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Abstract
We use neural networks to represent the characteristic function of many-body Gaussian states in the quantum phase space.
By a pullback mechanism, we model transformations due to unitary operators as linear layers that can be cascaded to
simulate complex multi-particle processes. We use the layered neural networks for non-classical light propagation in random
interferometers, and compute boson pattern probabilities by automatic differentiation. This is a viable strategy for training
Gaussian boson sampling. We demonstrate that multi-particle events in Gaussian boson sampling can be optimized by a
proper design and training of the neural network weights. The results are potentially useful to the creation of new sources
and complex circuits for quantum technologies.

Keywords Machine learning · Gaussian Boson sampling

1 Introduction

The development of new models and tools for machine
learning (ML) is surprisingly affecting the study of many-
body quantum systems and quantum optics (Huang et al.
2021). Neural networks (NN) enable representations of
high-dimensional systems and furnish a universal ansatz for
many purposes, like finding the ground state of many-body
Hamiltonians (Carleo et al. 2019), including dissipative
systems (Vicentini et al. 2019; Mangini et al. 2021).

Unsupervised and supervised learning endow new
designs for quantum circuits (Marquardt 2021), metrology
and cryptography (Lumino et al. 2018; Fratalocchi et al.
2021), multilevel gates (Marcucci et al. 2020), and Bell
tests (Melnikov et al. 2020). NN are also triggering
new fundamental investigations in quantum neuromorphic
and wave computing (Marcucci et al. 2020; Hughes
et al. 2019; Ballarini et al. 2020; Nokkala et al. 2020;
Marković and Grollier 2020; Silva et al. 2021), quantum
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thermodynamics (Sgroi et al. 2021), and topological
photonics (Pilozzi et al. 2021).

The impact of ML in quantum optics and many-body
physics is related to the versatile representation that the
NN models furnish for functions of an arbitrary number
of variables. Also, the powerful application programming
interfaces (APIs), as TensorFlow, enable many new
features and tools to compute and design many-body
Hamiltonians or large-scale quantum gates (Broughton et al.
2020).

Here, we show that NN models are also useful when
considering representations in the phase space, as the char-
acteristic functions χ or the Q-representation (Barnett and
Radmore 1997). Unitary operators, as squeezers or displac-
ers, act on the phase-space as variable transformations that
correspond to layers in the NN model. Hence, a multilayer
NN may encode phase-space representations of complex
many-body states. This encoding has two main advantages:
on the one hand, one can quickly build complex quantum
states by combining NN layers; on the other hand, one can
use the automatic graph building and API differentiation
technology to compute observables. Also, graphical and ten-
sor processing units (GPU and TPU) may speed up the
computation.

In the following, we show how to compute the probability
of multi-particle patterns when Gaussian states propagate
in a system made of squeezers and interferometers. This
problem corresponds to the renowned Gaussian Boson
sampling (Hamilton et al. 2017; Quesada et al. 2018),
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which recently demonstrated the quantum advantage at an
impressing scale (Zhong et al. 2020), following earlier
realizations (Tillmann et al. 2012; Broome et al. 2013;
Spring et al. 2013; Spagnolo et al. 2014; Carolan et al.
2014; Wang et al. 2019) of the original proposal by
Aharanson and Arkhipov (Aaronson and Arkhipov 2013).
The theory of Gaussian Boson sampling (GBS) heavily
relies on phase-space methods (Kruse et al. 2019), making
it an exciting NN test-bed supported by recently reported
trainable hardware (Arrazola et al. 2021; Hoch et al. 2021;
Zhong et al. 2021).

A notable outcome of adopting NN models in the
phase space is the possibility of training multi-particle
statistics (Banchi et al. 2020) and other features as the
degree of entanglement. Indeed, most of the reported
investigations in quantum ML focus either on using NN
models as a variational ansatz or tailoring the input/output
response of a quantum gate. On the contrary, ML in
the phase space permits optimizing many-particle features,
for example, to increase the probability of multi-photon
events. NN may open new strategies to generate non-
classical light or enhance the probability of observing large-
scale entanglement with relevance in many applications.
Here, we derive the NN representing the characteristic
function of the Gaussian boson sampling setup. Proper NN
training increases the photon-pair probability by orders of
magnitude.

Figure 1 shows the general workflow of the proposed
methodology, the different steps enable to define a trainable
model for optmizing Gaussian boson sampling. In Section 2,
we introduce the way we adopt a neural network to compute
the characteristic function. In Section 3, we detail how to
compute the observable as derivatives of the characteristic
function neural network. In Section 4, we show how
to compute the Gaussian boson sampling patterns. In
Section 5, we introduce the loss function and describe
the training of the model to optimize specific patterns.
Conclusions are drawn in Section 6.

2 Characteristic function as a neural network

In the phase space, we represent a n-body state by the
complex characteristic function χ(x) = χR(x) + ıχI (x)
of a real vector x (Gardiner and Zoller 2004; Barnett and
Radmore 1997). x has dimension 1 × N with N = 2n. For
Gaussian states (Wang et al. 2007)

χ(x) = e− 1
4 xgx

�+ı xd. (1)

with g the real covariance N × N matrix, and d the real
displacement N × 1 vector. In our notation, we omit the

Fig. 1 Workflow of the proposed methodology to train Boson
sampling by representing the characteristic function as a neural
network

symbols of the dot product such that xd and xgx� are
scalars. One has (j, k = 0, 1, 2 . . . , N − 1)

〈R̂j 〉 = dj = ∂χ

∂xj

∣
∣
∣
∣
x=0

, (2)

and

gjk = 2〈(R̂j − dj )(R̂k − dk)〉 − ıJjk, (3)

being J = ⊕n−1
j=0 J1, J1 = (

0 1−1 0

)

(Wang et al. 2007). In

Eq. 2, the canonical variables, q̂j = R̂2j and p̂j = R̂2j+1,
with j = 0, 1, . . . , n−1, are organized in the N×1 operator
array R̂. As shown in Fig. 2a, the characteristic function is a
NN layer with two real outputs χR and χI . The χ layer has
two inputs: x, and a auxiliary bias N × 1 vector a, for later
convenience.

The vacuum state is a Gaussian state with g = 1 and
d = 0. From the vacuum, one can generate specific states
by unitary transformations, as displacement or squeezing

operators. These transform the canonical variables as ˆ̃R =
MR̂ + d′, where the symplectic matrix M and the vector
d′ depend on the specific operator (detailed, e.g., in Wang
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Fig. 2 (a) A neural network model for the characteristic function. Two
inputs, a data vector x with shape 1×N and a bias vector a with shape
N × 1 seed the model that compute χ and returns the real and imagi-
nary parts of χ(x)eıxa. (b) A layer representing a linear transformation
of the state by a unitary operator represented by a symplectic N × N

matrix M and a displacement N × 1 vector d′. With such a definition

layers can be cascaded, and one can represent single mode squeezers,
interferometers, and other unitary operators. (c) A model representing
a state with characteristic function χ , subject to a unitary transforma-
tion. This is a pullback of a linear transform from the original state,
which produces a new state with characteristic function χ̃ [see Eq. 4]

et al. (2007)). The characteristic function changes as

χ̃ (x) = χ(xM)eıxd′+ıxa = χ(xM)eı(xM)M−1(d′+a) (4)

We represent the linear transformation as a NN layer with
two inputs x and a and two outputs xM and M−1(d′ +
a) (Fig. 2b). By this definition, Eq. 4 is as a two-layer NN.

Figure 2c shows χ̃ as the “pullback” of the linear layer
from the χ layer. The two layers form a NN that can be
implemented with common APIs. 1 Given the vacuum state
with characteristic function χ , one can build the NN model
of an arbitrary state by multiple pullbacks. Indeed, we
defined the linear layers in a way that they can be cascaded.
Figure 4a below shows a n-mode squeezed vacuum as a
multiple pullback of single mode squezers, each acting on a
different mode.

3 Observables

Observables are computed as derivatives of the NN model.
For example, the mean photon number per mode is related
to the derivatives of the characteristic function. The mean
photon number for mode j , is

〈n̂j 〉 = − 1

2

(

∇2
j + 1

)

χ

∣
∣
∣
∣
x=0

(5)

being ∇2
j = ∂2

qj
+ ∂2

pj
and qj = x2j and pj = x2j+1. The

differential photon number of modes j and k is

〈(n̂j − n̂k

)2〉 =
[

1

4

(

∇2
j − ∇2

k

)2 − 1

2

]

χ

∣
∣
∣
∣
x=0

. (6)

Automatic differentiation packages enables an efficient
computations of the derivatives of the NN model.

1A TensorFlow implementation in a Jupyter notebook is
available at https://github.com/nonlinearxwaves/BosonSampling

4 Gaussian boson sampling with the neural
networkmodel

In the GBS protocol, one considers a many-body squeezed
vacuum state propagating in an Haar inteferometer,
which distributes the photons in the output modes. For
modelling GBS, we hence need squeezing layers and
a layer representing the transmission through random
interferometers. The squeezing layers are realized by a
proper design of the corresponding symplectic matrices
M with d = 0. We implement the Haar matrix operator
by QuTiP software (Johansson et al. 2013). Figure 3
shows a pseudo-code to build the neural network model by
composing different layers.

Figure 4b is a graphical representation of the GBS NN
model (Hamilton et al. 2017).

Boson sampling corresponds to computing the probabil-
ity Pr(n̄) of finding n̄0 photons in mode 0, n̄1 photons in
mode 1, and so forth. n̄ = (n̄0, n̄1, . . . , n̄n−1) is a given
photon pattern. Letting ρ̂ the density matrix, one has

Pr(n̄) = Tr[ρ̂|n̄〉〈n̄|],
with

|n̄〉〈n̄| = ⊗n−1
j=0|n̄j 〉〈n̄j |.

Correspondingly (Kruse et al. 2019),

Pr(n̄) = 1

n̄!
n−1
∏

j=0

(

∂2

∂αj ∂α∗
j

)n̄j

e
∑

j |α|2j Qρ(α, α∗)

∣
∣
∣
∣
∣
∣
α=0

(7)

where n̄! = n̄0!n̄1! . . . n̄n−1! and

Qρ = πn〈α|ρ|α〉
is the Q-rapresentation of the density matrix (Gardiner
and Zoller 2004; Barnett and Radmore 1997) with α =
(α0, α1, . . . , αn−1) complex displacements.

https://github.com/nonlinearxwaves/BosonSampling
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Input = input layer Create input layer
V = vacuum layer Create vacuum layer

for i=0,1,2,. . . ,n-1 do
S[i] = squeezer layer for mode i Create a squeezing layer per mode

end for

R = random interferometer Create a random interferometer
x, a= Input Define input tensors x and a
x, a= R (x,a) Connect interferometer in pullback order

for i=0,1,2,. . . ,n-1 do
x, a= S[i](x,a) Connect squeezing layers in pullback order

end for
x, a= V(x,a) Connect vacuum layer in pullback order

Fig. 3 Pseudo-code for the creation of a neural network representing a Gaussian boson sampling experiment

We introduce the N × 1 real vector k as

k2j = α∗
j + αj√

2
k2j+1 = α∗

j − α∗
j√

2ı

and we have

Pr(n̄) = 1

n̄!2n̄T

⎛

⎝
∏

j

∇̃2n̄j

j

⎞

⎠ e
k2
2 Qρ(k)

∣
∣
∣
∣
∣
∣
k=0

(8)
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Fig. 4 (a) A multiple pullback that represents a many-body squeezed
vacuum, obtained by a vacuum state χ by cascading n identical sin-
gle mode squeezers. The order of the squeezers is not relevant as they
act of different modes. χR and χI are the real and imaginary part of
the resulting characteristic function. (b) GBS setup, a n-body squeezed
vacuum enters an Haar inteferometer. Note that the order of the

operators, from the vacuum to the interferometer goes from right to
left. (c) GBS setup including a trainable random interferometer before
entering the Haar interferometer. The multiple squeezers are repre-
sented as a single block. The trainable interferometer can optimize the
probability of pair generation. The right panel shows the architecture
of the TensorFlow model for n = 6
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with ∇̃2
j = ∂2/∂k2j + ∂2/∂k2j+1 and n̄T = ∑n−1

j=0 n̄j . Qρ

in Eq. 8 can be evaluated explicitly as a multidimensional
Gaussian integral:

Pr(n̄) = 1

n̄!2n̄T

⎛

⎝
∏

j

∇̃2n̄j

j

⎞

⎠Q(k)

∣
∣
∣
∣
∣
∣
k=0

(9)

with (p, q = 0, 1, .., N − 1)

Q(k) = 1√
2n det A

e
1
2k

2
e
− 1

2

∑

pq A−1
pq (kp−dq)(kp−dq) (10)

being Apq = 1
2

(

gpq + δpq

)

. Equations 9 and 10 can be
implemented as further layers of the NN, and the probability
of a given pattern computed by running the model. Figure 5a
shows an example of the pattern probability distribution
with n = 6, obtained by using the NN model in Fig. 4b with
squeezing parameters rj = 0.88 and φj = π/4, such that
all the single mode squeezers are identical, each with mean
photon number sinh(rj )

2 
 1. As in Hamilton et al. (2017),
we consider patterns with 〈n̂j 〉 = {0, 1}.

5 Training Gaussian boson sampling

Our interest is understanding if we can train the model to
maximize the generation of specific patterns, e.g., a pho-
ton pair in modes 0 and 1. Using complex media to tailor
linear systems is a well renowned technique as, for exam-
ple, to synthesize specific gates (Leedumrongwatthanakun
et al. 2020; Taballione et al. 2019) or taming entangle-
ment (Valencia et al. 2020). Here, we use the NN model in
the phase space to optimize multi-particle events.

One could use the squeezing parameters in the model
in Fig. 4b as training parameters. However, the degree
of squeezing affects the number of particles per mode,
and we want to alter the statistical properties of states
without changing the average number of particles. We
hence consider a GBS setup with an additional trainable
interferometer as in Fig. 4c, which is typically realized by
amplitude or phase modulators.

In Fig. 4c, n squeezed vacuum modes impinge on a
trainable interferometer and then travel through a Haar
interferometer. Instead of two distinct interferometers,
one could use a single device (i.e., combine the Haar
interferometer with the trainable interferometer), but we
prefer to distinguish the trainable part from the mode-
mixing Haar unitary operator.

Given n modes, our goal is to maximize the probability
of patterns that contains a pair of photons in the mode 0
or 1. For example, for n = 6, this means maximizing the

Fig. 5 (a) Probability distribution of patterns with two photons for
n = 6 in the model in Fig. 4c, before training. The insets detail the
particle distribution in the patterns. (b) As in (a) after training, the
probability of finding a pair in mode 0 and 1 is enhanced by more
than one order of magnitude. (c) Mean photon number in mode 0 and
1 during the training epochs (green), and expected differential photon

number 〈(n̂0 − n̂1
)2〉 in the two modes, which vanishes after thousands

of epochs. The statistical distribution of pairs changes at a constant
photon number per mode. Data generated by the code in https://github.
com/nonlinearxwaves/BosonSampling

probability of n̄ = (1, 1, 0, 0, 0, 0) with respect to n̄ =
(1, 0, 0, 1, 0, 0). We use as loss function

L = e〈(n̂0−n̂1)
2〉 (11)

https://github.com/nonlinearxwaves/BosonSampling
https://github.com/nonlinearxwaves/BosonSampling
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Fig. 6 (a) Probability distribution of patterns with 4 photons (n = 6)
in the model in Fig. 4c before training. The insets detail the particles
in each pattern. (b) As in (a) after training; the probability of patterns
with two photons in modes 0 and 1 is maximized. Data generated by
the code in https://github.com/nonlinearxwaves/BosonSampling

which is minimal when the expected differential number of
photons in mode 0 and mode 1 vanishes. This is the case
when the state has a particle pair in mode 0 and mode 1.
We stress the difference in using other cost functions, which
involve the expected number of photons per mode as, e.g.,

L0 = e(〈n̂0〉−〈n̂1〉)2
.

The linear interferometer does not affect the average
number of photons (which are mixed by the Haar layer).
Correspondingly, training using L0 is not be effective to
generate entangled pairs. On the contrary, L in Eq. 11
contains 〈n̂0n̂1〉, which is maximal with a photon pair in
modes 0 and 1.

Figure 5a shows the computed probabilities of pairs for
the model in Fig. 4c, with a random instance of the Haar
and the linear inteferometers. Training strongly alters this
statistical distribution, as shown in Fig. 5b.

Figure 5c shows the trend during the training epochs of
〈(n̂2

0 − n̂2
1)〉, which goes to zero while the mean photon

numbers 〈n̂0〉 and 〈n̂1〉 remain unaltered.

Training also maximizes higher photon events, as in the
pattern n̄ = (1, 1, 1, 1, 0, 0) with 4 photons and n = 6.
Fig. 6a shows the pattern probability with 4 photons. After
training with the loss function in Eq. 11, Pr(n̄) substantially
increases for the patterns with four photons containing 1
pair in modes 0 and 1 (Fig. 6b).

6 Conclusions

We have shown that a many-body characteristic function
may be reformulated as a layered neural network. This
approach enables to build complex states for various
applications, as gate design or boson sampling.

A common argument in criticizing quantum neural
networks is that the linear quantum mechanics does not
match with the nonlinearity-eager NN models. However,
recent investigations show that nonlinearity may be
introduced in quantum neural networks (Zhao and Gao
2021). Our remark is that if we formulate quantum
mechanics in the phase space, nonlinearity arises in
the characteristic function (or other representation). We
analyzed this strategy in the simplest case of Gaussian
states. The resulting model is universal and may be
trained for different purposes. For this reason, phase
space models allow naturally in dealing with non-classical
states and computing observables by derivatives. This
formulation opens many opportunities. For example, the
optimization of multi-particle events can be extended to
fermionic fields. As a drawback, computing boson patterns
probabilities by NN APIs is not expected to be competitive
with highly optimized algorithms running on large-scale
clusters (Quesada and Arrazola 2020; Li et al. 2020). Still, it
appears to be a versatile and straightforward methodology.

Here, we have shown many-body quantum state design
and engineering by TensorFlow. We have demonstrated
how to enhance multi-particle generation, with many poten-
tial applications in quantum technologies. In addition, the
proposed method enables training Boson sampling with-
out explicitly computing derivatives of the Hafnian (Banchi
et al. 2020; Broughton et al. 2020), but resorting to auto-
matic computational packages. We have tested the algorithm
with a conventional workstation with a single commercial
GPU (NVIDIA QUADRO RTX 4000), with a computa-
tional time of the order of few minutes with 6 modes.

The method can be generalized to other boson sam-
pling setups, as including Glauber layers and multi-mode
squeezers. Also, it readily allows to test different loss func-
tions for tailoring the boson sampling patterns. Extension
beyond Gaussian states can be envisaged by using a gen-
eral machine learning networks with an arbitrary number of
layers and different nonlinearity.

https://github.com/nonlinearxwaves/BosonSampling
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