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A B S T R A C T

The chimeric antigen receptor T cell (CAR-T cell) immunotherapy currently represents a hot research trend and
it is expected to revolutionize the field of cancer therapy. Promising outcomes have been achieved using CAR-T
cell therapy for haematological malignancies. Despite encouraging results, several challenges still pose eminent
hurdles before being fully recognized. Directing CAR-T cells to target a single tumour associated antigen (TAA)
as the case in haematological malignancies might be much simpler than targeting the extensive inhibitory mi-
croenvironments associated with solid tumours. This review focuses on the basic principles involved in devel-
opment of CAR-T cells, emphasizing the differences between humoral IgG, T-cell receptors, CAR and Fcγ-CR
constructs. It also highlights the complex inhibitory network that is usually associated with solid tumours, and
tackles recent advances in the clinical studies that have provided great hope for the future use of CAR-T cell
immunotherapy. While current Fcγ-CR T cell immunotherapy is in pre-clinical stage, is expected to provide a
sound therapeutic approach to add to existing classical chemo- and radio-therapeutic modalities.
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1. Adoptive T-cell transfer for cancer immunotherapy

The adoptive T-cell transfer (ATCT) aims at utilizing peripheral
blood or tumour-infiltrating T lymphocytes (TILs) to target and destroy
tumour cells [1]. Effective in vivo or ex vivo increase in the numbers of T
cells is critical for generating adequate amounts of T cells to be used for
ATCT. Several cytokines are known to enhance the proliferation and
activity of T cells such as IL-2 which has been demonstrated to play a
crucial role in induction of T cells expansion and proliferation [2,3].
Interestingly, the process of isolation of TILs has been challenging but
TILs-based immunotherapy has been proven to be an effective ther-
apeutic strategy both in mouse model [4], and in human metastatic
melanoma [5]. An effective strategy for ATCT has been demonstrated
where TILs are co-administered with IL-2, and the tumour bearing re-
cipient is subjected to lymphodepletion either by chemical modality
(cyclophosphamide) or irradiation. Such multimodal ATCT therapeutic
strategy has been reported to effectively enhance the anti-tumour ac-
tivity of TILs; although, the latter could be reproducibly grown only
from melanoma. The CAR-T cell technology has significantly expanded
the range of tumours that can be treated by ATCT [6].

2. Anti-cancer MHC-independent strategies and the path toward
CAR-T cell therapy

The design of CARs constructs has been clearly improved. Currently,
three generations of CARs are available. The first generation of CARs
was described by Eshhar et al. It resulted from the fusion of a single-
chain variable fragment (scFv) of an antibody, linked to a flexible
hinge, with the T cell receptor, CD3 zeta chain (CD3ζ) [7–9]. This de-
sign combined the targeting element from a well-characterized mono-
clonal antibody (mAb) with a signaling domain (Fig. 1). This approach
enables specific tumour epitope recognition and T-cells activation
without dependence on the major histocompatibility complex mole-
cules (MHC). The latter aspect is particularly important, given the
ability of many tumour cell types to downregulate the MHC class I
molecules.

Further enhancement of CAR methodology was achieved by the
implementation of a second generation of CAR through the integration
of a costimulatory molecule of T cell, such as CD28, into the en-
dodomain of the first generation of CAR construct. The integration of a
T cell co-stimulatory molecule led to a higher level of T cell activation
compared to that of the first generation of CAR T cells, (Fig. 1). Thus,
CD28 acts as the second activation event in the pathway, leading to
heightened T cells proliferation, along with a marked increase in cy-
tokine expression [10]. Studies have indicated that the use of a co-sti-
mulatory domain such as CD28 correlates with a higher production of
cytokines and to extend persistence in comparison to the CD3ζ alone
(Fig. 1) [11–14].

The most recent generation (3rd generation) of CAR design in-
corporates an additional co-stimulatory domain to enhance CAR func-
tion (Fig. 1). In most cases, the co-stimulatory domain is represented by
one of the members of the tumour necrosis factor receptor (TNFR) fa-
mily: CD134 (OX40) or CD137 (4-1BB). Pule et al. [15] provided an
analysis of this addition by comparing three different CARs constructs:
CD28-f, OX40-f, and CD28-OX40-f. They found better results in the
third combination, which demonstrated higher NF-κB activity, in-
creased IL-2 and IFNγ secretion, and sustained proliferation. This pro-
motes the T cells cytotoxic ability and release of cytotoxic granules
containing perforin and granzymes leading to the killing of target cells
(Fig. 2A) [16].

The extracellular domain of CAR-T cells is the equivalent of the
single chain variable fragment (scFv) found in immunoglobulins (IgG)
specific to certain antigens, usually a tumour associated antigen (TAA).
It is mainly responsible for redirect CAR-T cells to specific TAA. The IgG
molecules eliminate target antigens by direct capture, neutralization,
opsonization, inactivation, and phagocytosis. When compared to IgG

molecules, the TCR is equipped with two additional structures: the
transmembrane, and intracellular domains. There are also some major
differences between the antigen binding capacity of the im-
munoglobulins and TCR wherein binding by TCR is dependent on an-
tigen presentation in the context of the MHC class I or class II [17]. This
is not the case for circulating antibodies. Interaction of TCR or CAR
with a specific antigen triggers the CD3 multimeric protein complex to
initiate a signaling cascade [18]. Introduction of CAR into allogeneic T
cells promotes the ability of T cells to proliferate, produces a storm of
cytokines, and induces target cell cytolysis as is seen with CD19-di-
rected CAR-T cells used to treat CD19-expressing B-cell malignancy
[19].

3. Genome editing and universal allogeneic CAR-T cells

CD19 CAR-T cell therapy has proven to be efficient mainly in the
treatment of B cell malignancies [20–23]. The use of CAR-T cells to
target a single antigen in B cell malignancies poses some challenges
compared to solid tumours. The inhibitory environment of the solid
tumours and the release of different inhibitory molecules might com-
promise the antitumour activity of CAR T cells. Interaction of PD-1
[24,25], and CTLA-4 on T cells [26] with their ligands triggers in-
hibitory pathways, T cell exhaustion and impairment of T cell function
in chronic infections and cancers, suggesting another challenge for ef-
fective elimination of cancer cells. PD-1, CTLA-4, TIM-3 [27,28], and
LAG-3 [29] have been reported to be involved in T cell exhaustion.

To enhance the efficacy of CAR-T cells in treatment of solid tumours
several strategies have been suggested. Elimination of endogenous TCR
and inhibitory molecules on the surface of CAR-T cells, using genome
editing (such as CRISPR/Cas9 system) was expected to lead to an

Fig. 1. The figure represents the evolution of the CAR constructs. First gen-
eration CARs contain the scFv against a specific TAA linked to the ζ-chain of
TCR/CD3 complex. The 1st generation was limited in T cell activation, cyto-
kines release and T cells persistence. The 2nd generation CARs, including the
co-stimulatory domain CD28 fused to CD3ζ, have improved the antitumour
activity of the engineered T cells against the target tumour cells. The best re-
sults were obtained with the third generation CARs, which added to the pre-
vious construct a second co-stimulatory domain such as 4-1BB or OX40. This
resulted in higher cytotoxicity and long-term persistence of T cells in vivo.

H.E. Marei, et al. Biochemical Pharmacology 166 (2019) 335–346

336



enhancement of CAR-T cells function without adverse effects on the
function of primary T cells for adoptive immunotherapy [30].

Most ongoing CAR-T cell-based immunotherapy uses autologous T
cells. While the use of autologous cells would normally be expected to
overcome the problem of graft-versus-host disease (GVHD), widespread

clinical application of autologous CAR-T cell immunotherapy could
potentially be hindered by the high cost of a large scale production,
poor quality, and insufficient numbers of collected autologous cells,
especially in elderly and immunocompromised patients. One possible
solution to overcome such obstacles is to generate high quality active

Fig. 2. The picture describes the major dif-
ferences among CAR-T cells, Fcγ-CR T cells
and NK cells. (A). Representation of the
second generation CAR. The engagement of
the scFv on T cells and a specific TAA on
target tumour cells induces the release of
inflammatory cytokines and cytotoxic gran-
ules containing perforin and granzymes
leading to tumour lysis. An important limit
of this technology is the single TAA tar-
geting on the tumour cells by the effector
cells. The risk of loss of the antigen on the
tumour cells could make the therapy in-
effective. (B). Cross-linking between the
second generation of Fcγ-CR expressed on T
cells and IgG opsonized-tumour cells induce
T cell activation and cytokines release which
results in tumour apoptosis. This technology
holds more advantages compared with a
typical CAR: i) multiple TAAs targeting ex-
erted by the same Fcγ-CR T cells and ii) the
withdrawal of mAbs reduces the risk of cy-
tokines release storm (C). Representation of
NK cell anti-tumour activity. The killing
activity of NK cells in the tumour micro-
environment is poor and tumour cells might
induce NK cell elimination.

Table 1
In vitro, in vivo and clinical trials of CAR T immunotherapy.

Antigen targeted Disease CAR Fcgamma CAR Clinical phase References

Hematological malignancies
CD19 Acute lymphoblastic leukaemia (ALL), and chronic lymphocytic leukaemia (CLL) were + − I [34–38]
CD116 Myelomonocytic leukaemia + − I [39]
CD22 ALL showing CD19-negative antigen escape + − I [43]

[47]
CD19/CD28 CLL + − I

[48,49]
CD30 Hodgkin’s lymphoma + − I
BCMA Multiple myeloma (MM) and myeloid malignancies + − I [50]
LCAR-B38M Multiple myeloma (MM) and myeloid malignancies + − I [51]

+ − I [52]
NKG2D Acute myeloid leukaemia

Solid tumours
HER2 and IL-13Rα2 Glioblastoma + − Mouse [57]
IL-13Rα2 and EGFRvIII Glioblastoma + − Mouse [63,64]
IL13Rα2 Glioblastoma + − I [65]
EGFRvIII + − Mouse [49,67–69]
GD2 and CD171 Neuroblastoma − − Mouse [70,71]
GD2 Neuroblastoma + − I [72]
ErbB ErbB-positive tumour cell lines − − Cell line [80]
HER2 Breast cancer − − Mouse [84,85]
Mesothelin Breast cancer − − Cell line [86,87]
EGFR Non-small cell lung cancer + − I [93]
Mesothelin Advanced mesothelioma or pancreatic cancer + − I [95]
KIR-CAR/DAP12 Mesothelioma − − Mouse [96]
NKG2D Ovarian cancer cell − − Cell line [97]
HER2/neu Ovarian cancer cell − − Mouse [98]
PSMA Prostate cancers − − Mouse [100]
CA-IX Renal carcinoma cells − − Mouse [108]
CA-IX Renal carcinoma cells + − I [109]
HER2 Metastatic osteosarcoma − − Mouse [110]
NKG2D Ewing sarcoma − − Cell line [111]
IL-11Rα Osteosarcoma, prostate cancer, breast cancer − − Mouse [112,113,114]
IL-11Rα Primary tumours and pulmonary metastasis − − Mouse [115]
HER2 HER2-positive sarcoma + − I/II [116]
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allogeneic T cells derived from young healthy individuals. However, the
presence of endogenous TCR and the expression of HLA on the surface
of allogeneic T cells is expected to trigger GVHD leading to rapid re-
jection by the host immune system [31].

Besides the existence of allogenic HLA antigen and inhibitory re-
ceptors, other molecules such as the Fas receptor (also known as CD95
and APO-1) might play a crucial role in CAR-T cells reactivity.
Interaction of Fas with its ligand (FasL) is known to induce cell death
and T cell apoptosis leading to attenuation of CAR-T cells activity [32].

Disruption of allogeneic and HLA antigens along with ablation of
inhibitory TCR appears to be a promising strategy to overcome not only
GVHD, but also potential exhaustion that might occur. Exhaustion
would be due to interaction of inhibitory molecules released from the
tumour microenvironment with their specific inhibitory receptors lo-
cated at the surface of CAR-T cells. In a recent study, Ren et al. [30]
succeeded in generating allogeneic universal CAR-T cells via the
quadruple knockout of endogenous TCR, HLA class I (HLA-I), Fas, PD1
and CTLA-4. The generated universal CAR-T cells are currently being
assessed against different types of solid tumours.

4. CAR-T cells and haematological malignancies (Table 1)

Currently, anti-CD19 CAR-T cells [33] were demonstrated to be
effective in the treatment of B cell non-Hodgkin lymphoma (NHL),
acute lymphoblastic leukaemia (ALL), and chronic lymphocytic leu-
kaemia (CLL) [34–38]. Anti-CD116 CAR-T cell therapy has been de-
veloped for treating myelomonocytic leukaemia. In a recent clinical
trial (ELIANA trial), anti-CD19 CARs was used to treat 68 paediatric
patients with acute lymphoblastic leukaemia (ALL). Complete Remis-
sion (CR) was observed in 83% of these patients, and after 6months,
the estimated Relapse-Free Survival (RFS) and Overall Survival (OS)
probabilities were reported to be 75% and 89%, respectively [39]. In
another trial that was conducted at the Children’s Hospital of Phila-
delphia, the 12-month RFS and OS of an anti-CD19 CAR T-cell-treated
cohort of 53 children with refractory/relapsed (R/R) ALL were 45% and
78%, respectively [40]. Based on the promising outcomes of these two
studies, the FDA has approved use of the anti-CD19 CAR-T cell product
for B-cell ALL.

Despite encouraging outcomes for anti-CD19 CAR-T cell im-
munotherapy, 45% of the patients who achieved a minimal residual
disease (MRD)-negative CR reported a relapse following anti-CD19
CAR-T cell therapy. In ALL relapsed patients, 39% CD19-negative leu-
kemic blasts were observed. The CD19 negative leukaemia cells appear
to be one of the main reasons underpinning the relapse that was ob-
served following the anti-CD19 CAR-T cells [41]. Other claimed that
expression of alternatively spliced isomers of CD19 might create re-
sistance to CAR-T cell immunotherapy [42]. To overcome the CD19-
negative antigen escape, a phase I clinical trial was conducted on nine
children or young adults with ALL showing CD19-negative antigen es-
cape using anti-CD22 CAR. MRD-negative CR was observed in 44%
(four patients) indicating the potential of anti-CD22 CAR-T cell therapy
to overcome the CD19 antigen escape [43].

Two main clinical trials were devoted to use anti-CD19 CAR-T cells
for aggressive R/R Non-Hodgkin lymphomas (NHL) [44,45]. In a phase
II clinical trial, 85 patients with R/R diffuse large B-cell lymphoma
were treated with 4-1BB CAR-T cells after lymphodepleting che-
motherapy. At a 3month follow up, the Overall Response Rate (ORR)
was 59% and the CR rate was 43% [44]. In a multicenter Phase 1 trial,
68 patients with R/R aggressive NHL had been treated with 4-1BB CAR-
T cells. The six-month ORR was 40% and CR rate was 37% [45]. These
findings are very encouraging but necessitate conducting a longer-term
follow up to assess the efficacy of such immunotherapeutic modality
against aggressive NHL.

For chronic lymphocytic leukaemia (CLL) few clinical trials have
been reported on the use of anti-CD19 CAR-T cells as therapy. In 24
patients with ibrutinib-resistant CLL, the ORR at 1month was 71%, and

8% of patients have shown cytokines releasing syndrome (CRS) [46]. In
comparison to other CD19+ malignancies, the CAR-T cell therapy in
CLL seems to be less effective. Currently, a phase I clinical trial is on-
going with the aim of employing CAR-T cells co-expressing anti-CD19/
CD28 CAR along the co-stimulatory ligand 4-1BB [47].

Hodgkin’s lymphoma (HL) is characterized by the expression of
CD30. The CAR CD30-4-1BBζ T cells were used to treat 18 patients with
heavily pretreated R/R HL. Remission was observed in 39% of the pa-
tients (seven patients) and 33% of the patients showed stable disease.
CRS was observed in 11% of the treated patients [48,49].

Anti-BCMA (B cell maturation antigen) CAR-T cells product was
utilized to treat multiple myeloma (MM) and myeloid malignancies.
Out of 11 patients with R/R, seven valuable patients showed 100%
ORR, and 2 patients showed strong CRs and two MRD-negative re-
sponse [50]. In another clinical trial, 57 patients were treated with a
CAR T therapy directed against to BCMA epitopes, LCAR-B38M. The
ORR was 88% and 68% of patients showed MRD-negative CR at a
median follow-up of eight months [51]. Anti-NKG2D-CD3ζ CAR T cells
were used in a phase I trial to treat 12 subjects, seven with AML (acute
myeloid leukaemia)/MDS (myelodysplastic syndrome) and five with
MM. Consistent with preclinical studies, NKG2D-ζ-CAR T cell-expansion
and persistence were limited. Neither tumour response nor toxicity
after anti-NKG2D-ζ CAR-T cell therapy was noted [52]

5. CAR-T cell immunotherapy for solid tumours (Table 1)

In comparison to B-cell malignancies, fewer specific TAAs are de-
monstrated in solid tumours. A list of solid tumours surface antigens has
been targeted using CAR-T cells. These include, but are not limited to,
epidermal growth factor receptor (EGFR), EGFR type III variant
(EGFRvIII), human epidermal growth factor receptor 2 (HER2), carci-
noembryonic antigen (CEA), disialoganglioside 2 (GD2), mesothelin,
prostate-specific membrane antigen (PSMA), and interleukin-13Rα2
(IL13Rα2) [53]. Some of the solid tumour specific antigens are ex-
pressed not only on tumour tissues but also on different normal tissues.
CAR-T cells targeting bystander tissues might induce a deleterious im-
mune reaction that are life-threatening.

The question of how to increase the specificity of CAR-T cell im-
munotherapy has been raised by several research groups. Dual speci-
ficity CAR-T cells have been designed [54–56] as a means to precisely
recognize and destroy tumour cells in a more specific way. The use of
dual CAR-T cells to target glioblastoma TAA (HER2 and IL-13Rα2) in a
mouse glioblastoma xenograft model was associated with enhanced
antitumor activity, decreased tumour antigen escape, and increased
survival time of treated animals [57].

CAR-T cells were engineered to recognize two ligands that are
specific to tumour cells, namely the Notch receptors and another second
TAA. The extracellular domain of the Notch receptor was directed to
recognize the first TAA (antigen A). Binding of the Notch extracellular
domain with its ligand transforms the intracellular domain into a
transcription factor fragment that triggers the expression of a CAR
molecule specific to a second TAA (antigen B) [58–60]. Given the
heterogeneity of tumour cells, the bispecific CAR-T cells would over-
come the potential escape of single antigen tumours expressing antigen
A or B. In a similar way, CD19 and CD20 bispecific CAR was designed,
and have proven to be more efficacious against malignant B cells that
harbour both TAAs [61].

For nervous system tumours, glioblastoma and neuroblastoma have
been targets for CAR-T cell immunotherapy [49]. In the case of glio-
blastoma, two TAAs were characterized: IL-13Rα2 and EGFRvIII.
IL13Rα2 is overexpressed in more than 50% of glioblastomas, and has
been demonstrated to be expressed not only in glioblastoma cells, but
also glioblastoma cancer stem cells [62]. First generation IL-13Rα2–s-
pecific CAR T cells has proven to be effective in eradication of glio-
blastoma cells and glioblastoma cancer stem cells in an orthotopic xe-
nograft model [63,64]. In a phase I trial, the first generation
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IL13Rα2–specific CAR-T cells was infused in three glioblastoma pa-
tients and limited anti-glioma responses were recorded. This was at-
tributed principally to poor proliferation and persistence of first gen-
eration CAR-T cells [65]. Multiple intraventricular infusions of second-
generation IL13Rα2-BBζ–specific CAR-T cells in a glioblastoma patient
showed effective tumour regression [66].

A mutated form of wild type EGFRvIII is expressed in glioblastoma.
At the preclinical level, multiple studies have demonstrated the ability
of third generation EGFRvIII-specific CAR-T (CD28-4-1BB-ζ) cells to
recognize and destroy EGFRvIII-positive glioblastoma without affecting
the wild type EGFR that exist in normal tissues [49,67–69].

In neuroblastoma, which originates from neural crest cells, GD2 and
CD171 have been demonstrated to be targets for CAR-T cells. At the
preclinical level, GD2-specific CAR-T cells were reported to exert acy-
totoxic response against neuroblastoma [70,71]. Using a first-genera-
tion of GD2-specifc CAR-T cells, 3/11 patients with active disease, at
the time of GD2-T cells infusion, achieved complete response in a phase
I clinical trial, and the infused CAR-T cells were present for up to
192 weeks [72]. Different strategies have been utilized to improve the
trafficking and localization of CAR-T cells in glioblastoma and other
neuro-oncological malignancies. These include their modification to
express the chemokine receptor [73] and tumour necrosis factor α
(TNF-α) [74]. Such strategies and others (like the use of combining
CAR-T cells and lenalidomide) have been demonstrated to improve
trafficking and persistence of CAR-T cells in vivo [75].

Biological significance of the ErbB receptor family (EGFR or ErbB-1,
ErbB-2 (HER2 or neu), ErbB-3, and ErbB-4) have been demonstrated in
head and neck squamous cell carcinoma, breast and lung cancers
[76–79]. In vitro and in vivo studies have demonstrated the ability of
ErbB-specific CAR-T cells to recognize and lyse ErbB-positive tumour
cell lines [80]. Due to the wide expression of all four ErbB receptors in
normal tissues, intratumoral delivery has been proposed to be a more
efficacious strategy in clinical trials [81]. Multiple T cell inhibitory
mechanisms are exploited by squamous cell carcinoma cells to escape
immune surveillance, such as the expression of PD-L1 [82], the pre-
sence of infiltrating regulatory T cells [83] which induce T cell in-
hibition due to secretion of IL-10 and transforming growth factor.

For breast cancer, HER2 and mesothelin are recognized as specific
TAAs. Overexpression of HER2 oncogene is associated with un-
controlled cell proliferation and development in 20% of breast cancer
[84]. In an in vivo mouse model of mammary tumours, a HER2-specific,
second-generation CAR induced cytokine secretion, and exhibited po-
tent cytotoxic reaction [85]. Triple-negative breast cancer is known to
be unresponsive to targeted and hormone therapy. Mesothelin expres-
sion is associated with poor outcomes in breast cancer. CAR T cells-
directed to mesothelin have been demonstrated to induce a cytolytic
effects against primary breast tumour cells in vitro [86,87]. The use of a
dual-targeting CAR system has been suggested to as a possibly effective
strategy against antigen escape and acquired resistance, something that
represents a major challenge in breast cancer therapy [88]. Moreover
CAR-T cells can be engineered to overexpress and secrete IL-12, or
costimulatory ligands, such as 4-1BB. Such inflammatory cytokines
would induce epitopes spreading and induction of an effective en-
dogenous immune response against cancer cells [89,90].

Multiple TAAs have been identified for non-small cell lung cancer of
which EGFR, mesothelin [91] and CEA [92] are the most important
targets. A second generation EGFR-directed CAR-T cell induced potent
cytotoxic effects via induction of interferon γ (IFN-γ) and IL-2 secretion
in EGFR-positive lung carcinoma cell [93]. In a phase I clinical trial, the
use of a second-generation EGFR-specific CAR-T cells (after lympho-
depletion) was associated with a partial response in two of the eleven
patients with refractory non-small cell lung cancer [93].

The major TAA that is known to be overexpressed in mesothelioma
is the mesothilin. A second-generation mesothelin-directed CAR-T cell
therapy was associated with tumour elimination in vitro and in vivo
[94]. In a phase I clinical study, the use of second generation

mesothelin-specific CAR-T cells induced moderate cytotoxic responses
against advanced mesothelioma or pancreatic cancer [95]. Wang et al.
reported a CAR construct using the killer immunoglobulin-like receptor
(KIR) and DAP12, a multichain immunoreceptor complex. They showed
that the KIR-CAR/DAP12 can potently activate T cells and show anti-
tumor activity in vivo on mesothelioma xenografts in mice resistant to
typical CAR-T cells with 4-1BB-ζ or CD28-ζ [96].

Several TAAs have been identified in ovarian cancers of which
NKG2D, HER2/neu, Lewis-Y (LeY+) antigen, MUC-16-CD, and Folate
receptor α (FRα) are the most common. A first-generation NKG2D re-
ceptor-directed CAR induced tumour cell lysis in an ovarian cancer cell
line [97]. A second-generation HER2/neu-directed CAR-T cells re-
pressed flank-implanted ovarian cancer cells in a xenogeneic model
[98]. In the OVCAR-3 tumour model, a second-generation CAR directed
against LeY+ tumours induced potent cytotoxicity and enhanced the
production of IFN-γ [99]. A phase I clinical study was conducted based
on the preclinical efficacy of folate receptor–directed CAR T cells. Two
important TAAs have been identified in prostate cancers; the prostate
stem-cell antigen (PSMA). A PSMA-directed third-generation CAR
showed robust proliferation and cytotoxicity in vitro, and in a tumour-
bearing SCID/beige mouse model [100]. It was also able to inhibit
subcutaneous tumour growth in mice [101]. A 40% response rate was
recorded for a phase I clinical study using PSMA-directed CAR, IL-2
administration, and myeloablative preconditioning [102]. PSMA-di-
rected CAR-T cells showed systemic persistence for up to 2 weeks [103].
Prostate cancer has been reported to have a marked resistance to hor-
monal therapy mainly attributable to the presence of tumours asso-
ciated macrophages (TAMs) which are recruited into the tumour stroma
[104]. The most important chemokines for monocyte recruitment to
tumours are the chemokine (C-C) ligand 2 (CCL-2), colony-stimulating
factor 1 (CSF1) and VEGF. The inhibition of CCL2 resulted in reduction
of macrophage infiltration, vascular and tumour growth [105].

In renal cell carcinoma, carboxy-anhydrase-IX (CA-IX), a metallo-
protease that reversibly catalyses the hydration of carbon dioxide
[106], has been demonstrated to be a specific TAA. Besides being ex-
pressed in renal cell carcinoma, CA-IX is expressed in many normal
tissues such as the gastric mucosa, small intestine epithelium, duo-
denum, and the biliary tree [106]. Moreover, under hypoxic conditions,
the expression of CA-IX is induced in many other tissues [107]. At the
preclinical level, first-generation CA-IX–directed engineered T cells
against renal carcinoma cells induced a marked cytokine production
and cytotoxic activity [108]. In a phase I clinical trial, first-generation
CA-IX–specific CAR-T cells and exogenous IL-2 administration without
non-myeloablative preconditioning were used to treat 3 metastatic
renal cell carcinoma patients. Two of the patients developed toxic
symptoms that emerged as cholangitis and formation of antibodies
against the murine-derived scFv [109].

In sarcoma, several TAAs have been identified such as HER2,
NKG2D, and IL-11 receptor α chain (IL-11Rα). Second-generation
HER2-directed CAR-T cells have been demonstrated to be effective for
treatment of both localized and metastatic osteosarcoma in SCID mice
[110]. In a similar fashion, second-generation NKG2D ligand-directed
CAR-T cells induced a marked cytotoxicity in in-vitro models of Ewing
sarcoma [111]. IL-11Rα-directed CAR-T cells have been reportedly
used in cases of osteosarcoma [112], prostate cancer [113], and breast
cancer [114]. In a nude mouse model of osteosarcoma, IL-11Rα–spe-
cific CAR-T cells were effective against both primary tumours and
pulmonary metastasis [115]. In a phase I/II clinical study, second-
generation HER2-specific CAR-T cells were used to treat 19 patients
with HER2-positive sarcoma. Four patients had stable disease for
12–14months, and three patients that underwent metastatectomy after
CAR-T cell therapy remained in remission for up to 16months [116].
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6. NK cells anti-tumour activity pave the way toward Fcγ-CR T cell
immunotherapy

Previous studies demonstrated promising anticancer activities for
NK cells [117,118]. The active anticancer role of NK cells is mediated
by several active cell surface receptors, i.e. CD16, the FcγRIIIA that
enables the NK cells to identify and destroy tumour cells through ADCC
(Fig. 2C) [117]. Yeap and colleagues reported that human CD16-ex-
pressing monocytes have ADCC capacity and can kill cancer cell lines in
the presence of specific antibodies [117,119]. Unfortunately, the NK
cell immune surveillance might be evaded by several mechanisms in-
cluding the inhibitory milieu of solid tumours, NK cells elimination,
downregulation of NK cells activating receptors, and blocking their
infiltration ability (Fig. 2C) [120–122]. Clinical studies showed that NK
cells infiltration of the solid tumour microenvironment is not associated
with survival [122]. Sconocchia et al. showed that the NK cells in-
filtration in the colorectal carcinoma (CRC) microenvironment was
insignificant, and the high levels of CD16+ cell infiltration in CRC are
preferentially associated with CD3+ and CD8+ T cell infiltration. The
same authors added that CD16+ cell infiltration represents a favour-
able prognostic factor in CRC. Moreover, the inherent nature of NK cells
makes them difficult to expand in vitro, and NK cell tissue infiltration is
often poor in various types of human cancer [123]. In comparison to NK
cells, T cells easily expand in vitro, easily infiltrate the tumour micro-
environment, and this infiltration is usually associated with a favour-
able prognosis [124,125]. Based on the aforementioned knowledges,
Fcγ-CR T cell immunotherapy was designed to transfer the active ADCC
function of NK cell to T cells by engineering T cells to express the Fcγ-
CR (CD16) against immunoglobulin-G opsonized tumour cell lines
(Fig. 1B) [118,126]. Such strategy would allow the induction of ADCC
against tumour cells following a combined administration of Fcγ-CR T
cells and a specific TAA-directed mAb.

Tumours expressing MHC class I-related chain molecule A/B
(MICA/B) are potentially excellent targets for NK cell [122,123]. De-
spite the observation that more than 90% of renal cell carcinomas
(RCC), hepatocellular carcinomas (HCC), CRC, and melanoma cells
express high amounts of MICA/B, we and others demonstrated the
absence of CD56+ NK cells infiltration in 71.4%, 92% and 92% of
melanoma, HCC, and RCC respectively [127,128]. Moreover, low ex-
pression of CD56 and NKp46 were detected in CRC infiltrating cells
[122]. These observations might suggest that the poor tumour in-
filtration ability of NK cells could be attributed to other factors than
merely the downregulation of CD56 expression. The mechanism(s) by
which cancer cells inhibit the cytolytic activity of allogeneic NK cells
are not exactly known. Several factors might contribute to the func-
tional impairments of NK cells activities within the solid tumour en-
vironments. Pietra et al. demonstrated that the melanoma cells in-
hibited the cytolytic activity of NK cells and downregulated the
expression of NK receptors, such as NKp30, NKp44, and NKG2D, in-
volved in recognition of leukaemia cells and solid tumour [129]. Other
studies clarified that in advanced breast cancers soluble factors secreted
by tumour cells, including TGF-β, might contribute to NK cells func-
tional impairment [130,131]. These data might question the role of NK
cells in the control of solid tumour progression in humans.

The promising anticancer role of a series of mAbs has been de-
scribed [132,133]. Elucidation of the mechanistic insights underlining
favourable anticancer response of mAbs is pivotal for their clinical
applications. The effects of mAbs on cancer cells might involve an ac-
tive mAb-mediated ADCC. These effects are expected to be efficacious
in the presence of high numbers of tumours infiltrating FcγR+ cells
[134].

7. Humoral immune response, Fcγ-CR T cells and TAA-specific
monoclonal antibodies

The role of humoral immune response against cancer cells has been

studied for more than fifty years [135]. Indications for interdependence
and interaction between both cellular and humoral anticancer immune
response has been explored [136]. Antibodies against specific TAA
might be effective to capture cancer cells, and with the help of effector
cells (e.g., NK cells, macrophage, DCs, other myeloid cells) they may be
able to induce an effective ADCC against cancer cells [136]. The ef-
fector cells interact with tumour-specific antibodies through Fcγ re-
ceptors (FcγRs) expressed on the surface of NK and other effector cells.
Interaction of FcγRs on the surface of NK cells with the Fc region of
tumour-bound antibodies promotes tumour cell cytotoxicity but in-
hibitory Fc receptors may modulate in vivo cytotoxicity against tumour
[137], and based on this, several therapeutic antibodies have been
developed to target various tumour types [138]. Polymorphic variants
of the FcγRs can alter the binding affinity of Fc portion of tumour
specific antibodies, and the FcγRs on the surface of effectors cells. It’s
one of the main factors that led to multiple conflicting outcomes and
varying clinical success for the use of mAbs to target several tumour
types [139,140]. One possible strategy to enhance the binding affinity
of Fcγ receptors to the Fc moiety of tumour specific mAb is to re-
engineer/manipulate the Fc glycosylation state. This manipulation
strategy would enhance ADCC antitumor activity [141].

Despite the promising early outcome of CAR-T cell immunotherapy,
some obstacles still exist that may hinder its clinical application such as
the off-target toxicity and cancer immune evasion. To overcome these
limitations, an improved version of CAR-T cells has been developed. In
this improved version, T cells are engineered to express the Fc gamma
RI (CD64) or RIIa (CD32) or RIIIa (CD16) instead of the ScFv specific to
TAA. CD64 is the only high-affinity receptor able to bind monomeric
IgG molecules, in contrast CD32 and CD16 are low-affinity receptors,
for which polymorphic variants 131R/H and 158F/V have been re-
ported respectively [142,143]. CD16 and CD32 polymorphisms influ-
ence their binding to IgG Fc fragments [144]. The first generation of
CD16-chimeric receptors (CR) developed by Clémenceau and collea-
gues, it is composed of a fusion protein of the extracellular domain of
CD16 ligated to the transmembrane (TM) and the intracellular domain
of FcεRIγ (referred to as CD16/γ) [145]. Ochi et al. reported a suc-
cessful inhibition of CD20+ lymphoma cells by CD16V-CD3ζ-CR
(cCD16z) construct in combination with rituximab in mouse xenograft
tumours model [146]. The second generation of CD16-CR was de-
scribed by Kudo et al. who generated the CD16V-BB-ζ-CR by introdu-
cing the TM portion of CD8α and the co-stimulatory endodomain of the
4-1BB fused to CD3ζ chain signalling domain [147]. Kudo et al. com-
pared the CD16V-BB-ζ T cells function with T cells transduced with a
typical CD19-CAR (CD19-BB-ζ) and found that the former was more
effective in eliminating target cells than CAR anti-CD19-BB-ζ. Fcγ-CR T
cells given in combination with specific mAbs, utilize ADCC to target
and eliminate cancer cells (Fig. 2B). Interaction of the antibody with the
Fcγ-CR on T cells triggers the occurrence of perforin/granzyme-de-
pendent tumour target cell lysis. In the presence of the appropriate
TAA-specific mAbs, the Fcγ-CR T cells can be utilized to target multiple
cancer types (Fig. 2B). Withdrawal of the mAb can control the off-target
effect of engineered T cells which is crucial to control potential cyto-
kines release syndrome (CRS) [143].

8. Immunosuppressive network within solid tumour
microenvironment

The use of CAR-T cell base-immunotherapy against different solid
tumours is still challenging. Solid tumour microenvironments are
equipped with a complex inhibitory network that might compromise
the action of CAR-T cells. Understanding the different key factors in-
volved in induction of such immunosuppressive tumour micro-
environment is vital for development of an efficacious CAR T-cell
based-therapy. Modulation of inhibitory tumour microenvironment to
enhance antitumor immune response, and to increase access of immune
cells able to infiltrate the tumour is still in need of further work at both
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the preclinical and clinical trial levels. Such highly immunosuppressive
microenvironment in solid tumours is formed of a complex interaction
between different immune cells and cytokines.

One of the main modulators of T cells in the tumour environment is
extracellular adenosine. Elevation of adenosine under tumour hypoxic
conditions is inhibitory to T cells [148]. The effects of adenosine are
mediated by adenosine receptors of which the A2a is expressed in T and
B lymphocytes [149]. Ablation of A2a receptors [150] and blocking of
the adenosine forming enzymes ectonucleotidase CD73 and CD39 on
CD4+ Treg cells, enhanced eradication of a lymphoma and improved
efficacy of an anti-lymphoma tumour vaccine [150].

The role of ion channels in regulation of T cells function, including T
cell motility, and cytokine and granzyme production has been described
[151]. The Kv1.3 and KCa3.1 channels co-localize with the TCR in
human T cells [152,153], and Ca2+ influx is important for Ca2+-
mediated inhibition of tumour growth.

The expression of fibroblast activation protein-a (FAP-a) on the
surface of tumour-associated stromal cells contributes to the tumour
immunosuppressive microenvironment [154]. Tumour cell growth is
inhibited by targeting FAP expressed in stromal cells [155]. Similarly,
the elimination of FAP expressed in a murine model enhanced the
survivability and tumour cell activity of CD8+ T cells [156]. Thus,
modulating the multiple immunosuppressive hurdles in the tumour
microenvironment would enhance tumour eradication and potentiate
the use of CAR-T cells modalities as a promising therapeutic approach.

The natural killer (NK) cells are crucial for regulation of solid tu-
mour microenvironments. When NK cells meet their specific antigen
they release a plethora of interleukins and chemokines (IFNγ, TNFα,
MIP-1a, MIP-1b, and RANTES) which are central in regulation of DCs, T
cells, and B cells [157,158]. IL-12 produced by dendritic cells triggers
expansion and activation of CD8+ T cells [159–161]. IFNγ secreted by
NK and other immune effector cells such as tumours associated mac-
rophages (TAM) (which are known to release VEGF and TGFβ) have
been demonstrated to inhibit the activities of the CD8+ T cells [162].
Cytokines and chemokines released by the activated cytotoxic T cells
are known to enhance the cytotoxic function of the NK cells functions
located within the tumour microenvironment [163].

The role of regulatory CD4+ T cells (Tregs) in solid tumour mi-
croenvironments is remarkable. Tregs have been reported to exert an
inhibitory or immunosuppressive effects on effector immune cells tar-
geting solid tumours by interfering with the function of antigen pre-
senting cells (APCs) [164,165], and the cytotoxic CD8+ T cells. Inter-
action of Tregs with APCs inhibits the expression of CD80 and CD86 on
the APC cell surface leading to impairment of cytotoxic T cells function
[166]. Of note, the inhibitory effects of Tregs on CD8+ T cells are
ameliorated/removed by blocking of CTLA-4 [167,168]. In melanoma,
the CD8+ T cells might induce immunosuppression of effector immune
cells by different mechanisms, including overexpression of PD-L1; and
increase the level of indoleamine-pyrrole 2, 3- dioxygenase (IDO),
which has tolerogenic function [168]. Increased expression level of PD-
1 is associated with activation of Tregs, which triggers an im-
munosuppressive influence on the cytotoxic CD8+ T cells. This impairs
their ability to release cytokines and granzyme [162,166]. The in-
hibitory effect of Tregs on CD8+ T cells was also attributed to their
ability to release IL-10 and TGFβ which are known to inhibit CD8+ T
cells [169]. TGFβ has been reported as essential to the maturation of
naïve T cells into mature Tregs mainly due to induction of Foxp3, the
transcription factor crucial for Treg maturation [170].

In an attempt to alleviate the inhibitory role of Tregs upon CD8+ T
cells, it has been demonstrated that transient depletion of Tregs in a
mouse model was associated with inhibition of metastatic activities,
and increased the tumour’s sensitivity to radiotherapy [171]. Interest-
ingly, manipulation of Treg signalling as in case of inhibition of PI(3)K
isoform p110σ, led to activation of the CD8+ T cells function, and re-
gression of several types of cancer [172].

In contrast to the inhibitory influences induced by Tregs, successful

recruitment of CD103+ (mouse)/CD141+ (humans) dendritic cells
(DC) can activate CD8+ T cells. Under the inhibitory condition of a
solid tumour microenvironment, the recruitment of these cells appears
to be impaired [173]. Activation and expansion of the CD141+ cell
subpopulation by overexpression of IL-12 [174] enhanced the anti-
tumor therapeutic potential of the CD8+ T cells. Such an approach,
might offer an effective therapeutic modality against a refractory solid
tumour.

9. Challenges, adverse effects and patient safety of CAR-T cancer
immunotherapy

Despite the promising results of CAR-T cell based-immunotherapy
for B cell malignancies, and the ongoing clinical trial for several other
types of solid tumours, several challenges are still in need to be solved
before moving toward safe and efficient clinical applications.

It is possible that interaction of CAR with its specific TAA, might
induce the release of a huge number of cytokines leading to “cytokines
release syndrome” which may be fatal. Of note also, the use of PD-1 or
CTLA-4 inhibitors might trigger the risk of autoimmune disease fol-
lowing treatment [175,176].

Patient safety concerns over CAR-T cells immunotherapy are of
utmost importance. A phase II clinical trial on the use of CD19 CAR-T
cells infusion to treat ALL, has been temporarily halted by FDA because
3 patients less than 25 years old died due to development of cerebral
edema. After intense investigation, the death was attributed mainly to
the preconditioning procedures in which they received fludarabine plus
cyclophosphamide. Later, the trial was continued after modulation of
the preconditioning protocol with removal of fludarabine.

The cost of CAR-T cell based-immunotherapy still represents one of
the biggest challenges. The major cost comes from the personalized
nature of CAR-T cells wherein the process includes multiple successive
steps such as collection of autologous (leukopheresis) T cells, ex-vivo
proliferation, genetic modifications with a retrovirus or lentivirus en-
coding the CAR construct, and patient infusion. To alleviate the high
costs of such multiple steps, “Universal” engineered T cells (UCART)
have been generated [156]. The UCART were used to treat an 11-month
girl with relapsed CD19+ B-ALL, and led to complete molecular and
clinical remission [177].

The tumor mutational burden is the one of the main underpinnings
mechanism of cancer formation. Gene mutations might activate proto-
oncogenes [178,179] leading to disruption of global genomic stability.
The efficacy of immunotherapy might be enhanced by the high muta-
tional load, which is a characteristic of certain types of tumours
[180–182]. The use of retrovirus or lentivirus viral vectors to generate
CAR- T cells is another potential risk that might occur due to random
integration within the CAR-T cells genome. Using the engineered self-
inactivating lentiviral vectors (which appear to have more restricted
integration sites) has a minimal risk for disruptive insertional mutations
[183].

The ex vivo expansion of T cells might impose an additional risk
factor. Culturing cells at ambient oxygen versus culture at 3% oxygen,
significantly increases mutation rate [184,185]. Other concerns exist
with respect to the overcoming the problem of immune checkpoints.
Disruption of immune checkpoint proteins such CTLA-4, PD-1, or PD-1L
might interfere with the mechanism of detection of “self” and “non-self”
antigen, and this imposes a great risk for development of autoimmunity
against “self” antigens [186]. The most dangerous and life-threatening
side effect of CAR-T cell immunotherapy is the potential development
of cytokines release syndrome (CRS) or a “cytokines storm” which may
be fatal (186–188). Several strategies have been suggested/executed to
overcome the CRS such as the use of corticosteroids, including pre-
dnisone [187]; or elevation of IL-6 levels through the use of tocili-
zumab, a mAb directed to the IL-6 receptor [188]. Finally, care it
should be taken in the selection of TAAs to avoid on-target (correct
antigen target) off-target/off tumour (incorrect cell type target)
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toxicities, which are life-threatening.
Despite the value and promising outcomes of CAR T im-

munotherapy against hematological and solid tumours, utmost care
must be taken in consideration to avoid potential fatal CRS. In this
regards, implementation of rigorous RECIST (Response Evaluation
Criteria In Solid Tumors) is crucial to guard against such potential de-
leterious effects of CAR T immunotherapy. RECIST is a set of published
rules that define when cancer patients improve (“respond”), stay the
same (“stable”) or worsen (“progression”) during treatments.
Assessment of the change in tumour burden is an important feature of
the clinical evaluation of cancer therapeutics. Since RECIST was pub-
lished in 2000, many investigators, cooperative groups, industry and
government authorities have adopted these criteria in the assessment of
treatment outcomes. However, a number of questions and issues have
arisen which have led to the development of a revised RECIST guideline
(version 1.1) [189].

Currently, the chemo- and radiotherapeutics modalities constitutes
the standard treatment against hematological and solid cancers in the
hands of pharmacologists. However, such protocols might fail to pro-
vide effective regression for aggressive malignant tumours. This ne-
cessitates the introduction of new therapeutic modalities such as CAR T
and Fcγ-CR T cell immunotherapy to be added to existing therapeutic
modalities available for pharmacologists.

10. Summary

The above review summarize the potential of CAR T and Fcγ-CR T
immunotherapy for hematological and solid tumours. Although this is a
crucial and vital goal against fatal cancers, there are still several hurdles
that need to be extensively analyses before such goal be realized.
Targeting a single TAA in hematological malignancies might be much
simpler than targeting the complex inhibitory environment of solid
tumours. Identification of new TAA would help to design precise and
multitargeted cellular therapeutic strategies that is more specific and
safe. The interaction between the multiple TCR with the TAA and
complex antigenic arrays existing within the inhibitory solid tumor
microenvironment might complicate the design of an effective CAR T
immunotherapeutic modality. Although a great advance has been made
in dissecting the different components of mutanome that seems to be
specific at the individual/patient level, much work is still needed to
achieve a complete and long lasting remission of different cancer using
this novel cellular modality. The combination of mAb and the Fcγ-CR T
cells is an important step in alleviating many of the risk associated with
the use of CAR T modality alone. Such design would provide control
over the fatal CRS which represents the main risk for the wide-spread
application of CAR T immunotherapy. The development of universal
CAR T cells would also provide a great advance to overcome the in-
appropriate quality of patients PBMC, and would also help to overcome
the high cost issue of such novel immunotherapeutic modalities that
still not affordable by the health insurance system of USA and EU
countries.

11. Conclusion

The CAR-T cell and its upgraded version Fcγ-CR T immunotherapy
exploit the ability of CAR T active domains and the recognition ability
of specific mAb to recognize and destroy different types of tumor cells.
Previous preclinical and clinical studies have revealed the ability of
CAR-T cell immunotherapeutic modalities to inhibit growth and pro-
liferation of hematological and solid tumours. While the presence of a
single tumor specific antigen as in the case of hematological tumors
might induce an effective antitumor response, the complex inhibitory
environments for the solid tumors and the presence of multiple tumor
associated antigens are still representing major challenges against the
clinical applications of such new immunotherapeutic therapeutic
modalities.
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