
Submitted to:

2nd International Workshop on Software Reusability

March 24-26, 1993 - Lucca, Italy

*Isolating Code Related to a Certain Functionality

in a Reuse Re-engineering Process

Oreste Signore - Mario Loffredo

CNUCE - Institute of CNR - via S. Maria, 36 - 56126 Pisa (Italy)
Phone: +39 (50) 593201 - FAX: +39 (50) 589354
E.mail: oreste@icnucevm.cnuce.cnr.it

Keywords: Software re-engineering, Reusability, Program slicing

Abstract

Software re-engineering and reusability are two areas of growing interest in the last

years.

However, while many researchers have focused their interest in the classification of

reusable modules proposing meaningful examples of reusable components repositories

and software packages libraries, the problem of potential reusable chunks searching and

extracting is still opened.

In this paper, after a brief discussion of the re-engineering issues, we examine the

problems related to the difficulty of identifying various subfunctionality in a module and

isolating them.

* This work has been partially supported by Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo

of C.N.R.

 - 1 -

1 - Introduction

Software engineering is evolving towards the implementation of tools that could improve

the maintainability of the existing software applications, possibly by their

reconfiguration.

Un aspetto importante da considerare nell’ opera di manutenzione è il riuso dei prodotti

dello sviluppo di software ed in particolare del codice.

E' stato dimostrato che si tende a riusare componenti software e che le applicazioni

sviluppate ex-novo sono poche.

Cerchiamo di tradurre in cifre la ridondanza dei sistemi software ([McClure91]):

• 40 - 60% di tutto il codice di un’ applicazione può essere usato per un' altra;

• 60% del progetto di tutte le applicazioni d' azienda è riusabile;

• 75% delle funzioni di un programma sono comuni a numerosi programmi;

• 15% del codice di un programma è proprio di una specifica applicazione;

L' adesione alla filosofia della riusabilità consente, come vantaggi immediati, di ridurre il

costo e il tempo di sviluppo (i costi di manutenzione sono stati ridotti del 90% da quando

per sviluppare software sono stati adoperati componenti riusabili), migliorare la qualità

del software, incrementare la produttività e condividere la conoscenza del sistema.

Le ricerche e le applicazioni sul tema della riusabilità procedono secondo due direttrici

principali.

La prima direttrice si pone come obiettivo la ricerca di metodi, teorie e modelli che

aiutino a progettare ed implementare software riusabile e si ricollega all’ aspirazione di

allestire laboratori e fabbriche di software su vasta scala.

La seconda direttrice si occupa di studiare metodi, teorie e modelli per il riuso del codice

esistente ed è connessa all’ obiettivo di minimizzare le perdite nell’ attuale patrimonio

software.

Quest’ ultimo, infatti, costituisce una fonte naturale dalla quale ricavare astrazioni

funzionali e astrazioni sui dati utili a definire moduli riusabili.

Il codice esistente può, quindi, essere recuperato attraverso l’ allestimento di un processo

di reengineering ([Chikofsky90]) o, per meglio dire, di un processo di reuse re-

 - 2 -

engineering: which is claimed to re-design a system reusing knowledge and design

elements taken from the previous products.

In tale processo, il software deve essere sottoposto a cirteri di candidatura che siano di

aiuto nell’ individuazione delle componenti eleggibili a rappresentanti di certi tipi di

funzionalità.

Successivamente, tali componenti devono essere fatte oggetto di processi di ripulitura e

cristallizzazione delle funzionalità suddette.

2.2 - Related work

In spite of its novelty, some relevant work has been yet done by several authors, and we

can distinguish two main approaches in the area of the Object Oriented Re-engineering.

In their paper, Jacobson and Lindström ([Jacobson91]) suggest that an object oriented

development method can be used to gradually modernise an old system via a three steps

process. The first step consists of a reverse engineering phase, which allows to identify

how the components of the system relate to each other and then create a more abstract

description of the system. In the second step, reasoning about the changes in

functionalities is done at a more abstract level. Finally, in the third step, a forward

engineering phase takes place, redesigning the system from the abstract representation to

the concrete one.

In the whole process, the informal documentation (manuals, requirements specifications,

etc.) is taken into account in order to reconstruct the knowledge about the system

functionalities.

In this approach, it is supposed that it will be possible to migrate from a top-down design

environment to an object-oriented one. This implies a hybrid Software Life Cycle model

(Edwards90]), where we can map the Data Flow analysis models into Object Oriented

Design techniques ([Alabiso88]).

Liu and Wilde ([Liu90]) concentrate their attention on the methodologies to aid in the

design recovery of object-like features of a program written in a non object oriented

 - 3 -

language. Two complementary methods are proposed, based on an analysis of global data

or of data types.

As far as the approach proposed by Jacobson and Lindström is concerned, we notice that,

even if in principle the informal documentation may be of relevant importance, in

practice it might happen that it is lacking or incomplete or inconsistent and misleading.

Therefore, information kept from the informal documentation should be carefully

examined and validated.

Liu and Wilde themselves in their paper raise the question if their approach may produce

“too big” objects. This is due to the intrinsic characteristics of the proposed methods. In

fact they consider as strongly connected procedures and data structures if they are used

together, and in this case they identify the set of the data structures as an object and the

procedures as methods of this object.

Because of this, we completely agree with the authors about the fact that “a further stage

of refinement will be necessary in which human intervention or heuristically guided

search procedures improve the candidate objects”.

2.3 - Problems

The basic concepts of the object oriented approach are objects, methods, encapsulation,

inheritance. On the other hand, in conventional programs, all the knowledge that is

contained in the definition of an object and its methods, namely the static and the

dynamic constraints and the procedural knowledge, are dispersed in the software

modules.

Therefore, re-engineering towards an object-oriented environment raises several

problems, as the identification of the objects and their methods requires a semantic

analysis of the code, and the identification of similarities, exceptions, rules, etc.. It is

obvious that a human intervention is somehow required, however, the application of

some general rules can provide a reasonable understanding of the existing software, and

reliable suggestions about the identification of the right components.

In this paragraph, we will discuss some of these problems and will sketch some possible

solutions.

First of all, we can face many difficulties when we intend to associate the concept of

object to any component of a traditional system, developed according to the top-down

design style.

 - 4 -

In addition, we can consider two possible alternatives:

• all the data or part of them are to be considered as objects;

• a set of sub-functionalities acting on several data objects may be considered as a

single “software object”.

A third problem is constituted by the fact that the traditional systems have been designed

on the basis of a functional decomposition. This implies that it is difficult to identify the

functionalities that operates on shared data, while it is very frequent to encounter

modules where several subfunctionalities are intermixed or fragmented.

Finally, it must be stressed that an object oriented design style is something more than

objects and methods: fundamental properties like encapsulation, information hiding,

inheritance, polymorphism and dynamic binding constitute the actual innovative aspect

of the object oriented methodology, and can be implemented by the identification of class

hierarchies. In the following, we will briefly discuss some potential ways these problems

can be faced and solved.

2.3.1 - Identification of the objects

As far as the data structures are concerned, we can distinguish between the global and the

local data structures.

As a first step, we can consider a reasonable decision to identify as objects the global

data structures, while local data structures can be taken as data local to the methods.

In the traditional programming languages, global data structures are stored in main

storage areas that can be accessed by every component of the system ([Edwards90]). A

typical example is constituted by the COMMON blocks in Fortran, or the external

variables in C. In the DBMS based applications, global data structures are constituted by

the database items (relations, segments, etc.) whose declarations are normally embedded

in the source code by some peculiar instructions, like special include, in the appropriate

and easily identifiable section of the source program. The correct identification of these

structures requires the access to the libraries, or a careful examination of the pre-

processor output. At a higher level of abstraction, other elements peculiar to different

design phases, like entities can obviously considered as likely “candidate objects”.

However, local data structures can be shared by different methods. This fact can have

influence on the program slicing phase.

 - 5 -

2.3.2 - Identification of fragments

Object methods must be derived by the analysis of the functionalities embedded in the

procedures that manipulate the data structures previously identified as “objects”.

As it has been pointed out discussing the [Liu90] proposal, it is necessary to adopt a “fine

granularity” method to identify modules that implement the various subfunctionalities

and to split, as possible as we can, the fragments corresponding to them.

Slicing1 ([Weiser84], [Jiang91]), may help in this task. Even if the slicing has been

initially used in program debugging and testing, it can be used to determine the “low

cohesion” modules ([Ott89]), i.e. modules that violates the Parnas’ principle of

encapsulation and hiding([Parnas72]).

Therefore, the identification of the methods can be accomplished in two steps:

• slicing of the functionalities of a single module;

• clustering of the functionalities acting on the same object.

After the completion of these two steps, we can obtain a detailed map of the different

“code chunks” acting on the various global data structures.

2.3.3 - Identification of abstractions

Up to now, the identification of the functionalities of a piece of code has been performed

analysing its control flow graph and isolating special strongly connected sub-graphs

(primes) associated with an atomic subfunctionality. Afterwards, the comparison of these

primes with a standard atom library ([Wills90]) lead to the comprehension of the

program behaviour.

However, we think that this approach is in some way limited, as two programs with a

different logical structure may in fact implement the same functionality. Therefore, it is

necessary to understand the semantics of the program. The usage of pre and post

conditions has been proposed ([Hausler90]) as a techniques for the precise semantic

specification of the code.

Therefore, in order to identify the inheritance hierarchies, we have to solve essentially the

following problems:

1 The program slicing is a process that, once a subset of “program behaviours” has been defined (Slicing

criterion), reduces the program itself to a “minimum form” such that it gurantees the same subset of
selected behaviours.

 For a more formal definition see [Weiser84].

 - 6 -

Therefore, in order to identify the inheritance hierarchies, we have to solve essentially the

following problems:

• identification of “program chunks” which are identical from the structural point of

view;

• identification of “program chunks” which are identical from the syntactical point of

view;

• definition of hierarchies of global data structures.

3 - The proposed approach

As it has been pointed out in the previous paragraphs, object oriented re-engineering

requires the identification of the objects, the methods and the inheritance hierarchies.

This task can be fulfilled partly automatically, partly supported by the human

intervention. The knowledge about the system must be extracted either from formal

sources, i.e. the code, either from informal documentation.

In the following, we will give an outline of the proposed approach, where, starting from

the analysis of the code, we obtain a list of

The architecture of our approach is depicted in Fig.2.

The first step is to move from a “well structured” code, i.e. a code without GOTO written

in C language. However, these assumptions do not reduce the generality of the approach,

as code restructuring tools are available on the market, and the peculiarities of the C

language will affect only a minimal part of the process. In fact, we are looking for data

structures (“external variables”) that are available in other programming languages, too,

even if with different names.

Afterwards, we try to identify “similarities” of portions of code, building the nesting trees

of the procedures and looking for the equal regular expressions that represent the code.

The third step is the program slicing, which is performed making use of construction of

the Program Dependence Graph.

Finally, we can proceed to the identification of the functionalities. In this phase, a human

intervention is required, to validate the choices. At this stage, the informal documentation

may be taken into account.

 - 7 -

"Well structured"
source C code

Nesting tree
Regular
Expression

Control
flow graph

Parsing tree

Post-dominator
tree

PDG

Global data
identification

Clusters of chunks
connect ed t o g lobal
dat a

Human
intervention

Fig. 2 - The general architecture

3.1 - The regular expression

We propose to use regular expression to represent the control logic of the code. This

approach is also used by [Cimitile91] and [Wegman83] for different purposes. The great

advantage of this kind of representation, is that we can reduce the identification of

structurally identical subgraphs to the finding of identical substrings. In addition, we can

take the advantages of the information retrieval approach (i.e. term significance)

concentrating our attention on some general structural features of the code.

The grammar for the code “expressions” is reported in Appendix A.

 - 8 -

In Appendix B we report an example of the identification of portions of code that belongs

to two different procedures, but are identical from the structural point of view.

3.1 - The Program Dependence Graph

To solve the problems related to the search of candidate methods, we need a form of

representation showing the relationship between sliced code and managed global data.

Therefore, such form of representation should have to show both data dependencies and

control dependencies.

A form of representation matching these requirements is the Program Dependence

Graph (PDG) ([Ferrante87]).

The PDG makes explicit both the essential data and control relationships without the

unnecessary sequencing present in the control flow graph.

The PDG represents a program as a graph in which nodes are statements or predicate

expressions and the edges incident to a node represent both the data flows and the

conditions that control the execution of the operations.

In fact, there are two types of dependencies in a program.

First, a dependence exist between two statements each time a variable appearing in one

statement may assume an incorrect value if the two statements are reversed.

For example, given

 A = B * C (S1)
 D = A* E + 1 (S2)

S2 depends on S1 because executing S2 before S1 an incorrect value for A would result

in S2. Dependencies of this type are named data dependencies.

Another type of dependence exist between a statement and a predicate whose value

immediately control the execution of the statement. For example, in the sequence

 if (A) then (S1)
 B = C * D (S2)
 endif

S2 depends on predicate A because the value of A determine if S2 is executed.

Dependencies of this type are named control dependencies.

3.1.1 - Control dependencies

 - 9 -

First of all, we have to give some definitions.

Definition 1.

A control flow graph is a directed graph G augmented with an unique entry node START

and a unique exit node STOP such that each node in the graph has at most two

successors. We assume that nodes with two successors have attributes “T” (true) and “F”

(false) associated with the outgoing edges in the usual way. We further assume that for

any node N in G there exists a path from START to N and a path from N to STOP.

Definition 2.

A node V is post-dominated by a node W in G if every directed path from V to STOP

(not including V) contains W.

Note that this definition of post-dominance does not include the initial node on the path.

In particular, a node never post-dominates itself.

Definition 3.

Let G be a control flow graph. Let X and Y be nodes in G. Y is control dependent on X

iff

(1) there exists a directed path P from X to Y with any Z in P (excluding X and Y)

post-dominated by Y and

(2) X is not post-dominated by Y.

If Y is control dependent on X then X must have two exits. Following one of the exits

from X always results in Y being executed, while taking the other exits may result in Y

not being executed.

When applied to a loop in the control flow graph, our definition of control dependence

determines a strongly connected region (SCR) of control dependencies whose nodes

consist of predicates that determine the exits from the loop.

While in the control flow graph nested loops appear as nested SCRs, in the PDG they

appear as distinct SCRs with a control dependence edge between the outer loop and each

immediate inner loop. So the nesting hierarchy is most evident since loops at the same

level appear as SCRs with a common ancestor.

How do we determine control dependencies?.

 - 10 -

The first step consists of the construction of a post-dominator tree ([Lengauer79]) for the

control flow graph augmented with a special predicate node ENTRY that has one edge

labelled “T” going to START and the other edge labelled “F” going to STOP.

ENTRY corresponds to whatever external condition causing the beginning of program

execution.

STOP

ENTRYr4
1

p3
1

b2
1

b1
1

START

p1
2 b2

4b2
3

b1
4

b1
1

b2
1

r4
1

b2
3

b1
4

b2
4

p3
1

p1
2

START

STOP

ENTRY

T F

T
F

F
T

Fig. 3 - The augmented control flow graph of Proc1 and the related post-dominator tree

After determining the post-dominator tree, we can find control dependencies by

examining certain control flow graph edges and annotating nodes on corresponding tree

paths.

 - 11 -

Lets take into account the augmented control flow graph in Fig. 3.

Given the post-dominator tree, we create the set S containing all the edges (A, B) of the

control flow graph such that B is not an ancestor of A in the post-dominator tree (i.e. B is

not post-dominated by A). Each of these arcs has an associated label “T” o “F”.

In our example, S={(ENTRY, START), (p1
2, b2

3), (p3
1, p1

2), (p1
2, b1

4)}.

The control dependence determination algorithm proceeds by taking into account each

edge (A, B) in S. Let L the least common ancestor of A and B in the post-dominator tree.

By construction, we cannot have L equal B and we can obtain only two possible

solutions:

L equal A or L is the parent of A in the tree.

Given an edge (A, B) in S and starting from B, we should traverse backwards from B in

the post-dominator tree until reaching L marking all nodes that we will meet. The

following table show the control dependencies found by examining each edge in the

control flow graph of fig. 3.

Edge in S examined Nodes marked Control dependent

on
Label

(ENTRY, START) START, b1
1, b2

1,

p3
1, r4

1

ENTRY T

(p1
2, b2

3) b2
3 p1

2 F

(p3
1, p1

2) p1
2 p3

1 T

(p1
2, b1

4) b1
4 ,b2

4 p1
2 T

The last step for the construction of the control dependence subgraph consists of the

addition of region nodes that summarise the set of control conditions for a node and

group all nodes with the same set of control conditions together (Fig.4).

 - 12 -

ENTRY

b11 b21 p31 r41

p12

b14 b24 b23

R1

R2

R3

Fig. 4 - The control dependencies subgraph of Proc1

3.1.2 - Data dependencies

The construction of the data dependence subgraph whose nodes consist of statements and

predicates have to face further problems caused by side-effects due to pointers, shared

variables, or procedure calls with other than value parameters.

Directed acyclic graph (DAG) ([Aho77]) are constructed for each basic block during the

initial parse of source program. Leaf node is labelled by unique identifiers, either variable

names or constants which are initially assigned the value “undefined” at program entry.

During computing the set of reaching definitions for each basic block, interior nodes are

labelled by an operator symbol and are given an extra set of identifiers for labels.

 - 13 -

Finally, the individual DAGs are connected to one another using the results of the data

flow computation to make the definition-use chain explicit .

In this process, I/O operations are treated as operations on implicit file object so that the

sequencing of operations is correctly represented.

In addition, the definite iteration statement (for) becomes a single operator whose

operands are the initial, final and increment values and with two output values that are

the index value stream and the predicate value stream.

A major problem in static flow analysis is that modification and reference to the elements

of an array or elements specified by pointer are considered as references to the while

object.

To face this problem, some “dummy” variables for each pointer variable are introduced;

for example, dummy variables (1)p, (2)p will be introduced for pointer variable **p in C.

Annotation (i) represents the number of levels of indirect access through pointer

variables (Fig. 5)

p=(0)p
(1)p

(2)p

. . . .

. . . .

. . . .

Fig. 5 - The “dummy” variables

 - 14 -

To correctly propagate aliasing information based on assignment of the address of a

variable to another variable, a dummy literal for each variable whose address is copied is

introduced. If p=&x then this literal will be denoted by (-1)x.

The value of a dummy variable (i)p is either modified or used by a statement , whereas

the values of pointer variable p and dummy variables (1)p, (2)p,, (i-1)p will always be

used.

Aliasing and side-effects present obvious problems in accurately representing

dependencies in the PDG.

Explicit aliasing of scalars is easily handled by treating aliases as synonyms implicit

aliasing, induced by procedure parameter binding is detect using interprocedural data

flow analysis ([Cooper85], [Wehil80]). Obviously interprocedural analysis must be

performed before building the basic block DAGs.

3.1.3 - Slicing

The extraction of slices is based on data dependence even if control dependence is

considered in the construction of slice as well.

A slice is directly obtained by a linear time walk backwards from some point in the graph

visiting all predecessors.

Nodes must be annotated with references to the source code in order to permit the

identification of the resulting slice.

4 - Conclusions

Object orientation is claimed to be the most suitable method that can be used to produce

software systems which are robust, reliable and reusable. However,

On the other hand, the existing software patrimony and the related investments are so

relevant that it goes without doubt that we have to recover as much as possible of the

effort put in the development of the old software systems.

As a consequence, object oriented re-engineering appears a promising research area.

The main difficulty we are faced with when re-engineering old software towards an

object oriented environment, is to understand the semantics of the existing code, so that it

will be possible to identify objects, methods and inheritance hierarchies.

 - 15 -

In this paper, we have presented a general framework for the implementation of a re-

engineering cycle. Its main characteristics are the identification of “candidate objects”

from the global data structures and of the methods via program slicing and clustering by

the global data which are manipulated.

A human intervention is supposed to take place to solve ambiguous or non automatically

decidible cases.

Aknowledgements

We have to thank A. Cimitile and U. De Carlini from University of Naples for useful

discussions and suggestions.

We have also to thenk M. Gregori who participated in the early stages of this work.

References

[Aho77] Aho A., Ullman J.D.: Principles of Compiler Design, Addison-
Wesley (1977)

[Alabiso88] Alabiso M.: Transformation of Data Flow Analysis Models to Object
Oriented Design, Proceedings of OOPSLA’ 88, September 25-30
1988

[Chikofsky90] Chikofsky E.J., Cross II J.H.: Reverse Engineering and Design
Recovery: A Taxonomy, IEEE Software (January 1990)

[Cimitile91] Cimitile A., De Carlini U.: Reverse Engineering: Algorithms for
Program Graph Production, Software Practice and Experience, vol.
21, n. 5 (May 1991)

[Cooper85] Cooper K.: Analyzing aliases of reference formal parameters, Conf.
Record of 12th ACM Symposium on Principles of Programming
Languages, New Orleans, Jannuary 14-16 1985

[Edwards90] Edwards J.M., Henderson-Sellers B.: The Object-Oriented Systems
Life Cycle, ACM Communications, vol. 33, n. 9 (September 1990)

 - 16 -

[Ferrante87] Ferrante J., Ottenstein K.J., Warren J.D.: The Program Dependence
Graph and its Use in Optimization, ACM Transactions on
programming Languages and Systems, vol. 9, n. 3 (July 1987)

[Hausler90] Hausler P.A., Pleazkoch M.G., Linger C.R., Hevner A.R.: Using
Function Abstraction to Understand Program Behaviour, IEEE
Software (January 1990)

[Jacobson91] Jacobson I., Lindström F.: Re-engineering of old systems to an
object-oriented architecture, Proceedings of OOPSLA’ 91

[Lengauer79] Lengauer T., Tarjan R.: A Fast Algorithm for Finding Dominators in
a Flowgraph, ACM Transactions on programming Languages and
Systems, vol. 1, n. 1 (July 1979)

[Liu90] Liu S-S., Wilde N.: Identifying Objects in a Conventional
Procedural Language: An Example of Data Design Recovery, IEEE
Proceedings of IEEE Conference on Software Maintenance, San
Diego, Nov. 26-29, 1990

[Meyer91] Meyer B.: La produzione del software object oriented, Ed. Jackson
and Prentice Hall International (1991)

[Ott89] Ott L.M., Thuss J.J.: The Relationship between Slices and Modul
Cohesion, Proceedings of 11th Int. Conference on Software Eng.,
May 15-18 1989 Pittsburgh

[Parnas72] Parnas D.L.: On the Criteria To Be Used in Decomposing Systems
into Modules, Communications of ACM, Vol.15, N.12 (December
1972)

[Jiang91] Jiang J., Zhou X., Robson D.J.: Program Slicing For C - The
Problems In Implementation, Proceedings of IEEE Conf. on
Software Maintenance, Sorrento (Italy) 1991

[Signore92] Signore O., Loffredo M.: Reverse, re-engineering e riuso: tre
discipline connesse alla manutenzione, Technical Report, Progetto
Finalizzato Sistemi Informatici e Calcolo Parallelo (in press)

[SYSTECH90] Software Re-engineering Symposium, Technical seminar organized
by SYSTECH Systems Technology Institute (Roma, 12-14 February
1990)

[Wegman83] Wegman M.: Summarizing Graphs by Regular Expressions, Proc. of
10th Annual ACM Symposium of Programming Languages, Austin
Texas, Jan. 24-26, 1983 pp.203-216

[Wehil80] Wehil W.E.: Interprocedural Data Flow Analysis in the Presence of
Pointers, Procedure Variables and Label Variables, Conf. Record of

 - 17 -

the 7th ACM Symposium on Principles of Programming Languages
(January 1980)

[Weiser84] Weiser M.D.: Program Slicing, IEEE Transactions on Software
Engineering, vol. SE-10, n. 4 (July 1984)

[Wills90] Wills L.M.: Automated Program Recognition: A feseability
Demonstration, Artificial Intelligence, n. 45 (1990)

 - 18 -

Appendix A: Grammar for the code “expressions”

Terminal symbols: {pj

i, cj
i, bj

i, lj
i, sj

i, (,), /, * , +, •, φj
i}

Non terminal symbols: {SEQj
i,IFj

i, IFTj
i,CA(n)j

i,Wj
i,Rj

i,Fj
i}

Initial symbol: {SEQj
i}

Productions:

Type of statement: Xj
i = SEQj

i | IFj
i | IFTj

i | CA(n)j
i | Wj

i | Rj
i | Bj

i | φj
i

Sequence of n statements: SEQj
i = Xj1

i+1/......../Xjn
i+1

If-then: IFj
i = pj

i • (Xj1
i+1+φj2

i+1)

If-then-else: IFTj
i = pj

i • (Xj1
i+1+Xj2

i+1)

 pj
i • (Xj1

i+1+CA(n-1)j2
i+1) if n>2

N-ways CASE: CA(n)j
i =

 pj
i • (Xj1

i+1+Xj2
i+1) if n=2

While: Wj
i = pj

i • ((Xj1
i+1/pj

i)*+φj2
i+1)

Repeat: Rj
i = Xj1

i+1/pj
i • ((Xj1

i+1/pj
i)*+φj2

i+1)

For: Fj
i = pj

i • ((SEQj1
i/bjn+1

i+1/pj
i)*+φn+2

i+1) with n

=||SEQj1
i||

Simple statement: Bj
i = cj

i | bj
i | lj

i | sj
i | rj

i

Predicate: pj
i

Function call: cj
i

Assignement: bj
i

Read: lj
i

 - 19 -

Write: sj

i

Return from function: rj

i

Appendix B: An example

int Proc1(string, file_name)
char *string;
char *file_name;

 {
 int i;
 FILE *file;
 char buffer[80];

 file=fopen(file_name,”r”);
 i=0;
 read(file, buffer,80);
 while (!eof(file))
 if (strstr(buffer,string)<>NULL)
 {
 i++;
 break;
 }
 else
 {
 read(file, buffer,80);
 i++;
 }
 return(i);
}
Proc1= Receives a string and a file name. Search for the first occurrence of the string in the file and

returns the number of the row containing the string, otherwise returns “False”.

int Proc2(d0, list)

double d0;

listdouble *list;

 {
 listdouble *scan;
 double d1, d2;

 int k;

 k=0;
 scan=list;
 scanf(“%d %d”, &d1, &d2);

 if (d1<d0)

 while (scan<>NULL && k==0)
 if (scan->doublenum==d1)

 {
 k=1;
 scan->doublenum=d2;

 }
 else
 scan=scan->next;
 else
 k=0;

 - 20 -

 return(k);
}
Proc2= Receives a double d0 and a pointer to a list of double elements. Reads two doubles: d1 and d2. If

d1 < d2 then if d1 is contained in the list, it is replaced by d2, otherwise returns “False”.

Proc1

SEQ

B B W

IF

Proc2

SEQ

B B

B

IFB

B

W

IF

B B

SEQ

B B

SEQ

R RB

B B

SEQ

Fig. 6 - Nesting trees of the procedures Proc1 and Proc2

If we consider the nesting trees as parsing trees for the expressions, we can obtain the

regular expressions corresponding to the procedures by applying repeatedly the grammar

rules.

F0(Proc1)=SEQ1
0

F1(Proc1)=X1
1/ X2

1 / X3
1 /X4

1/ X5
1

F1(Proc1)=B1
1/ B2

1/ B3
1 / W4

1 / R5
1

F2(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • ((X1
2/p4

1)*+φ2
2)/ r5

1

F2(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • ((IFT1
2/p4

1)*+φ2
2)/ r5

1

 - 21 -

F3(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • ((p1
2 • (X1

3+X2
3)/p4

1)*+φ2
2)/ r5

1

F3(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • ((p1
2 • (SEQ1

3+SEQ2
3)/p4

1)*+φ2
2)/ r5

1

F4(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • ((p1
2 • (X1

4 / X2
4+X3

4 / X4
4)/p4

1)*+φ2
2)/ r5

1

F4(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • ((p1
2 • (B1

4 / B2
4+B3

4 / B4
4)/p4

1)*+φ2
2)/ r5

1

F4(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • ((p1
2 • (b1

4 / b2
4+l3

4 / b4
4)/p4

1)*+φ2
2)/ r5

1

F(Proc1)=b1
1/ b2

1 / l3
1 / p4

1 • ((p1
2 • (b1

4 / b2
4+l3

4 / b4
4)/p4

1)*+φ2
2)/ r5

1

F0(Proc2)=SEQ1
0

F1(Proc2)=X1
1/ X2

1 / X3
1 / X4

1 / X5
1

F1(Proc2)=B1
1/ B2

1 / B3
1 / IF4

1 / R5
1

F2(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (X1
2+X2

2)/ r5
1

F2(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (W1
2+b2

2)/ r5
1

F3(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((X1

3/p1
2)*+φ2

3) +b2
2)/r5

1

F3(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((IFT1

3/p1
2)*+φ2

3) +b2
2)/r5

1

F4(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((p1

3 • (X1
4+X2

4)/p1
2)*+φ2

3) +b2
2)/r5

1

F4(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((p1

3 • (SEQ1
4+B2

4)/p1
2)*+φ2

3) +b2
2)/r5

1

F4(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((p1

3 • (SEQ1
4+b2

4)/p1
2)*+φ2

3) +b2
2)/r5

1

F5(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((p1

3 • (X1
5 / X2

5+b2
4)/p1

2)*+φ2
3) +b2

2)/r5
1

F5(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((p1

3 • (B1
5 / B2

5+b2
4)/p1

2)*+φ2
3) +b2

2)/r5
1

F5(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((p1

3 • (b1
5 / b2

5+b2
4)/p1

2)*+φ2
3) +b2

2)/r5
1

F(Proc2)=b1
1/ b2

1 / l3
1 / p4

1 • (p1
2 • ((p1

3 • (b1
5 / b2

5+b2
4)/p1

2)*+φ2
3) +b2

2)/r5
1

If we consider only the terms, we can find that the expressions have some identical

portions; the most relevant substrings are:

for F(Proc1) p4
1 • ((IFT1

2/p4
1)*+φ2

2)

 - 22 -

for F(Proc2) p1
2 • ((IFT1

3/p1
2)*+φ2

3)

They corresponds to sequential structure scanning loop until a certain condition becomes

true.

Furthermore, this representation form allow the identification of structural equivalent

code portions at both abstract and detailed level.

 - 23 -

	Abstract
	1 - Introduction
	2.2 - Related work
	2.3 - Problems
	2.3.1 - Identification of the objects
	2.3.2 - Identification of fragments
	2.3.3 - Identification of abstractions

	3 - The proposed approach
	3.1 - The regular expression
	3.1 - The Program Dependence Graph
	3.1.1 - Control dependencies
	3.1.2 - Data dependencies
	3.1.3 - Slicing

	4 - Conclusions
	Aknowledgements
	References
	Appendix A: Grammar for the code “expressions”
	Appendix B: An example

