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Abstract 
 
Software re-engineering and reusability are two areas of growing interest in the last 

years.  

However, while many researchers have focused their interest in the classification of 

reusable modules proposing meaningful examples of reusable components repositories 

and software packages libraries, the problem of potential reusable chunks searching and 

extracting is still opened. 

In this paper, after a brief discussion of the re-engineering issues, we examine the 

problems related to the difficulty of identifying various subfunctionality in a module and 

isolating them. 

                                                 
*  This work has been partially supported by Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo 

of C.N.R. 
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1 - Introduction 
 

Software engineering is evolving towards the implementation of tools that could improve 

the maintainability of the existing software applications, possibly by their 

reconfiguration. 

 

Un aspetto importante da considerare nell’ opera di manutenzione è il riuso dei prodotti 

dello sviluppo di software ed in particolare del codice. 

E' stato dimostrato che si tende a riusare componenti software e che le applicazioni 

sviluppate ex-novo sono poche. 

Cerchiamo di tradurre in cifre la ridondanza dei sistemi software ([McClure91]): 

 

• 40 - 60% di tutto il codice di un’ applicazione può essere usato per un' altra; 

• 60% del progetto di tutte le applicazioni d' azienda è riusabile; 

• 75% delle funzioni di un programma sono comuni a numerosi programmi; 

• 15% del codice di un programma è proprio di una specifica applicazione; 

 

L' adesione alla filosofia della riusabilità consente, come vantaggi immediati, di ridurre il 

costo e il tempo di sviluppo (i costi di manutenzione sono stati ridotti del 90% da quando 

per sviluppare software sono stati adoperati componenti riusabili), migliorare la qualità 

del software, incrementare la produttività e condividere la conoscenza del sistema. 

Le ricerche e le applicazioni sul tema della riusabilità procedono secondo due direttrici 

principali. 

La prima direttrice si pone come obiettivo la ricerca di metodi, teorie e modelli che 

aiutino a progettare ed implementare software riusabile e si ricollega all’ aspirazione di 

allestire laboratori e fabbriche di software su vasta scala. 

La seconda direttrice si occupa di studiare metodi, teorie e modelli per il riuso del codice 

esistente ed è connessa all’ obiettivo di minimizzare le perdite nell’ attuale patrimonio 

software. 

Quest’ ultimo, infatti, costituisce una fonte naturale dalla quale ricavare astrazioni 

funzionali e astrazioni sui dati utili a definire moduli riusabili. 

Il codice esistente può, quindi, essere recuperato attraverso l’ allestimento di un processo 

di reengineering ([Chikofsky90]) o, per meglio dire, di un processo di reuse re-
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engineering: which is claimed to re-design a system reusing knowledge and design 

elements taken from the previous products. 

 

In tale processo, il software deve essere sottoposto a cirteri di candidatura che siano di 

aiuto nell’ individuazione delle componenti eleggibili a rappresentanti di certi tipi di 

funzionalità. 

Successivamente, tali componenti devono essere fatte oggetto di processi di ripulitura e 

cristallizzazione delle funzionalità suddette. 

 

 

 

 

 

2.2 - Related work 
 

In spite of its novelty, some relevant work has been yet done by several authors, and we 

can distinguish two main approaches in the area of the Object Oriented Re-engineering. 

In their paper, Jacobson and Lindström ([Jacobson91]) suggest that an object oriented 

development method can be used to gradually modernise an old system via a three steps 

process. The first step consists of a reverse engineering phase, which allows to identify 

how the components of the system relate to each other and then create a more abstract 

description of the system. In the second step, reasoning about the changes in 

functionalities is done at a more abstract level. Finally, in the third step, a forward 

engineering phase takes place, redesigning the system from the abstract representation to 

the concrete one. 

In the whole process, the informal documentation (manuals, requirements specifications, 

etc.) is taken into account in order to reconstruct the knowledge about the system 

functionalities.  

In this approach, it is supposed that it will be possible to migrate from a top-down design 

environment to an object-oriented one. This implies a hybrid Software Life Cycle model 

(Edwards90]), where we can map the Data Flow analysis models into Object Oriented 

Design techniques ([Alabiso88]). 

Liu and Wilde ([Liu90]) concentrate their attention on the methodologies to aid in the 

design recovery of object-like features of a program written in a non object oriented 
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language. Two complementary methods are proposed, based on an analysis of global data 

or of data types. 

As far as the approach proposed by Jacobson and Lindström is concerned, we notice that, 

even if in principle the informal documentation may be of relevant importance,  in 

practice it might happen that it is lacking or incomplete or inconsistent and misleading. 

Therefore, information kept from the informal documentation should be carefully 

examined and validated. 

Liu and Wilde themselves in their paper raise the question if their approach may produce 

“too big” objects. This is due to the intrinsic characteristics of the proposed methods. In 

fact they consider as strongly connected procedures and data structures if they are used 

together, and in this case they identify the set of the data structures as an object and the 

procedures as methods of this object.  

Because of this, we completely agree with the authors about the fact that “a further stage 

of refinement will be necessary in which human intervention or heuristically guided 

search procedures improve the candidate objects”. 

 

 

2.3 - Problems 
 

The basic concepts of the object oriented approach are objects, methods, encapsulation, 

inheritance. On the other hand, in conventional programs, all the knowledge that is 

contained in the definition of an object and its methods, namely the static and the 

dynamic constraints and the procedural knowledge, are dispersed in the software 

modules.  

Therefore, re-engineering towards an object-oriented environment raises several 

problems, as the identification of the objects and their methods requires a semantic 

analysis of the code, and the identification of similarities, exceptions, rules, etc.. It is 

obvious that a human intervention is somehow required, however, the application of 

some general rules can provide a reasonable understanding of the existing software, and 

reliable suggestions about the identification of the right components. 

In this paragraph, we will discuss some of these problems and will sketch some possible 

solutions. 

First of all, we can face many difficulties when we intend to associate the concept of 

object to any component of a traditional system, developed according to the top-down 

design style. 
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In addition, we can consider two possible alternatives:  

• all the data or part of them are to be considered as objects; 

• a set of sub-functionalities acting on several data objects may be considered as a 

single “software object”. 

A third problem is constituted by the fact that the traditional systems have been designed 

on the basis of a functional decomposition. This implies that it is difficult to identify the 

functionalities that operates on shared data, while it is very frequent to encounter 

modules where several subfunctionalities are intermixed or fragmented. 

Finally, it must be stressed that an object oriented design style is something more than 

objects and methods: fundamental properties like encapsulation, information hiding, 

inheritance, polymorphism and dynamic binding constitute the actual innovative aspect 

of the object oriented methodology, and can be implemented by the identification of class 

hierarchies. In the following, we will briefly discuss some potential ways these problems 

can be faced and solved. 

 

 

2.3.1 - Identification of the objects 

 

As far as the data structures are concerned, we can distinguish between the global and the 

local data structures. 

As a first step, we can consider a reasonable decision to identify as objects the global 

data structures, while local data structures can be taken as data local to the methods. 

In the traditional programming languages, global data structures are stored in main 

storage areas that can be accessed by every component of the system ([Edwards90]). A 

typical example  is constituted by the COMMON blocks in Fortran, or the external 

variables in C. In the DBMS based applications, global data structures are constituted by 

the database items (relations, segments, etc.) whose declarations are normally embedded 

in the source code by some peculiar instructions, like special include, in the appropriate 

and easily identifiable section of the source program. The correct identification of these 

structures requires the access to the libraries, or a careful examination of the pre-

processor output. At a higher level of abstraction, other elements peculiar to different 

design phases, like entities can obviously considered as likely “candidate objects”. 

However, local data structures can be shared by different methods. This fact can have 

influence on the program slicing phase. 
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2.3.2 - Identification of fragments 

 

Object methods must be derived by the analysis of the functionalities embedded in the 

procedures that manipulate the data structures previously identified as “objects”. 

As it has been pointed out discussing the [Liu90] proposal, it is necessary to adopt a “fine 

granularity” method to identify modules that implement the various subfunctionalities 

and to split, as possible as we can, the  fragments corresponding to them.  

Slicing1 ([Weiser84], [Jiang91]), may help in this task. Even if the slicing has been 

initially used in program debugging and testing, it can be used to determine the “low 

cohesion” modules ([Ott89]), i.e. modules that violates the Parnas’ principle of 

encapsulation and hiding([Parnas72]).  

Therefore, the identification of the methods can be accomplished in two steps: 

• slicing of the functionalities of a single module; 

• clustering of the functionalities acting on the same object. 

After the completion of these two steps, we can obtain a detailed map of the different 

“code chunks” acting on the various global data structures. 

 

 

2.3.3 - Identification of abstractions 

 

Up to now, the identification of the functionalities of a piece of code has been performed 

analysing its control flow graph and isolating special strongly connected sub-graphs 

(primes) associated with an atomic subfunctionality. Afterwards, the comparison of these 

primes with a standard atom library ([Wills90]) lead to the comprehension of the 

program behaviour. 

However, we think that this approach is in some way limited, as two programs with a 

different logical structure may in fact implement the same functionality. Therefore, it is 

necessary to understand the semantics of the program. The usage of pre and post 

conditions has been proposed ([Hausler90]) as a techniques for the precise semantic 

specification of the code. 

Therefore, in order to identify the inheritance hierarchies, we have to solve essentially the 

following problems: 

                                                 
1 The program slicing is a process that, once a subset of “program behaviours” has been defined (Slicing 

criterion), reduces the program itself to a “minimum form” such that it gurantees the same subset of 
selected behaviours.  

 For a more formal definition see [Weiser84]. 
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Therefore, in order to identify the inheritance hierarchies, we have to solve essentially the 

following problems: 

• identification of “program chunks” which are identical from the structural point of 

view; 

• identification of “program chunks” which are identical from the syntactical point of 

view; 

• definition of hierarchies of global data structures. 

 

 

3 - The proposed approach 
 

As it has been pointed out in the previous paragraphs, object oriented re-engineering 

requires the identification of the objects, the methods and the inheritance hierarchies. 

This task can be fulfilled partly automatically, partly supported by the human 

intervention. The knowledge about the system must be extracted either from formal 

sources, i.e. the code, either from informal documentation. 

 

In the following, we will give an outline of the proposed approach, where, starting from 

the analysis of the code, we obtain a list of ...... 

The architecture of our approach is depicted in Fig.2. 

 

The first step is to move from a “well structured” code, i.e. a code without GOTO written 

in C language. However, these assumptions do not reduce the generality of the approach, 

as code restructuring tools are available on the market, and the peculiarities of the C 

language will affect only a minimal part of the process. In fact, we are looking for data 

structures (“external variables”) that are available in other programming languages, too, 

even if with different names. 

Afterwards, we try to identify “similarities” of portions of code, building the nesting trees 

of the procedures and looking for the equal regular expressions that represent the code. 

The third step is the program slicing, which is performed making use of construction of 

the Program Dependence Graph. 

 

Finally, we can proceed to the identification of the functionalities. In this phase, a human 

intervention is required, to validate the choices. At this stage, the informal documentation 

may be taken into account. 
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Fig. 2 - The general architecture 

 

 

3.1 - The regular expression 
 

We propose to use regular expression to represent the control logic of the code. This 

approach is also used by [Cimitile91] and [Wegman83] for different purposes. The great 

advantage of this kind of representation, is that we can reduce the identification of 

structurally identical subgraphs to the finding of identical substrings. In addition, we can 

take the advantages of the information retrieval approach (i.e. term significance) 

concentrating our attention on some general structural features of the code. 

The grammar for the code “expressions” is reported in Appendix A. 
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In Appendix B we report an example of the identification of portions of code that belongs 

to two different procedures, but are identical from the structural point of view. 

3.1 - The Program Dependence Graph 
 

To solve the problems related to the search of candidate methods, we need a form of 

representation showing the relationship between sliced code and managed global data. 

Therefore, such form of representation should have to show both data dependencies and 

control dependencies. 

A form of representation matching these requirements is the Program Dependence 

Graph (PDG) ([Ferrante87]). 

The PDG makes explicit both the essential data and control relationships without the 

unnecessary sequencing present in the control flow graph.  

The PDG represents a program as a graph in which nodes are statements or predicate 

expressions and the edges incident to a node represent both the data flows and the 

conditions that control the execution of the operations. 

In fact, there are two types of dependencies in a program. 

First, a dependence exist between two statements each time a variable appearing in one 

statement may assume an incorrect value if the two statements are reversed. 

For example, given 

 
  A = B * C   (S1) 
  D = A* E + 1  (S2) 

 

S2 depends on S1 because executing S2 before S1 an incorrect value for A would result 

in S2. Dependencies of this type are named data dependencies. 

Another type of dependence exist between a statement and a predicate whose value 

immediately control the execution of the statement. For example, in the sequence  

 
  if ( A ) then  (S1) 
     B = C * D  (S2) 
  endif 

 

S2 depends on predicate A because the value of A determine if S2 is executed. 

Dependencies of this type are named control dependencies. 

 

 

3.1.1 - Control dependencies 
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First of all, we have to give some definitions. 

 

Definition 1.  

A control flow graph is a directed graph G augmented with an unique entry node START 

and a unique exit node STOP such that each node in the graph has at most two 

successors. We assume that nodes with two successors have attributes “T” (true) and “F” 

(false) associated with the outgoing edges in the usual way. We further assume that for 

any node N in G there exists a path from START to N and a path from N to STOP. 

 

Definition 2.  

A node V is post-dominated by a node W in G if every directed path from V to STOP 

(not including V) contains W. 

 

Note that this definition of post-dominance does not include the initial node on the path. 

In particular, a node never post-dominates itself. 

 

Definition 3.  

Let G be a control flow graph. Let X and Y be nodes in G. Y is control dependent on X 

iff 

 

(1) there exists a directed path P from X to Y with any Z in P (excluding X and Y) 

post-dominated by Y and 

(2) X is not post-dominated by Y. 

 

If Y is control dependent on X then X must have two exits. Following one of the exits 

from X always results in Y being executed, while taking the other exits may result in Y 

not being executed. 

When applied to a loop in the control flow graph, our definition of control dependence 

determines a strongly connected region (SCR) of control dependencies whose nodes 

consist of predicates that determine the exits from the loop. 

While in the control flow graph nested loops appear as nested SCRs, in the PDG they 

appear as distinct SCRs with a control dependence edge between the outer loop and each 

immediate inner loop. So the nesting hierarchy is most evident since loops at the same 

level appear as SCRs with a common ancestor. 

How do we determine control dependencies?. 
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The first step consists of the construction of a post-dominator tree ([Lengauer79]) for the 

control flow graph augmented with a special predicate node ENTRY that has one edge 

labelled “T” going to START and the other edge labelled “F” going to STOP. 

ENTRY corresponds to whatever external condition causing the beginning of program 

execution. 

 

STOP

ENTRYr4
1

p3
1

b2
1

b1
1

START

p1
2 b2

4b2
3

b1
4

b1
1

b2
1

r4
1

b2
3

b1
4

b2
4

p3
1

p1
2

START

STOP

ENTRY

T F

T
F

F
T

 
Fig. 3 - The augmented control flow graph of Proc1 and the related post-dominator tree  

 

After determining the post-dominator tree, we can find control dependencies by 

examining certain control flow graph edges and annotating nodes on corresponding tree 

paths. 
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Lets take into account the augmented control flow graph in Fig. 3. 

Given the post-dominator tree, we create the set S containing all the edges (A, B) of the 

control flow graph such that B is not an ancestor of A in the post-dominator tree (i.e. B is 

not post-dominated by A). Each of these arcs has an associated label “T” o “F”. 

In our example, S={(ENTRY, START), (p1
2, b2

3), (p3
1, p1

2), (p1
2, b1

4)}. 

The control dependence determination algorithm proceeds by taking into account each 

edge (A, B) in S. Let L the least common ancestor of A and B in the post-dominator tree. 

By construction, we cannot have L equal B and we can obtain only two possible 

solutions: 

L equal A or L is the parent of A in the tree. 

Given an edge (A, B) in S and starting from B, we should traverse backwards from B in 

the post-dominator tree until reaching L marking all nodes that we will meet. The 

following table show the control dependencies found by examining each edge in the 

control flow graph of fig. 3. 

 
Edge in S examined Nodes marked Control dependent 

on 
Label 

 

(ENTRY, START) START, b1
1, b2

1, 

p3
1, r4

1 

ENTRY T 

(p1
2, b2

3) b2
3 p1

2 F 

(p3
1, p1

2) p1
2  p3

1 T 

(p1
2, b1

4) b1
4 ,b2

4 p1
2 T 

 

The last step for the construction of the control dependence subgraph consists of the 

addition of region nodes that summarise the set of control conditions for a node and 

group all nodes with the same set of control conditions together (Fig.4). 
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ENTRY

b11 b21 p31 r41

p12

b14 b24 b23

R1

R2

R3

 
Fig. 4 - The control dependencies subgraph of Proc1 

 

 

3.1.2 - Data dependencies 

 

The construction of the data dependence subgraph whose nodes consist of statements and 

predicates have to face further problems caused by side-effects due to pointers, shared 

variables, or procedure calls with other than value parameters. 

Directed acyclic graph (DAG) ([Aho77]) are constructed for each basic block during the 

initial parse of source program. Leaf node is labelled by unique identifiers, either variable 

names or constants which are initially assigned the value “undefined” at program entry. 

During computing the set of reaching definitions for each basic block, interior nodes are 

labelled by an operator symbol and are given an extra set of identifiers for labels. 
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Finally, the individual DAGs are connected to one another using the results of the data 

flow computation to make the definition-use chain explicit . 

In this process, I/O operations are treated as operations on implicit file object so that the 

sequencing of operations is correctly represented. 

In addition, the definite iteration statement (for) becomes a single operator whose 

operands are the initial, final and increment values and with two output values that are 

the index value stream and the predicate value stream. 

A major problem in static flow analysis is that modification and reference to the elements 

of an array or elements specified by pointer are considered as references to the while 

object. 

To face this problem, some “dummy” variables for each pointer variable are introduced; 

for example, dummy variables (1)p, (2)p will be introduced for pointer variable **p in C. 

Annotation (i) represents the number of levels of indirect access through pointer 

variables (Fig. 5) 

 

p=(0)p
(1)p

(2)p

. . . .

. . . .

. . . .

 
Fig. 5 - The “dummy” variables 
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To correctly propagate aliasing information based on assignment of the address of a 

variable to another variable, a dummy literal for each variable whose address is copied is 

introduced. If p=&x then this literal will be denoted by (-1)x. 

The value of a dummy variable (i)p is either modified or used by a statement , whereas 

the values of pointer variable p and dummy variables (1)p, (2)p, ....., (i-1)p will always be 

used. 

Aliasing and side-effects present obvious problems in accurately representing 

dependencies in the PDG. 

Explicit aliasing of scalars is easily handled by treating aliases as synonyms implicit 

aliasing, induced by procedure parameter binding is detect using interprocedural data 

flow analysis ([Cooper85], [Wehil80]). Obviously interprocedural analysis must be 

performed before building the basic block DAGs. 

 

 

3.1.3 - Slicing 

 

The extraction of slices is based on data dependence even if control dependence is 

considered in the construction of slice as well. 

A slice is directly obtained by a linear time walk backwards from some point in the graph 

visiting all predecessors. 

Nodes must be annotated with references to the source code in order to permit the 

identification of the resulting slice. 

 

 

4 - Conclusions 
 

Object orientation is claimed to be the most suitable method that can be used to produce 

software systems which are robust, reliable and reusable. However,  

On the other hand, the existing software patrimony and the related investments are so 

relevant that it goes without doubt that we have to recover as much as possible of the 

effort put in the development of the old software systems. 

As a consequence, object oriented re-engineering appears a promising research area. 

The main difficulty we are faced with when re-engineering old software towards an 

object oriented environment, is to understand the semantics of the existing code, so that it 

will be possible to identify objects, methods and inheritance hierarchies.  
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In this paper, we have presented a general framework for the implementation of a re-

engineering cycle. Its main characteristics are the identification of “candidate objects” 

from the global data structures and of the methods via program slicing and clustering by 

the global data which are manipulated. 

A human intervention is supposed to take place to solve ambiguous or non automatically 

decidible cases. 
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Appendix A: Grammar for the code “expressions” 
 
 
Terminal symbols: {pj

i, cj
i, bj

i, lj
i, sj

i, (, ), /, * , +, •, φj
i} 

 

Non terminal symbols: {SEQj
i,IFj

i, IFTj
i,CA(n)j

i,Wj
i,Rj

i,Fj
i} 

 

Initial symbol: {SEQj
i} 

 
Productions: 
 

Type of statement:  Xj
i = SEQj

i | IFj
i | IFTj

i | CA(n)j
i | Wj

i | Rj
i | Bj

i | φj
i  

 

Sequence of n statements: SEQj
i = Xj1

i+1/......../Xjn
i+1 

 

If-then:   IFj
i = pj

i • (Xj1
i+1+φj2

i+1) 

 

If-then-else:   IFTj
i = pj

i • (Xj1
i+1+Xj2

i+1) 

 

       pj
i • (Xj1

i+1+CA(n-1)j2
i+1)  if n>2 

N-ways CASE:  CA(n)j
i =  

       pj
i • (Xj1

i+1+Xj2
i+1)   if n=2 

 

While:    Wj
i = pj

i • ((Xj1
i+1/pj

i)*+φj2
i+1) 

 

Repeat:   Rj
i = Xj1

i+1/pj
i • ((Xj1

i+1/pj
i)*+φj2

i+1) 

 

For:     Fj
i = pj

i • ((SEQj1
i/bjn+1

i+1/pj
i)*+φn+2

i+1)  with n 

=||SEQj1
i|| 

 
 

Simple statement:  Bj
i = cj

i | bj
i | lj

i | sj
i | rj

i 

 

Predicate:   pj
i 

 

Function call:   cj
i 

 

Assignement:   bj
i 

 

Read:    lj
i 
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Write:    sj

i 

 
Return from function:  rj

i 

 

Appendix B: An example 
 
int Proc1(string, file_name) 
char *string; 
char *file_name; 
 
 { 
 int i; 
 FILE *file; 
 char buffer[80]; 
 
 file=fopen(file_name,”r”); 
 i=0; 
 read(file, buffer,80); 
 while (!eof(file)) 
 if (strstr(buffer,string)<>NULL) 
  { 
  i++; 
  break; 
  } 
 else 
  { 
  read(file, buffer,80); 
  i++; 
  } 
 return(i); 
} 
Proc1= Receives a string and a file name. Search for the first occurrence of the string in the file and 

returns the number of the row containing the string, otherwise returns “False”. 
 
 
int Proc2(d0, list) 

double d0; 

listdouble *list; 
 
 { 
 listdouble *scan; 
 double d1, d2; 

 int k; 
 
 k=0; 
 scan=list; 
 scanf(“%d %d”, &d1, &d2); 

 if (d1<d0) 

  while (scan<>NULL && k==0) 
   if (scan->doublenum==d1) 

    { 
    k=1; 
    scan->doublenum=d2; 

    } 
   else 
    scan=scan->next; 
 else 
  k=0; 
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 return(k); 
} 
Proc2= Receives a double d0 and a pointer to a list of double elements. Reads two doubles: d1 and d2. If 

d1 < d2 then if d1 is contained in the list, it is replaced by d2, otherwise returns “False”. 

Proc1

SEQ

B B W

IF

Proc2

SEQ

B B

B

IFB

B

W

IF

B B

SEQ

B B

SEQ

R RB

B B

SEQ

 
Fig. 6 - Nesting trees of the procedures Proc1 and Proc2 

 

 

If we consider the nesting trees as parsing trees for the expressions, we can obtain the 

regular expressions corresponding to the procedures by applying repeatedly the grammar 

rules. 

 

F0(Proc1)=SEQ1
0 

F1(Proc1)=X1
1/ X2

1 / X3
1 /X4

1/ X5
1 

F1(Proc1)=B1
1/ B2

1/ B3
1 / W4

1 / R5
1 

F2(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • ((X1
2/p4

1)*+φ2
2)/ r5

1 

F2(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • ((IFT1
2/p4

1)*+φ2
2)/ r5

1 
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F3(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • (( p1
2 • (X1

3+X2
3)/p4

1)*+φ2
2)/ r5

1 

F3(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • (( p1
2 • (SEQ1

3+SEQ2
3)/p4

1)*+φ2
2)/ r5

1 

F4(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • (( p1
2 • (X1

4 / X2
4+X3

4 / X4
4 )/p4

1)*+φ2
2)/ r5

1 

F4(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • (( p1
2 • (B1

4 / B2
4+B3

4 / B4
4)/p4

1)*+φ2
2)/ r5

1 

F4(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • (( p1
2 • (b1

4 / b2
4+l3

4 / b4
4)/p4

1)*+φ2
2)/ r5

1 

 
 

F(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • (( p1
2 • (b1

4 / b2
4+l3

4 / b4
4)/p4

1)*+φ2
2)/ r5

1 

 
 

F0(Proc2)=SEQ1
0 

F1(Proc2)=X1
1/ X2

1 / X3
1 / X4

1 / X5
1 

F1(Proc2)=B1
1/ B2

1 / B3
1 / IF4

1 / R5
1 

F2(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (X1
2+X2

2)/ r5
1 

F2(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (W1
2+b2

2)/ r5
1 

F3(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((X1

3/p1
2)*+φ2

3) +b2
2)/r5

1 

F3(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((IFT1

3/p1
2)*+φ2

3) +b2
2)/r5

1 

F4(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((p1

3 • (X1
4+X2

4)/p1
2)*+φ2

3) +b2
2)/r5

1 

F4(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((p1

3 • (SEQ1
4+B2

4)/p1
2)*+φ2

3) +b2
2)/r5

1 

F4(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((p1

3 • (SEQ1
4+b2

4)/p1
2)*+φ2

3) +b2
2)/r5

1 

F5(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((p1

3 • (X1
5 / X2

5+b2
4)/p1

2)*+φ2
3) +b2

2)/r5
1 

F5(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((p1

3 • (B1
5 / B2

5+b2
4)/p1

2)*+φ2
3) +b2

2)/r5
1 

F5(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((p1

3 • (b1
5 / b2

5+b2
4)/p1

2)*+φ2
3) +b2

2)/r5
1 

 
 

F(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((p1

3 • (b1
5 / b2

5+b2
4)/p1

2)*+φ2
3) +b2

2)/r5
1 

 

 

If we consider only the terms, we can find that the expressions have some identical 

portions; the most relevant substrings are: 

 

for F(Proc1)     p4
1 • ((IFT1

2/p4
1)*+φ2

2) 
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for F(Proc2)     p1
2 • ((IFT1

3/p1
2)*+φ2

3) 

 

They corresponds to sequential structure scanning loop until a certain condition becomes 

true. 

Furthermore, this representation form allow the identification of structural equivalent 

code portions at both abstract and detailed level. 
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