategy based on past

experience with large-scale vector production and on the
Please cite this article in press as: Kaloff C, et al. Genome wide conditional mouse kno
ddmod.2017.08.002

Table 2. Targeted mutations in ES cells generated by the IKMC

EUCOMM/EUCOMM-TOOLS KOM

Targeted conditional mutations 8.333 4.25
Targeted deletion mutations 325 1.19

Note: the NorCOMM allele represents a null allele convertible into a conditional allele (see N
existing IKMC vector resource as well as previously charac-

terized cre-knock-ins faithfully mirroring endogenous gene

expression.

EUCOMMTOOLS produced 223 inducible cre-driver lines

in a C57BL/6N genetic background. The demand for cell type
ckout resources, Drug Discov Today: Dis Model (2017), http://dx.doi.org/10.1016/j.

 consortium

P-CSD KOMP-REGN NorCOMM TIGM Total

2 32 12.406
7 4.134 569 5.829

14.975

orCOMM web site).
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Fig. 3. EUCOMMTOOLS cre/ERT2 targeting vectors. The targeting vectors contain green fluorescent protein and cre/ERT2 separated with a T2A
peptide sequence. The selection cassette is flanked with rox sites and is removable using dre recombinase.
specific cre-drivers was estimated in an internet-based large

scale survey of the scientific community’s needs and based on

this 639 candidate genes chosen.

Fig. 3 illustrates the knock-in strategy employed by

EUCOMMTOOLS which takes advantage of gene cassettes

encoding EGFP-cre/ERT2 separated by a T2A polyprotein

cleavage sequence where EGFP provides a convenient report-

er for tracking endogenous gene expression. After excluding

haploinsufficient genes, a total of 459 cre knock-in vectors

and 374 recombinant C57BL/6 ES cell clones were produced

of which 223 were converted into mice. Cre-driver lines were

validated by crossing to Rosa26-loxPlacZ, or Rosa26-lox-

PAi14Tdtomato reporter mice [38,39] and monitoring ta-

moxifen induced cre activity in progeny tissue samples by

histochemistry at 14 (P14) and 56 (P56) days after birth. Cre

expression was annotated to various cells and tissues by

monitoring EGFP together with lacZ or Tdtomato- reporter

gene expression. Presently the following 74 cre-driver strains

have been annotated: Tns1, Krt17, Acan, Mb, Tshb, Prdm16,

Cpne, Ucp1, Gpx3, Heatr8, Tle6, Trpv1, Smyd3, Hoxa2, Tac2,

Pou2f1, Rbpjl, Spp2, ROSAL2/WT, Ptprcap, Cd3e, Atp6v1g2,

Ccl25, Hes5, Myo1a, Insl3,Csk/Csktm1, Dmbx1, Mia, Spink8,

Entp5, Acsm4, Dbx1, Cdx2, Gnai2, Pkd2l1, Sfrp1, Cnp, P2rx7,

Pdgfrb, Gast, Cd63, Cpne6, Nefh, Amhr2, Rbfox3, Wnt9a,

Barhl1, Zfp819, cldn7, Sgca, Pbx2, Zbtb32, A830010M20F,

Lztfl1, Ttl25, Sds, Aqp3, Eomes, Spic, Zfp629, Slc26a5, Fga,

Tbx2, Tff1, Cmtm5, Ttr, Myh4, aldh3a2, Igj, Slc26a4, Mog,

Cdh2, and Sost. All brain and body annotations as well as

selected images of tissue specific cre expression can be found

at www.imib.es/AnotadorWeb/public.jsf. Representative

images of whole body and brain cre-activity annotations

are shown in Figs. 4 and 5, respectively.

All recovered expression patterns have been integrated into

an anatomical ontology atlas with cellular resolution illus-

trating the body and brain structures of P14 and P56 mice
Please cite this article in press as: Kaloff C, et al. Genome wide conditional mouse kno
ddmod.2017.08.002

e6 www.drugdiscoverytoday.com
(www.imib.es/AnotadorWeb/public.jsf). Based on the Allen

Brain Atlas (www.brain-map.org) ontology, regional brain

annotation was performed at cellular resolution. For whole

body annotation, EUCOMMTOOLS developed its own ontol-

ogy tree for each organ at cellular resolution. This novel cre-

driver resource significantly increases the value of the IKMC

resource as it provides mice amenable to tamoxifen-inducible

cre expression in a wide range of organs, tissues and cell types.

In this context it is of note that the CanEuCre (successor

project of Pleiades Promoters program in cooperation with

EUCOMMTOOLS and IKMC) generated over 27 Cre/ERT2-

driver strains mostly targeting the brain and 27 recombinant

adeno-associated viral iCre constructs for in vitro and in vivo

applications (www.jax.org/mouse-search?searchTerm=icre%

20Simpson, www.addgene.org/Elizabeth_Simpson [40]). Fur-

thermore, the successor of the NorCOMM project, Nor-

COMM2LS is presently performing transposon-based

enhancer trapping to identify novel loci suitable for spatially

restricted cre-recombinase expression (www.norcomm2.org).

The IKMC cre-driver program and other international

large-scale cre-driver initiatives are jointly aiming to assemble

a complete cre-driver zoo. Accordingly, the Allen Institute for

Brain Science is generating brain-specific cre-driver strains by

taking advantage of their comprehensive atlas of brain-spe-

cific expression patterns [38]. Moreover, the GENSAT (Gene

Expression Nervous System Atlas) program produced and

characterized 289 nervous system specific cre-driver strains

mainly for the forebrain (www.gensat.org/cre.jsp). However,

with few exceptions [33,41] the majority of these cre-driver

lines express cre constitutively precluding a temporal control.

An additional neural cre-driver resource was established by

the Neuroscience Blueprint Cre-Driver Network which pro-

duced and validated over 100 cre-driver strains ([42], www.

credrivermice.org). The JAX Cre Repository, which currently

distributes over 365 cre-driver strains, many of which are
ckout resources, Drug Discov Today: Dis Model (2017), http://dx.doi.org/10.1016/j.
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Fig. 4. Cre-activity annotation of PbPrcap promoter driving cre-recombinase strain in the bone marrow (A), thymus (B), lymph node (C) and the peyer’s
patch of the midgut (D) in P14 mice. The expression was detected in the entire lymphatic system from lymphoblastic precursors in the bone marrow to
mature lymphocytes in the lymphatic nodes. Therefore, the inducible cre-driver system will allow gene inactivation at different stages of lymphocyte
differentiation.
maintained as live colonies, implemented a web resource

documenting the characteristics of the 100 most frequently

used cre-driver strains (www.jax.org/research-and-faculty/

tools/cre-repository). All data generated in this pipeline are

routinely updated and disseminated through Mouse Genome

Informatics (MGI’s) Creportal (www.informatics.jax.org/

home/recombinase; [43], see below). Finally, cre-driver

efforts have also been recently described by Murray et al.

[44], and are currently being expanded by using CRISPR/Cas9

based approaches (Murray, personal communication).
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Purkinje cells in cerebellum

Fig. 5. Cre-activity of the TRpv1 promoter cre-driver strain in Purkinje cells 
IKMC/IMPC and cre-driver web portal
With the extension of the IMPC phenotyping activities the

IKMC/IMPC web portals have been merged to create a single

stop and shop site for genetic and phenotypic data. The

public IMPC/IKMC web portal (www.mousephenotype.org)

provides updated information on the conditional genetic

resources including detailed description of targeting vectors,

targeted alleles, ES cell clones, mouse mutants and mutant

phenotypes [45,46]. For each product there is a link directing

users to the appropriate repository from which the desired
ckout resources, Drug Discov Today: Dis Model (2017), http://dx.doi.org/10.1016/j.

Drug Discovery Today: Disease Models

of the cerebellar cortex of P14 mice.
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product can be ordered (see repository article in this issue).

The gene trap alleles are displayed at www.informatics.jax.

org/allele. The EUCOMMTOOLS’ Cre driver resource is acces-

sible from the IMPC web portal (www.mousephenotype.org/

data/order/creline, www.imib.es/AnotadorWeb/public.jsf)

and partly from MGI www.informatics.jax.org/home/

recombinase. These portals contain comprehensive informa-

tion on cre-drivers, including constructs, promoters, strate-

gies for cre-driver strain establishment and anatomical

annotation with images.

IKMC, other repositories and distribution
Large scale international projects have provided mutant

alleles for almost every protein-coding gene and made

these available to the scientific community via internet-

based public repositories. The gene trapping and targeting

vectors as well as mutant ES cells are freely available via

EuMMCR (www.eummcr.org) or KOMP (www.komp.org),

and the mutant mice produced from IKMC material by

Infrafrontier (www.infrafrontier.eu ), MMRRC (www.

mmrrc.org), CMMR (www.phenogenomics.ca) and KOMP

(www.komp.org) for a nominal fee. In addition, the large

scale cre-driver projects such as EUCOMMTOOLS, GENSAT,

Allen Brain Institute and Blueprint Cre Driver Network

deposited all their cre-driver strains in public repositories

(www.infrafrontier.eu, www.mmrrc.org, and www.jax.org).

Moreover, the International Mouse Strain Resource

(IMSR; www.informatics.jax.org/home/recombinase) con-

tains records for more than 2.700 cre-driver strains pro-

duced by the scientific community at large (see repository

article in this issue).

Future perspectives
1. The IKMC vector- and ES cell resource is an unprecedented

asset for the seamless generation of mutant mice and for

the functional annotation of the mammalian genome. It

forms the core for large-scale mutant mouse line produc-

tion, phenotyping and archiving which is being per-

formed by several mouse phenotyping consortia such as

IMPC (www.mousephenotype.org), Infrafrontier (www.

infrafrontier.eu) and KOMP2 (commonfund.nih.gov/

KOMP2). Although the IKMC resource is quite compre-

hensive it is not yet complete (1800 protein coding genes

are still missing). However, by combining IKMC condi-

tional gene targeting vectors with CRISPR/Cas9 genome

editing whole genome coverage is within reach [31]. More

than 6000 mutant mouse strains have been produced from

the IKMC resource and are presently subjected to pheno-

typing by the IMPC [14–16]. It is conceivable that the

IKMC/IMPC mutations in combination with nuclease

mediated gene editing will lead to the establishment of

a functional encyclopedia of the entire mammalian ge-

nome within the next decade.
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2. The IKMC derived mouse models represent standardized

references to which future mutant alleles in different

genetic backgrounds can be referred to. This is important

because analysis of null alleles in a defined inbred mouse

strain is a first step in understanding any in vivo gene

function. Together with streamlined phenotyping – as

performed by the IMPC – the IKMC resource will have a

major impact on the characterization of complex genetic

traits. Moreover, the IKMC library also provides a guide for

the generation of mutations by designer endonucleases in

the future. Using the IKMC/IMPC resource as reference,

the scientific community will be able to determine the

contribution of genes and genetic backgrounds to the

various disease-associated phenotypes [47,48].

3. To unravel pleiotropic gene functions it is necessary to

inactivate genes in cell type-specific and temporally re-

stricted manner. As the majority of IKMC alleles are con-

ditional simple crossing to cre-driver strains will yield the

desired answers. Conditionality is a major advantage of

the resource because the generation of conditional alleles

by CRISPR/Cas technology is still a major challenge.

4. IKMC products contain multipurpose alleles amenable to

recombinase- mediated cassette exchange (RMCE) en-

abling virtually any locus modifications such as insertion

of reporter genes for live cell imaging, optogenetic gene

cassettes for light sensitive gene regulation, Ca2+-sensors

for monitoring neuronal activity, site-specific recombi-

nases for tissue specific expression, human orthologues

of genes of interest and disease-associated missense muta-

tions for allelic series generation [49,50]. The modular

approaches employed by the IKMC for vector construction

enable the re-use of existing targeting vector intermediates

for making new alleles as exemplified by the EUCOMM-

TOOLS cre knock-ins. Most importantly, the IKMC alleles

enable the examination of patient-specific sequence var-

iants in the context of an entire organism by simply

inserting the disease gene variant into the mouse ortholog

by RMCE or alternatively, by CRISPR/Cas9 mediated ge-

nome editing in one-cell embryos [50,51].

5. Finally, IKMC conditional mouse ES cells combined with

CRISPR/Cas9 technology could be used to identify genes

responsible for ES cell pluripotency and lineage differenti-

ation by generating inducible homozygous mutant ES cell

lines.
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