RUAN TIEOL quanticol

e 00
A Quantitative Approach to Management and Design of

. . ) http://www.quanticol.eu
Collective and Adaptive Behaviours

TR-QC-2-2013

Chaining available tools to support the modelling and
analysis of a bike-sharing product line

An experience report

Revision: 1; Nov 15, 2013

Author(s): Maurice H. ter Beek (CNR-ISTI), Stefania Gnesi (CNR-ISTI), and
Alessandro Fantechi (UNIFI)

Publication date: Dec 20, 2013

Funding Scheme: Small or medium scale focused research project (STREP)
Topic: ICT-2011 9.10: FET-Proactive ‘Fundamentals of Collective Adaptive Systems’ (FOCAS)
Project number: 600708

Coordinator: Jane Hillston (UEDIN)
e-mail: Jane.Hillston@ed.ac.uk
Fax: +44 131 651 1426

Part. no. | Participant organisation name Acronym | Country

1 (Coord.) | University of Edinburgh UEDIN UK

2 Consiglio Nazionale delle Ricerche — Istituto di Scienza e CNR Italy
Tecnologie della Informazione “A. Faedo”

3 Ludwig-Maximilians-Universitdt Miinchen LMU Germany

4 Ecole Polytechnique Fédérale de Lausanne EPFL Switzerland

) IMT Lucca IMT Italy

6 University of Southampton SOTON UK

]

COOPERATION




Modelling and analysis of a bike-sharing product line (Revision: 1; Nov 15, 2013) Dec 20, 2013

Contents
1__Introduction| 1
2 BSS: Bike-Sharing Systems| 2
3 odelling a wit P.L.O.T. 3
4
4
5 From S.P.1.0.T. to ClaferMOOI 5
(5.1 Adding Attributes tothe BSS| . . . . . . ... ... o oo 5
6 Lessons Learned| 8
[7 Acknowledgements| 10

Abstract

Bike-sharing systems are becoming popular not only as a sustainable means of transportation
in the urban environment, but also as a challenging case study that presents interesting run-time
optimization problems. As a side-study within a research project aimed at quantitative analysis that
used such a case study, we have observed how the deployed systems enjoy a wide variety of different
features. We have therefore applied variability analysis to define a family of bike-sharing systems,
and we have sought support in available tools. We have so established a tool chain that includes
(academic) tools that provide different functionalities regarding the analysis of software product
lines, from feature modelling to product derivation, to quantitative evaluation of the attributes of
products. The tool chain is currently experimented inside the cited project as a complement to
more sophisticated product-based analysis techniques.

1 Introduction

Bike-sharing systems (BSS) are becoming popular not only as a sustainable means of transportation
in the urban environment, but also as a challenging case study that presents interesting run-time
optimization problems.

A side-study of the recently started EU project QUANTICOL (www.quanticol.eu) concerns the
quantitative analysis of BSS seen as collective adaptive systems (CAS). The design of CAS must be
supported by a powerful and well-founded framework for quantitative modelling and analysis. CAS
consist of a large number of spatially distributed entities, which may be competing for shared resources
even when collaborating to reach common goals. The nature of CAS, together with the importance
of the societal goals they address, mean that it is imperative to carry out thorough analyses of their
design to investigate all aspects of their behaviour before they are put into operation. In this context
it is important to realize that the behaviour of the individual entities from which a CAS is composed,
may exhibit variability not only in the kind of features but also in the quantitative characteristics of
features themselves.

Starting form the BSS case study identified in QUANTICOL, we have started to apply variability
analyses on a bike-sharing product line that we have defined. First we have sought support in available
tools for the possibility of adding attributes and quantitative characteristics to our BSS specification.
This has resulted in the tool chain that we present in this paper. It includes (academic) tools that
provide different functionalities regarding the analysis of software product lines, from feature modelling
to product derivation, to quantitative evaluation of the attributes of products. The tool chain is
currently being experimented further inside QUANTICOL as a complement to more sophisticated
product-based analysis techniques.

QUANTICOL 1 Dec 20, 2013


www.quanticol.eu

Modelling and analysis of a bike-sharing product line (Revision: 1; Nov 15, 2013) Dec 20, 2013

As far as we know, there was no study available concerning the possible different realizations of
a BSS starting from its description as a product line and then using methods and tools developed in
the field of software product lines to (i) analyze the different admissible products by looking at the
possible variabilities and, moreover, (ii) taking into account the different attributes that may be used
to measure, e.g., the development cost of the various derivable products.

The paper is organized as follows. In §[2| we introduce the bike-sharing case study. In §[3] we show
how to model the BSS with SPLOT, after which we show how to automatically translate such models
into a format suitable for FeatureIDE in §[4] In §[5 we instead show how to automatically translate
such models into a format suitable for ClaferMOOVisualizer and how to moreover add attributes. To
conclude, the lessons we learned from this experience are presented in §[6]

Feature Diagram Feature Information Table
ring 1Id:
= O Status Name:
BA[1..4] Cod -
© RTInfoWeb {  Description:
o AllBikesNow ;. iType:
=2 ® pi H H .
"% Bike i i#Children:
50 Localization b
BA [ %] : Elree level:
® GPS Update Feature Model
S RFID I
T D’I,l'jl""l_l‘s\'e,s Feature Model Statistics
= ® DockingStation @
= [1--: i #Features 29
° L‘.{xed_ E#Mandatory 5
2 FixedPortable ! Ontional
2 Flexible : # ptio 10
© Maintenance i 1#XOR groups
20 Redistribution i #OR groups 4
. ’\'_ Reward i#Grouped 13
[ e Users e E#Cross—'l‘reeConstrajnts(C’l‘C) 5
Cross-Tree Constraints iC’l‘CR (%) 0.21
D[A.IJBkNVGPS)1 1 #CTC distinct vars 6
: - ikesNow [ — . :
| @ (GPSV ~Antithieves ) i iCTCclausedensity 083 ;
i B (Keycard V -KeycardDispenser ) Feature Model Analysis
i B ( -Keycard V KeycardReader ) Lo LT T TEEERNEEEPERIRREEP R :

i B ( ~Keycard V KeycardDispenser ) i ¥ Consistency Consistent
: P Dead Features None

4
1w Core Features
W

:Click to create a constraint

Valid Configurations

Figure 1: The BSS Feature Model in S.P.L.O.T.,| not showing the Users feature’s subfeatures

2 BSS: Bike-Sharing Systems

An increasing number of large, medium and small size cities worldwide are adopting fully automated
public bike-sharing systems (BSS) as a green urban mode of transportation [2]. The concept is simple (a
user arrives at a station, pays for a bike, uses it for a while and returns it to a station) and their benefits
multiple, including the reduction of vehicular traffic (congestion), pollution, and energy consumption.

The current third generation technology-based BSS have almost nothing (but the bikes) in common
with the first generation free BSS introduced in Amsterdam nearly half a century ago. Vélil/, the well-
known and highly successful BSS of the city of Paris, currently consists of over 20,000 bikes and some
1,800 stations. There are now similar BSS in more than 500 cities worldwide. The largest BSS can be
found in China with 50,000 bikes and 2,000 stations, one every 100 meters. Fourth generation BSS are
already being developed. These include movable and solar-powered stations, electric bikes and mobile
(i)phone real-time availability applications [5].

QUANTICOL 2 Dec 20, 2013



Modelling and analysis of a bike-sharing product line (Revision: 1; Nov 15, 2013) Dec 20, 2013

Bikesharing
.-;..—————‘_______ — pod . — _______‘————__.
Status Bte DockingStation | | Maintenance | | Redistribution Users
FaN ——
Or_Group Localization | | Antithieves | | Alt_Group Reward | | AccessMamtSys UzerRegistration
RTInfoweh | | AlBikesMow | | Or_Group 1| | Fiked | | FisedPortable | | Flesible Or_Group_2 Or_Group_3
GPS | | RFID SmartCard | | SmartPhone | | Keyeard | | KiogkReg | | DockStat | | WebReg
—— -_»' ) e ) —
Legend: TouchSereen | | KeycardReader | | CredifCards | | KeycardDispenzer
& Mandatory - AlBikesMow | GPS
< Optional GPS 1 - Arfithisves
ﬁ .EIIt i Keycard | - KeycardDizpenser
Fnaive - keycard 1 KepcardReader

-Feycard | KeycardDizpenser

Figure 2: The complete BSS Feature Model in FeatureIDE

In the context of QUANTICOL we are collaborating with “PisaMo azienda per la mobilita s.p.a.”,
an in-house public mobility company of the city of Pisa’s administration. They recently introduced
the public BSS CicloPi in the city of Pisa, which currently consists of 200 bikes and 12 stations.

More in detail, a BSS consists of parking stations distributed over a city, typically in close proximity
to other public transportation hubs such as subway and tram stations. (Subscribed) users may rent
an available bike and drop it off at any station in the city. To improve the efficiency and the user
satisfaction of BSS, the load between the different stations may be balanced, e.g., by using incentive
schemes that may change the behaviour of users but also by efficient (dynamic) redistribution of bikes
between stations.

The deployment of such different measures gives rise to several interesting multi-objective optimiza-
tion problems, which make this case study an interesting benchmark for the QUANTICOL project.

3 Modelling a BSS with S.P.L.O.T.

In order to apply variability analysis techniques to the case study, we developed an initial feature
model by taking into account the main characteristics (features) of BSS as described in the literature
(mainly [5]). These include bikes equipped with an optional localization feature (RFID or GPS) and an
optional antithieves feature (which requires GPS), parking stations that have either a fixed permanent
capacity or a fixed portable capacity or a flexible capacity, optional maintenance and redistribution
of bikes, and — finally — an optional scheme of incentives based on rewards. Obviously we could have
taken many more characteristics of BSSs into account, but we believe that the chosen ones represent
a sufficient starting point for our exploratory study.

The resulting feature model representation in Fig. [I| was created with S.P.L..O.T.’s feature model
editor, which is an online application developed by Marcilio Mendonga and others at the University of
Waterloo [4]. Software Product Lines Online Tools is actually a web portal which integrates a number
of research tools. S.P.L.O.T. allows to edit, debug, analyze, configure, share and download feature
models (its feature model repository currently has nearly 400 entries). In particular, it allows to save
models online to consult them later or to export them in the SXFM formatE] However, it does not
allow code generation, nor does it provide a means to create a graphical representation of a feature
model.

ISXFM stands for Simple XML Feature Model, a concise textual format to denote feature models.

QUANTICOL 3 Dec 20, 2013



Modelling and analysis of a bike-sharing product line (Revision: 1; Nov 15, 2013) Dec 20, 2013

4 From S.P.L.O.T. to FeaturelDE

A tool that does allow to directly generate code (Java or C++) as well as a graphical representation
from a feature model is FeatureIDE [§]. FeatureIDE actually supports the full lifecycle of a software
product line, from domain engineering to feature-oriented software development. However, it accepts
feature models in an XML format. To nevertheless be able to use FeatureIDE to work with feature
models created with S.P.L.O.T. (or directly with one of the feature models in its repository), it thus
becomes necessary to interpret the SXFM format. To this aim, we have developed a program that
automatically converts SXFM files into the XML format accepted by FeatureIDE.

4.1 FMT: Feature Model Translator

We had to face two minor problems when we considered to write an automatic translation from SXFM
to XML files:

1. Contrary to FeatureIDE, in S.P.L..O.T. the root of a group of subfeatures is itself not a feature,
but rather a node in the feature diagram without a specific name.

2. Contrary to FeatureIDE, S.P.L.O.T. allows a feature model to have multi-features (a.k.a. as
clones): features that appear several times in the same feature diagram (in fact, they can appear
several times in a single product). This is actually dealt with by assigning a unique ID to each
feature. In FeatureIDE, on the other hand, the name of a feature must unequivocally identify a
feature (moreover, it cannot contain white spaces or any non-Latin symbols other than ¢ 7).

We resolved the first problem by simply associating a different name (‘Or_ Group i’, ‘Or_Group j’,
‘Alt Group 1’, etc., thus creating unique names) to each node of the feature model that identifies a
group of subfeatures and by subsequently transforming it into a proper feature itself.

The second problem was resolved by eliminating all non-Latin symbols, by substituting all white
spaces with ‘ ’s and by subsequently simply adding a unique identifier to every occurrence of a multi-
feature (e.g., multifeature 1, multifeature 2, etc.). Further modifications to feature names must be
performed manually.

FMT is written in Java (using Swing’s libraries for the GUI) in Eclipse. This choice allows FMT
to run on many operating systems, including all those on which FeatureIDE can run, which is written
in Java as well.

The actual translation of a feature model specified in the SXFM format to one in XML format
consists of two phases:

1. While reading the SXFM file, the model is created in memory.
2. Starting from the model in memory, the XML file is written.

The choice for storing a model in memory has at least one advantage over a direct translation between
two files: It eliminates the need to write a full translation for any set of two different file formats,
as it may suffice to write the code for either reading a third format or writing a third format, thus
improving reusability.

Providing FMT with the SXFM representation of the feature model depicted in Fig. [I} it thus
generates an XML file that can be read by FeaturelDE. Using FeatureIDE’s visualization functionalities
we subsequently obtained the graphical representation of this feature model depicted in Fig.

From this representation, FeatureIDE allows to generate configurations (i.e., products), an example
of which is depicted in Fig.

QUANTICOL 4 Dec 20, 2013



Modelling and analysis of a bike-sharing product line (Revision: 1; Nov 15, 2013) Dec 20, 2013

= Bikesharing {valid, 2 possible configurations)
= Stabus
[l RTIRFoYeb
] lBikeshow
=l Eike
= | Localization
: - [ Gps
- rFo
fast’ " #Antithieves
= Docking3tation
B @ Fixed
: - FixedPortable
-- Fleible:
i m Maintainance
= E Redistribution
! Reward
=] Lsers
= AccessMgmkays
i G SmartCard
E SmartPhone
: E] Keycard
= UserRegistration
EI-- KioskReg
; m TouchScreen
: m keycardReader
i m CreditCards
L - KevcardDispenser
Dockstat

'.,.'.,.'et.F!_Eeg

Figure 3: Possible BSS configurations

5 From S.P.L.O.T. to ClaferMOO

Until now we only considered ordinary feature models, i.e., feature diagrams modelling the hierarchical
parent-child relationships between a set of features as a rooted tree and possibly some additional
cross-tree constraints.

As outlined in the Introduction, in the context of QUANTICOL we are specifically interested also
in quantitative analyses of BSS, in the sense that we consider the behaviour of the components of a
BSS to exhibit variability not only in the kind of features that they possess, but also in the quantitative
(non-functional) characteristics of their features.

To achieve this, we can add attributes and quantitative constraints among attributes and features
to our BSS specification and consequently perform quantitative analyses. In other words, we consider
the modelling and analysis of attributed feature models.

Neither S.P.L.O.T. nor FeatureIDE currently cater for attributed feature models, but FeatureIDE
is being extended to support quality attributes [§].

5.1 Adding Attributes to the BSS

Clafer, a lightweight textual modelling language for software (product lines) developed jointly at the
University of Waterloo and the IT University of Copenhagen, does specifically allow for attributed
feature modelling [I]. Furthermore, splot2clafer, a small tool written in Java, automatically translates
files from S.P.L.O.T.’s SXFM format into the CFR format of Clafer.

In Clafer, each feature can have an associated attribute and quality constraints can then be specified
either globally or within the context of a feature. Think, e.g., of associating a cost to each feature and
a global constraint that only allows products (feature configurations) whose total costs remain within
a predefined threshold value.

QUANTICOL ) Dec 20, 2013



Modelling and analysis of a bike-sharing product line (Revision: 1; Nov 15, 2013) Dec 20, 2013

This is an example of a single optimization objective, but usually there can be more than one
attribute associated to a feature, leading to multiple optimization objectives. It suffices to imagine
that each feature also has a value for user satisfaction associated to it and while the objective might be
to minimize the cost of a product it might at the same time be desirable to maximize user satisfaction.

The ClaferMOO extension of Clafer was specifically introduced to support attributed feature models
as well as the resulting complex multi-objective optimization goals [6]. A multi-objective optimization
problem has a set of solutions, known as the Pareto front, that represents the trade-offs between two
or more conflicting objectives. Intuitively, a Pareto-optimal solution is thus such that no objective
can be improved without worsening another objective. A set of Pareto-optimal variants generated by
ClaferMOO can be visualized (as a multi-dimensional space of optimal variants) and explored in the
interactive tool ClaferMOQOVisualizer, which was specifically designed to support software product line
scenarios.

ClaferMOOVisualizer can help to understand the differences among variants, to establish their
positioning with respect to various quality dimensions, to select the most desirable variants, possibly
by resolving trade-offs, and — finally — to understand the impact that changes made during a product
line’s evolution have on a variant’s quality dimensions.

We thus decided to annotate the features of the BSS with attributes and to define some global
quantitative constraints over these attributes. For now we limited ourselves to the cost and customer
satisfaction of the features and, in specific cases, their capacity and security; consequently, the global
constraints aim to minimize the total cost of a configuration and to maximize customer satisfaction,
capacity and security of a BSS.

The specification (in Clafer’s CFR format) of the resulting attributed feature model is as follows:E]

abstract Feature
customersat : integer
cost : integer
capacity : integer

abstract SecurityFeature : Feature
security : integer

abstract BIKES
or Status : Feature 7
[ customersat = 25 ]
[ cost = 0 ]
[ capacity = 0 ]
RTInfoWeb : Feature
[ customersat = 10 ]
[ cost = 5 ]
[ capacity = 0 ]
A11BikesNow : Feature
[ customersat = 20 ]
[ cost = 10 ]
[ capacity = 0 ]
Bike : Feature
[ customersat = 0 ]
[ cost = 0 ]
[ capacity = 0 ]

2The specification excludes the Maintenance, Redistribution and Users features as well as their subfeatures, as Clafer-
MOOVisualizer currently cannot handle such a large model.

QUANTICOL 6 Dec 20, 2013



Modelling and analysis of a bike-sharing product line (Revision: 1; Nov 15, 2013) Dec 20, 2013

or Localization : Feature 7
[ customersat = 3 ]
[ cost = 3]
[ capacity = 0 ]
RFID : Feature
[ customersat = 10 ]
[ cost = 10 ]
[ capacity = 0 ]
GPS : Feature
[ customersat = 15 ]
[ cost = 15 ]
[ capacity = 0 ]
Antithieves : SecurityFeature 7
[ customersat = 5 ]
[ cost =71
[ capacity = 0 ]
[ security =1 1]
xor DockingStation : SecurityFeature
[ customersat = 0 ]
[ cost = 0 ]
[ capacity = 0 ]
[ security = 1 1]
Fixed : Feature
[ customersat = 17 ]
[ cost = 30 ]
[ capacity = 5 1
FixedPortable: Feature
[ customersat = 20 ]
[ cost = 35 ]
[ capacity = 5 1
Flexible: Feature
[ customersat = 23 ]
[ cost = 40 ]
[ capacity = 10 ]
[ Antithieves => GPS ]
[ Al1BikesNow => GPS ]

total_customersat : integer =
sum Feature.customersat
total_cost : integer =
sum Feature.cost

total_capacity : integer
sum Feature.capacity

total_security : integer
sum SecurityFeature.security

Mybike : BIKES

<< max Mybike.total_customersat >>
<< min Mybike.total_cost >>

<< max Mybike.total_capacity >>

<< max Mybike.total_security >>

QUANTICOL 7 Dec 20, 2013



Modelling and analysis of a bike-sharing product line (Revision: 1; Nov 15, 2013) Dec 20, 2013

In Fig. [4] we see the result of optimizing this specification with ClaferMOOVisualizer. We see,
e.g., that variant 11 offers maximal capacity and security at an affordable cost and with a reasonable
customer satisfaction.

ee Input File or Example S)) Bubble Front Graph: BIKES
' BSS.cfr total_capacity
v
| Or Choose Example... 58] (optimize 5 10
120
Backend:| ClaferMoo [#]#MUuse Cache
4
=@ Clafer Source Model
abstract Feature -
customersat : integer o0 Variant 11
cost : integer total_customersat: 46
capacity : integer total_cost: §5 -
abstract SecurityFeature : Feature total_capa.cllty: 10 g
security : integer total_security: 2 g
abstract BIKES EI
or Status : Feature ? 2 @
[ customersat = 25 ] 60

[cost=0]

[ capacity =01]

RTInfoWeb : Feature
[ customersat = 10]
[cost=5]

[ capacity =01]
AllBikesNow : Feature

S
total_cost
3
.

8
©

4

ee Objectives and Quality Ranges
max total customersat [7 ] ]
min total cost [30 |.[Jao |
max total capacity 5 1o |
max total security o ! 00 20 80 %0 120

ee Variant Comparer ) total_customersat ———————————

A 4

o6 Feature and Quality Matrix: BIKES
i e VOO DOEOEORIREUEEEIBTNDRE B G B D@6
O status 271 O DIV VDOVDIPPVOVPVDLDLIVIDLIDDD
O Rrinfoweb ? C ROV VPLOVDIPPODVCIVOPILLILOLDLDD
O agikesnow 2 Q@O0 QO OOQOROOOOOVIORYDIILYDILDLDLD
F pike
O Localization 271 | O @O QD DO O QLI IPDIDLIDDD
O ke ? ORIOOO OO0 PLODOOXROOLODOOO
O  eps 2 OO VO VOOOVDIDIPOVVILDVLVDLIVDIDLIDDD
O atthieves 27 O QOO COQOO VD000 2O0O0DDO0OQDO
& DockingStation |

O Fixed 2 QOO VOO0 DOOOVIODLODDLOODOVDDLOOO
O Fixedrortavie 7 @ QOO O Q@O0 OO0 OOCO0O0OOCDOO0000®OO
O Flexible ? VDOV DOIODDDODOIODOCIODO OO COOE
total_customersat 23 58 86 52 96 71 55 17 81 10146 75 76 65 40 111 70 80 108 91 95 106 90 105 85 93 103 98 100
total_cost 40 45 68 35 73 58 40 30 70 80 65 60 63 48 55 90 53 58 85 V5 70 83 63 80 65 68 78 V5 73
total_capacity 10 10 10 5 10 10 5 5 10 10 10 5 10 5 5 10 5 5 5 10 5 0 5 5 5 5 5 5 5
total_security 1 1 1 1 1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 1 1 2 1

s |

Figure 4: The BSS Feature Model in ClaferMOOQOVisualizer, corresponding to the BSS.cfr specification,
i.e., excluding the Maintenance, Redistribution and Users features and their subfeatures

6 Lessons Learned

The main goal of the activity presented in this paper was to quickly set up and analyze a family of BSS,
as a base for conducting quantitative evaluation of the different possible characteristics. We therefore
chose to adopt existing feature modelling tools rather than to construct yet another modelling tool. In
our analysis of academic, freely available tools, we soon realized that no single tool was ready to fully
satisfy our expectations. It turned out that our best option was the synergic use of the chain of tools

depicted in Fig.

QUANTICOL 8 Dec 20, 2013



Modelling and analysis of a bike-sharing product line (Revision: 1; Nov 15, 2013) Dec 20, 2013

Feature Model SPLOT’s
input Feature Model
Edior
SXFM
Feature Model
Translator

splot2clafer XMLE
Feature Model

. visualization
atribues CFR FeatureIDE
\ 4 Product

derivation

ClaferMOOVisualizer | Quantitative
evaluation of products

Figure 5: The toolchain experimented in this paper

Both S.P.L.O.T. and FeaturelDE provide the key functioning of what can be expected from a typical
feature modelling tool: Creating, editing and analyzing a feature model, providing some statistics of
the feature model, and deriving product configurations. A careful account, based on user experiences,
of the commonalities and variability of the two tools is presented in [7], which confirms the fact that
neither of the two is better than the other in all circumstances.

S.P.L.O.T. is a Web-based tool, including a repository of hundreds of feature models. It is quite
user friendly and immediate to use, thanks to the availability of previously developed models. However,
adding the model to the aforementioned repository is mandatory, which raises concerns over the privacy
of the developed models that can thus be accessed and modified by anyone. Moreover, S.P.L.O.T. allows
only a single product configuration to be created, which however cannot be saved in the repository.

FeatureIDE is a more traditional, locally executable tool, integrated in Eclipse. Hence, it allows not
only the generation of products as feature combinations, but it also allows to automatically generate
code skeletons that reflect the feature structure of a product within Eclipse itself. Although we did
not exploit this feature in this paper, we consider it important for our intended future work on the
BSS case study within QUANTICOL.

The complementarity of the two tools with respect to the above issues has been exploited in the
experience described in this paper by first defining the feature model in S.P.L..O.T. and subsequently
transferring it to FeatureIDE. This step has moreover been automated with a purposely built format
transformation program.

Finally, we adopted ClaferMOOVisualizer for quantitative analyses of an attributed feature model,
since — as far as we know — it is the only tool that exhibits this functionality. A specific tool for
interfacing with S.P.L.O.T. exists, and this has been one of the reasons for maintaining a copy of the
feature model in S.P.LL.O.T.

Our experience with the tools was influenced by the fact that all of them are academic tools that at
times present some minor problems: S.P.L..O.T. and FeatureIDE showed more maturity in this respect,
while the online version of ClaferMOOVisualizer, possibly because it is the most recently developed of
the three, still manifest some instability.

Obviously, having a single standard format for feature models, and maybe using locally running
versions of the tools, would increase the synergy between the tools. For now, however, the exploited
tool chain was sufficient for quickly modelling and analysing a bike-sharing product line.

The reported experience, although at a preliminary stage, has shown the general value of product
line modelling when addressing a class of complex systems, given its ability to identify commonalities
and variabilities between elements of the class. The added possibility of basing quantitative evaluation
and optimization techniques on product line modelling is also appearing as a promising opportunity.

QUANTICOL 9 Dec 20, 2013



Modelling and analysis of a bike-sharing product line (Revision: 1; Nov 15, 2013) Dec 20, 2013

7 Acknowledgements

Maurice ter Beek and Stefania Gnesi are supported by the EU FP7-ICT FET-Proactive project QUAN-
TICOL (600708) and the Italian MIUR project CINA (PRIN 2010LHT4KM).

The authors would like to thank Andrea Scozzarro for the implementation of FMT.

The authors would also like to thank Marco Bertini from PisaMo s.p.a. for kindly sharing his
expertise on the public BSS CicloPi with us.

References

[1] K. Bak, K. Czarnecki, and A. Wasowski. Feature and Meta-Models in Clafer: Mixed, Specialized,
and Coupled. In Revised Selected Papers of the 3rd International Conference on Software Language
Engineering (SLE’10) (B.A. Malloy, S. Staab, and M. van den Brand, eds.). Lecture Notes in
Computer Science 6563, Springer, 2010, 102—-122.

[2] P. DeMaio. Bike-sharing: History, Impacts, Models of Provision, and Future. Journal of Public
Transportation 12, 4 (2009), 41-56.

[3] C. Fricker and N. Gast. Incentives and Redistribution in Bike-Sharing Systems with Stations of
Finite Capacity. arXiv:1201.1178v3 [nlin.AO|, September 2013.

[4] M. Mendonga, M. Branco, and D.D. Cowan. S.P.L.O.T.: Software Product Lines Online Tools.
In Companion Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA’09) (S. Arora and G.T. Leavens,
eds.). ACM, 2009, 761-762.

[5] P. Midgley. Bicycle-Sharing Schemes: Enhancing Sustainable Mobility in Urban Areas. Back-
ground Paper CSD19/2011/BP8, Commission on Sustainable Development, United Nations De-
partment of Economic and Social Affairs, May 2011.

[6] A. Murashkin, M. Antkiewicz, D. Rayside, and K. Czarnecki. Visualization and Exploration of
Optimal Variants in Product Line Engineering. In Proceedings of the 17th International Software
Product Line Conference (SPLC’13) (T. Kishi, S. Jarzabek, and S. Gnesi, eds.). ACM, 2013,
111-115.

[7] J.A. Pereira, C. Souza, E. Figueiredo, R. Abilio, G. Vale, and H.A.X. Costa. Software Variability
Management: An Exploratory Study with Two Feature Modeling Tools. In Proceedings of the
7th Brazilian Symposium on Software Components, Architectures and Reuse (SBCARS’13), 2013,
36-45.

[8] T. Thiim, C. Késtner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich. FeatureIDE: An Exten-
sible Framework for Feature-Oriented Software Development. To appear in Science of Computer
Programming 79 (2014), 70-85.

QUANTICOL 10 Dec 20, 2013



	Introduction
	BSS: Bike-Sharing Systems
	Modelling a BSS with S.P.L.O.T.
	From S.P.L.O.T. to FeatureIDE
	FMT: Feature Model Translator

	From S.P.L.O.T. to ClaferMOO
	Adding Attributes to the BSS

	Lessons Learned
	Acknowledgements

