High-level Integrated Design Environment for
Dependability (HIDE)

Andrea Bondavalli*, Mario Dal Cin**, Diego Latella* and Andras Pataricza***

*CNUCE Istituto del CNR, Via S. Maria 36, 56126 Pisa, Italy
** IMMD3, Univ. Erlangen-Nurnberg, Martensstral3e 3, D-91058 Erlangen, Germany
*** Technical University of Budapest - Dept. of Measurement and Information Systems, Muegyetel
rkp 9, H-1521 Budapest, Hungary,

Abstract

For most systems, especially dependable, real-time
systems for critical applications, an effective design pro-
cess requires an early validation of the concepts and archi-
tectural choices, without wasting time and resources prior
of checking whether the system fulfils its objectives or
needs some re-design. Although a thorough system speci-
fication surely increases the level of confidence that can be
put on a system, it is insufficient to guarantee that the
system will adequately perform its tasks during its entire
life-cycle. The early evaluation of system characteristics
like dependability, timeliness, and correctness, is thus
necessary to assess the conformance of the system under
development to its targets. This paper presents some ac-
tivities currently performed towards an integrated envi-
ronment for the design and the validation of dependable
systems.

1 Introduction

Computer controlled systems are used in many applica-
tion fields, with different levels of criticality requirements.
A common characteristic of such systems is the
increasing complexity in intrinsic terms (management of
distribution, redundancy, layering of functionalities, etc.)
and of the in-the-field operation (interfaces towards the en-
vironment, timing constraints, criticality of the controlled
applications, etc.). The increasing need for effective design
has contributed to push for the development of
standardized and well-specified design methods and lan-
guages, which allow system developers to work with a
common platform of design tools. The Unified Modeling
Language (UML) [19] is a general-purpose visual model-
ing language that is designed to specify, visualize, con-
struct and document artifacts of a software system. It pro-

vides a series of diagrams with a fine granularity to spec-
ify object models and has been widely accepted as an ob-
ject oriented software design language in the software en-
gineering community. In this respect, UML is expected to
become a de-facto standard for the design of a variety of
systems from small embedded control systems to large
and complex open systems.

An effective design process should also include an early
validation of the concepts and architectural choices
underlying system design. The early evaluation of system
characteristics like dependability[12], timeliness and cor-
rectness, necessary to assess the compliance of the syster
under development to its targets, becomes especially im-
portant for designing systems supporting critical applica-
tions. The simultancously increasing complexity and de-
pendability requirements of computer controlled systems
have, in fact, exposed the limits of the validation tech-
niques traditionally used in industry, like code review,
testing, Fault Trees or Failure Mode Error Analysis.
Moreover, new technologies such as Object-Oriented
Design and Programming, Advanced User Interfaces,
Hardware-Software Codesign, the use of COTS (Commer-
cial Off the Shelf) software components, all present new
challenges for the validation process. The traditional vali-
dation techniques are being more and more complemented
with advanced validation techniques, such as Formal
Verification, Model based Dependability Evaluation,
Schedulability Analysis, Fault Injection. These techniques
are not aimed to replace the traditional validation tech-
nigues, but should rather be integrated with them.

The validation of designs described using UML is the
main objective of the European ESPRIT project HIDE.
Parterns involved are FAU (Erlangen, Germany), CPR-
PDCC (Pisa, Italy), TUB (Budapest, Hungary), Mid
GmbH (Germany), Intecs Sistemi (Pisa, Italy). The pur-
pose of HIDE is to allow the designer to use UML as a
front-end for the specification of both the system and the

user requirements, and to bridge the gap between a prac-
tice-oriented CASE methodology and sophisticated math-
ematical tools. Formal verification, quantitative and time-
liness analysis tools will be made available to the de-
signer within the design environment, and the models will
be derived automatically from the UML specification.

The rest of this paper is structured as follows. Section
2 describes the HIDE structure and the overall project,
Section 3 details a part of the work currently performed
and the results achieved so far, in the directions of formal
verification and of quantitative analysis, where two
complementary approaches are followed. Last section 4
draws some conclusions and identifies the next steps.

2. The HIDE project

While a relevant effort is being devoted to the devel-
opment of standardised design languages and methods,
such as the recently created UML, much less attention has
been dedicated up to now to the integration of the design
technologies with the validation techniques.

However, it is clearly understood that good product
implementation alone does not assure a proper quality of
the services (QoS) delivered by the product. Thus, high

Despite of the practical importance and the results
achieved during the past decades, there are major obstacles
in the assurance of the QoS by formal methods and math-
ematics. The need of a deep knowledge of sophisticated
techniques is one of the most serious obstacles to per-
forming the necessary checks on the systems design at
early phases of design and development. In fact, while
manufacturers of critical systems are prepared and have a
considerable experience on the validation of tpheod-
ucts (driven by the need of certifying and having their
systems to be accepted by customers), there are major dif-
ficulties and much less expertise in the early validation of
systemdesign. The large set of analyses and techniques
and their level of sophistication require a huge investment
in staff skill and time. This discourages designers and
builders to apply such analysis methods in the phase of
the design and implementation process in which they are
most effective.

The HIDE project aims at proposing a convincing and
general answer to the need for early validation of system
design. It aims at integration among the design, validation
and verification techniques for complex software/hardware
systems, through a transformational approach that targets
the most common analysis tools. Formal verification,

QoS also has to be assured during the design process. Inquantitative and timeliness analysis are the main

spite of this necessity, even the most advanced system de-

sigh methodologies, such as CASE and HW-SW co-de-
sign, lack the proper support of QoS assurance for the en-
tire design process and product life cycle.

At present, the validation of system design is usually

validation techniques identified so far. The use of formal
methods for the specification and verification of properties
of systems is one methodological improvement of the
system development process, which, together with other
techniques, allows to reach high quality standards. The

performed as a separate project phase postponed to the enalass of systems targeted by HIDE are characterised by

of the design process. This practice however suffers from
the following weak points:

Typically, simulation based validation is used for
checking the conformance of the system model to the
initial specification. However, experimental validation
assures only a high likelyhood of correctness, but no
proof of it.

No integrated support is currently offered for quantita-
tive validation of the system concepts, thus leaving
the quantitative aspects uncovered. In the past, numer-
ous practical projects suffered significant delays and
cost overhead due to post-upgrades.

There is a trend to use COTS (commercial off-the-
shelf) products in order to reduce both design and man-
ufacturing costs. This trend raises the question how to
assure dependability in a system built of average qual-
ity, non ultra-reliable components. Moreover, depend-
ability is a crucial cost factor in the after-manufactur-
ing phases of the product life cycle (e.g., mainte-
nance). Pure functional specification leaves the system
behaviour undefined in the presence of faults.

various, often severe real-time constraints. The Project
draws results from the methods that have been developed
for the fulfilment of hard real-time constraints. The
architecture of the software has to be precisely described,
by some interaction with the designer so that a tool will
be able to perform the timing (or schedulability) analysis.
The feedback is then provided to the designer,
highlighting timing failures, bottlenecks and identifying

to a certain level the possible causes for the design
failures and the corresponding recovery actions.

Amongst the approaches commonly adopted to
evaluate dependability attributes, analytical modelling has
proven to be very useful and versatile. Especially during
design, models show their usefulness and potentialities.
They allow to compare different architectural and design
solutions and to run sensitivity analyses identifying both
dependability bottlenecks and critical parameters to which
the system is highly sensitive.

The transformations will adhere to UML as much as
possible. The evaluation results must have tangible value
to the modeller working with UML and the input/output
of evaluations must clearly correspond to UML modelling

elements. The estimation and the prediction of the system umenting several aspects of - or views on - systems. It is
properties performed must obviously have an acceptable based on the object-oriented paradigm and it is heavily
level of confidence. The larger model size and run-time re- graphical in its nature. Different diagrams are used in order
quirements of the automatically derived models should not to describe different views on a system. For instance,
strongly limit the target field of applications in compari- Class Diagrams show sets of classes and their relation-
son with the manually composed ones. The entire back- ships thus addressing the static design view on systems.
ground mathematics will be completely hidden to the de- On the other hand, Statechart Diagrams show state ma-
signer, thus eliminating the need for both a specific exper- chines thus addressing the dynamic behavior of systems
tise in abstract mathematics and the tedious re-modelling and their components.
of the system for mathematical analysis. The results At present UML is merely a semiformal notation, with
gained will be automatically back-annotated for presenta- a well-defined syntrax but with little formal semantics
tion into the same UML model, providing the designer attached to the individual diagrams nor is there a formally
with a source of precious information for driving the sub- defined semantics for the integration of the diagrams.
sequent design choices. Typical instances are diagrammatic techniques with

The project aims also to supportifeatures for the precise rules that specify conditions under which
design and validation strategy of embedded real-time de- constructs are allowed and textual and graphical descrip-
pendable systems. These features are 1) a support for in-tions with limited checking facilities.' [16]. Semiformal
clusion of redundancy by means of a library of UML techniques help to move from initial natural language to
stereotyped classes supporting class based redundancy irformal specifications. It is impossible to apply rigorous
object oriented methodologies, and 2) the definition and analysis techniques to evaluate a UML model as it is. In
formalisation of a process modelling method, intended to other words, in order to evaluate a visual UML-model the
be used to guide the process of designing and validating model has to be enriched with additional information and
embedded real-time dependable systems and specialised forthen be transformed to a model with a precise semantics.
these purposes. UML is a language for different kind of This enrichment has been performed in the different cases
modelling purpose. Since it is not a process for software trading-off the adherence.
development there is the need to have a guidance for the
system modelling. The model for the evaluation process 3.1 Formal verification
has the task to deliver a knowledge base, guidelines for
proven best practices, assistant tools for conducting an
evaluation experiment etc.

The HIDE framework will thus integrate in a user-
friendly way the de-facto standard design language UML
with a set of validation, verification and evaluation tech-

Formal verification is a hot topic nowadays in the field
of system engineering, especially for the development of
critical dependable systems. Formal methods are
mathematically-based techniques that can offer a rigorous
and effective way to model, design and analyze computer

nigues for assuring the QoS of the system still during the
early design phases without the need of special skills or
extreme efforts by the designer. This will allow to shorten

the necessary verification and validation cycle, with a con-

systems. They have been a topic of research for many
years and the question now is whether these methods can
be effectively used in industrial applications. Tool support
is necessary for a full industrialization process and there is

sequent saving in the associated costs. Design refinementa clear need for improved integration of formal method

will be driven by the information gained during the valida-

techniques with other software engineering practices.

tion process, thus allowing adequate system designs to be Several approaches to the application of formal methods

produced before implementation and experimental (in the
field) validation take place.

The HIDE software platform will be based on the
commercial UML-based tools, provided by the industrial
project partners, but at the same time will be general
enough to allow an easy integration with other UML-

in the development process have been proposed. They dif-
fer in the degree of involvement of the method within the
development process, the simplest being the mere use to
write rigorous specifications. Further steps are the (more
or less automated) generation of code from the formal
specification, and the use of formal verification as an addi-

based toolsets. The openness of the approach allows thetional validation technique aimed to reach a high level of

further integration of other validation and analysis tools.

3. Activities performed

UML is a standard modeling language [8, 20]. It may
be used for visualizing, specifying, constructing and doc-

confidence of the correctness of the system.

Within the HIDE Project, a mapping of a subset of
UML Statechart Diagrams to Kripke Structures has been
formally defined [14]. This translation defines a reference
formal operational semantics for UML Statechart
Diagrams within HIDE. Formal semantics are obviously

necessary whenever formal verification is an issue; in Diagrams relevant for the considered subset of the
particular, the Kripke Structure resulting from the notation. On the other hand, it shares the relative
translation of a Statechart Diagram can be conveniently simplicity of the work proposed in [18].

used as a basis for model checking. To that purpose itis In [15] all interesting aspects of UML Statechart
of course necessary to specify the requirements against Diagrams semantics are covered. Unfortunately, no
which the model has to be checked. Such requirements arecorrectness result for the proposed semantics is provided.
usually expressed by a temporal logic formula or by More emphasis is put on implementation related issues as
another automaton transformed to a Kripke Structure. In the work constitutes a basis for a PROMELA/SPIN based
the first case the formula is not part of the UML model, model-checker for UML Statechart Diagrams. In [15] a
since the UML does not provide an explicit notation for “flat" representation of UML Statechart Diagrams is used
temporal logic. In the second, the requirement can be and the authors claim that such a representation is better
expressed again as a (simple) Statechart Diagram and itssuited for model-checking purposes than the hierarchical

resulting semantics can be used for model checking the one used in [14].

(semantics) of the original Statechart Diagram.

A nice aspect of the translation proposed in [14] is that
it is parametric on some aspects which are not (yet) com-
pletely defined for UML in order to offer a unique notation
for specific run-time systems. In particular, parametricity
of the semantics definition w.r.t. transition priorities,
makes it suitable for describing the behavior of systems
under different priority schemes.

Based on the above mentioned semantics, a translation

from UML Statechart Diagrams to PROMELA, the
modeling language of the SPIN verification tool [11], has
been formally defined and proven correct [13]. This allows
the user to apply to our subset of UML Statechart
Diagrams the verification techniques supported by SPIN,
including Linear Time Logics model-cheking. Two
implementations of this translation are available: one has
been developed in CNUCE and is written in Standard ML
[9]. The other is running at the Technical University of

Using a hierarchical representation for UML Statechart
Diagrams (syntax), not only has no negative impact on
tools development, but, rather, it helps very much in
carrying on correctness proofs; all interesting results
presented in [14] and in [13] are proven inductively and
such proofs heavily exploit the hierarchical structure of
our representation, which is also the basis of the structure
of our semantics deduction system.

3.2 Quantitative analysis

Two compementary approaches have been followed for
providing quantitative analyses of dependability attributes.
Two translations from UML subsets to Timed and
Generalized Stochastic Petri Nets [1] have been defined.
On one hand, this approach allows to use the elaborate
and well established Petri Net tools for the quantitative
analysis of UML-models. On the other hand, it integrates

Budapest and uses database technology [5]. Severalthe use of Petri Nets into the object-oriented modeling

experiments have been performed on this last
implementation, including the modeling and verification
of the version of the production cell presented in [4]. The
interested reader is referred to [17].

In [10] a different approach to UML Statechart
Diagrams model-checking based on the semantics

paradigm of UML. For example, the generated Petri Nets
models can be extended by modeling aspects like the
integration of fault models, difficult to express directly in
UML. A trade-off has to be made between the degree of
details in modeling and the degree of possible automation
of the analysis process which, of course, depends on the

proposed in [14] has been investigated. It uses Branching size of the state space of the model.

Time Logics as opposed to the SPIN experiment. An
implementation of this second prototype is in progress.

Both these two trasformations use PANDA [2], as
Petri Net analysis tool. It allows to annotate transitions

Several other approaches have been proposed in thewith guards and to use state dependent capacities for arcs.

literature for the definition of a formal semantics of UML

Moreover, PANDA accepts not only exponential distribu-

Statechart Diagrams, e.g. [6, 15, 21], and much more has tion functions, but also non-exponential ones (Erlang-k,

been done for classical statecharts.

To our understanding, transition priorities are dealt
with neither in [21], where also state refinement is not
allowed, nor in [6], where model checking is addressed.
Both transition priorities and state refinement constitute
main issues in our work.

The approach we followed in [14] is similar to that
proposed in [18] for classical statecharts but it takes into
consideration the peculiarities of the UML Statechart

Gamma, Hyperexponential, Normal, Lognormal,

Weibull, etc.). Dependability measures can be specified by
reward functions. Reward functions are built from so-

called characterizing functions like: Mark(place). This

function delivers the number of tokens in a place.

PANDA computes the expectation value of a reward func-
tion at a point in time (e.g. availability or throughput) as

well as accumulated rewards. PANDA is available for

shared and distributed memory platforms as well.

A first quantitative translation maps UML Structural

Diagrams (use case, class, object, and deployment dia-

grams) to Timed and Generalized Stochastic Petri Nets for

dependability assessment [3, 4]. This translation copes

with the state explosion by starting from simple models,

and making them more and more complex and detailed by
refining the relevant parts of the system. It tries to capture
only the features relevant to dependability neglecting all

other information. It

e allows a less detailed but system-wide representation
of the dependability characteristics of the analyzed sys-
tems.

» provides early, preliminary evaluations of the system
dependability during the early phases of the design.
This way, a designer can easily verify the compliance
of the system under design to the predefined require-
ments on dependability attributes.

« deals with various levels of detail, ranging from very
preliminary abstract UML descriptions, up to the re-
fined specifications of the last design phases. Higher
level UML models (structural diagrams) are available
before the detailed, low levels ones. The analysis on
these rough models provides indications about the crit-
ical parts of the system, which require a more detailed
representation. In addition, by using well defined inter-
faces, such models can be augmented by inserting
more detailed information coming from refined UML
models of the identified critical parts of the system.
These might be provided by other transformations
dealing with UML behavioral and communication dia-
grams as the transformation described next.

The structural UML diagrams that form the input of
such transformation do not have a formal semantics;
moreover the specification this set of diagrams provides
might be incomplete or ambiguous, so formal correctness
of this transformation cannot be provided.

Another quantitative transformation focuses on a
UML-dynamic model comprising statecharts and sequence
diagrams [7]. A rigorous mapping from the semiformal

another object without the yielding of control. Guards are
annotated with state transition probabilities and/or
branching probabilities (weights).

For a dependability analysis the GSC-models are di-
rectly transformed to Stochastic Reward Nets. State transi-
tions with time delay are transformed to timed transitions,
those without time delay to immediate transitions. Guards
become guards of Petri Net transitions. The resulting nets
are amenable to a rigorous analysis.

Since our GSCs model mainly embedded systems,
where the communication between several components is
of importance, we made it possible by the transformation
to model communication errors explicitly within the Petri
Nets. Within the statecharts communication errors are
simply modeled by substituting (with certain probabilities
or failure rates) guards by True (e.g., the sensor signal is
stuck-at-active) or False (e.g., the actuator signal is stuck-
at-inactive or not observed by the hardware). This way,
lost or spurious signals can be modeled. State perturba-
tions are modeled by additional states and/or additional
state transitions guarded by fault-tree like guards.

4. Concluding remarks

This paper reports some ongoing activity within the
HIDE project. The HIDE project aims at proposing a
convincing and general answer to the need for early valida-
tion of system design, supportiaiso features for the
design and validation strategy of embedded real-time
dependable systems. It intends to contribute to the inte-
gration among the design, validation and verification
techniques for complex software/hardware systems,
through a transformational approach that targets the most
common analysis tools. Part of the work performed so far
has been described, mainly concerning the transformations
for achieving formal verification and quantitative analysis,
where two complementary approaches are followed. Work
is currently in progress for merging these two approaches
and some investigation started for dealing with timeliness

language to a mathematical language possessing a preciseanalyses in such context. Moreover demonstrators and
semantics has been worked out. We have developed afirst implementations of the HIDE repository and of

framework for deriving Stochastic Reward Nets (an exten-
sion of Generalized Stochastic Petri Nets) from the subset

transformations are underway.

of the UML comprising use cases, sequence diagrams and References

a specific sub-class of statecharts comprising so-called

Guarded Statecharts (GSC) . Guarded Statecharts are suited]

for modeling dependable embedded systems in which also
non-deterministic behavior can be modeled.
Interactions between tasks of the control software of

embedded systems are modeled by guarded state transi-

tions: this corresponds to an asynchronous synchroniza-

tion pattern between tasks. This pattern is inherently mul- [3]
tithreaded, because it models a message being passed to

M. Ajmone Marsan, G. Balbo and G. Conte, “A Class of
Generalized Stochastic Petri Nets for the Performance
Analysis of Multiprocessor Systems,” ACM TOCS,
Vol. 2, pp. 93-122, 1984.

S. Allmaier and S. Dalibor, “PANDA - Petri net analysis
and design assistant,” in Proc. Performance TOOLS'97,
Saint Malo, France, 1997.

A. Bondavalli, I. Majzik and I. Mura, “Automated
Dependability Analysis of UML Designs,” in Proc.
ISORC’99 - 2nd IEEE International Symposium on

(2]

(4]

(3]

(6]

(7]

(8l

(9]

[10]

(11]

(12]

Object-oriented Real-time distributed Computing, Saint
Malo, France, 1999, pp. 139-144.

A. Bondavalli, I. Majzik and I. Mura, “Automatic
Dependability Analysis for Supporting Design
Decisions in UML,” in Proc. HASE99 - 4th IEEE High
Assurance System Engineering Symposium,
Washington D.C., USA, 1999, pp. 64-71.

A. Borchet, M. Dal Cin, J. Javorskky and C. Szasz,
“Specification of the HIDE environment,” ESPRIT LTR
Project 27439 - HIDE (High-Level Integrated Design
Environment for Dependability) Technical Report
HIDE/D3/TUB/1/v2, 1998.

J.M. Broersen and R.J. Wieringa, “Interpreting UML-
statecharts in a modak-calculus,” Unpublished
manuscript, 1997.

M. Dal Cin, G. Huszerl and K. Kosmidis, “Evaluation of
Safety-Critical Systems based on Guarded Statecharts,”
in Proc. HASE'99 Fourth |EEE International
Symposium on High Assurance Systems Engineering,
Washington DC, USA, 1999, pp. 37-45.

M. Fowler and K. Scott, “UML Distilled. Applying the
Standard Object Modeling Language,” Addison-Wesley,
ISBN 0-201-32563-2, 1997 1997.

E. Giusti and D. Latella, “Implementazione in SML di
un traduttore da automi gerarchici a PROMELA,”
Consiglio Nazionale delle Ricerche, Istituto CNUCE
Technical Report, CNUCE-B4-1998-018 (In italian),
1998.

S Gnesi, D. Latella and M. Massink, “Model checking
UML statechart diagrams using JACK,” in Proc.
HASE99 - 4th IEEE High Assurance System
Engineering Symposium, Washington D.C., USA,
1999, pp. 46-55.

G. Holzmann, “The model checker SPIN.,” |IEEE
Transactions on Software Engineering, Vol. 23, pp.
279--295, 1997.

J.C. Laprie, “Dependability-Its Attribues, Impairments
and Means,” in “Predictably Dependable Computing
Systems”, B. Randell, J. C. Laprie, H. Kopetz and B.
Littlewood Ed., Springer-Verlag, 1995, pp. 3-24.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

D. Latella, I. Majzik and M. Massink, “Automatic
verification of UML statechart diagrams using the SPIN
model-checker,” Consiglio Nazionale delle Ricerche,
Istituto CNUCE, Technical Report CNUCE-B4-1999-
008, 1999.

D. Latella, I. Majzik and M. Massink, “Towards a
Formal Operational Semantics of UML Statechart
Diagrams.,” in Proc. IFIP TC6/WG6.1 Third
International Conference on Formal Methods for Open
Object-Oriented Distributed Systems, Florence, Italy,
Feb. 15-18, 1999.

J. Lilius and I. Paltor Porres, “The semantics of UML
state machines,” Turku Centre for Computer Science
Technical Report 273, 1999.

M.D Fraser, K. Kumar and V.K. Vaishnavi, “Strategies
for incorporating formal specifications in software
development,” Communications of the ACM, Vol. 37,
pp. 74-86, 1994.

I. Majzik and J. Javorszky, “Formal verification of
UML statecharts: Case studies,” Dept. of Measurement
and Information Systems - Technical University of
Budapest, Technical Report MITUB-TR-99-05, 1999.

E. Mikk, Y. Lakhnech and M. Siegel, “Hierarchical
automata as model for statecharts,” in Proc. Third Asian
Computing Science Conference. Advances in
Computing Sience - ASIAN'97, Lecture Notes in
Computer Science n. 1345, 1997, pp. 181--196.

* Rational Software, * Microsoft, * Hewlett-Packard, *
Oracle, * Sterling Software, * MCI Systemhouse, *
Unisys, * ICON Computing, * IntelliCorp, * i-Logix, *
IBM, * ObjecTime, * Platinum Technology, * Ptech, *
Taskon, * Reich Technologies and Softeam, “Object
Constraint Language Specification,” version 1.1,
1997.

J. Rumbaugh, I. Jacobson and G. Booch, “The Unified
Modeling Language Reference Manual,” Addison-
Wesley, ISBN 0-201-30998-X 1999.

R.J. Wieringa and J. Broersen, “A Minimal Transition
System Semantics for Lightweight Class and Behavior
Diagrams.,” in Proc. ICSE98 Workshop on Precise
Semantics for Software Modeling technig.

